10,080 research outputs found

    Context-Aware Resource Allocation in Cellular Networks

    Full text link
    We define and propose a resource allocation architecture for cellular networks. The architecture combines content-aware, time-aware and location-aware resource allocation for next generation broadband wireless systems. The architecture ensures content-aware resource allocation by prioritizing real-time applications users over delay-tolerant applications users when allocating resources. It enables time-aware resource allocation via traffic-dependent pricing that varies during different hours of day (e.g. peak and off-peak traffic hours). Additionally, location-aware resource allocation is integrable in this architecture by including carrier aggregation of various frequency bands. The context-aware resource allocation is an optimal and flexible architecture that can be easily implemented in practical cellular networks. We highlight the advantages of the proposed network architecture with a discussion on the future research directions for context-aware resource allocation architecture. We also provide experimental results to illustrate a general proof of concept for this new architecture.Comment: (c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Traffic-Driven Spectrum Allocation in Heterogeneous Networks

    Full text link
    Next generation cellular networks will be heterogeneous with dense deployment of small cells in order to deliver high data rate per unit area. Traffic variations are more pronounced in a small cell, which in turn lead to more dynamic interference to other cells. It is crucial to adapt radio resource management to traffic conditions in such a heterogeneous network (HetNet). This paper studies the optimization of spectrum allocation in HetNets on a relatively slow timescale based on average traffic and channel conditions (typically over seconds or minutes). Specifically, in a cluster with nn base transceiver stations (BTSs), the optimal partition of the spectrum into 2n2^n segments is determined, corresponding to all possible spectrum reuse patterns in the downlink. Each BTS's traffic is modeled using a queue with Poisson arrivals, the service rate of which is a linear function of the combined bandwidth of all assigned spectrum segments. With the system average packet sojourn time as the objective, a convex optimization problem is first formulated, where it is shown that the optimal allocation divides the spectrum into at most nn segments. A second, refined model is then proposed to address queue interactions due to interference, where the corresponding optimal allocation problem admits an efficient suboptimal solution. Both allocation schemes attain the entire throughput region of a given network. Simulation results show the two schemes perform similarly in the heavy-traffic regime, in which case they significantly outperform both the orthogonal allocation and the full-frequency-reuse allocation. The refined allocation shows the best performance under all traffic conditions.Comment: 13 pages, 11 figures, accepted for publication by JSAC-HC

    Nearly Optimal Resource Allocation for Downlink OFDMA in 2-D Cellular Networks

    Full text link
    In this paper, we propose a resource allocation algorithm for the downlink of sectorized two-dimensional (2-D) OFDMA cellular networks assuming statistical Channel State Information (CSI) and fractional frequency reuse. The proposed algorithm can be implemented in a distributed fashion without the need to any central controlling units. Its performance is analyzed assuming fast fading Rayleigh channels and Gaussian distributed multicell interference. We show that the transmit power of this simple algorithm tends, as the number of users grows to infinity, to the same limit as the minimal power required to satisfy all users' rate requirements i.e., the proposed resource allocation algorithm is asymptotically optimal. As a byproduct of this asymptotic analysis, we characterize a relevant value of the reuse factor that only depends on an average state of the network.Comment: submitted to IEEE Transactions on Wireless Communication

    Benchmarking Practical RRM Algorithms for D2D Communications in LTE Advanced

    Full text link
    Device-to-device (D2D) communication integrated into cellular networks is a means to take advantage of the proximity of devices and allow for reusing cellular resources and thereby to increase the user bitrates and the system capacity. However, when D2D (in the 3rd Generation Partnership Project also called Long Term Evolution (LTE) Direct) communication in cellular spectrum is supported, there is a need to revisit and modify the existing radio resource management (RRM) and power control (PC) techniques to realize the potential of the proximity and reuse gains and to limit the interference at the cellular layer. In this paper, we examine the performance of the flexible LTE PC tool box and benchmark it against a utility optimal iterative scheme. We find that the open loop PC scheme of LTE performs well for cellular users both in terms of the used transmit power levels and the achieved signal-to-interference-and-noise-ratio (SINR) distribution. However, the performance of the D2D users as well as the overall system throughput can be boosted by the utility optimal scheme, because the utility maximizing scheme takes better advantage of both the proximity and the reuse gains. Therefore, in this paper we propose a hybrid PC scheme, in which cellular users employ the open loop path compensation method of LTE, while D2D users use the utility optimizing distributed PC scheme. In order to protect the cellular layer, the hybrid scheme allows for limiting the interference caused by the D2D layer at the cost of having a small impact on the performance of the D2D layer. To ensure feasibility, we limit the number of iterations to a practically feasible level. We make the point that the hybrid scheme is not only near optimal, but it also allows for a distributed implementation for the D2D users, while preserving the LTE PC scheme for the cellular users.Comment: 30 pages, submitted for review April-2013. See also: G. Fodor, M. Johansson, D. P. Demia, B. Marco, and A. Abrardo, A joint power control and resource allocation algorithm for D2D communications, KTH, Automatic Control, Tech. Rep., 2012, qC 20120910, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10205

    Interference Management Based on RT/nRT Traffic Classification for FFR-Aided Small Cell/Macrocell Heterogeneous Networks

    Full text link
    Cellular networks are constantly lagging in terms of the bandwidth needed to support the growing high data rate demands. The system needs to efficiently allocate its frequency spectrum such that the spectrum utilization can be maximized while ensuring the quality of service (QoS) level. Owing to the coexistence of different types of traffic (e.g., real-time (RT) and non-real-time (nRT)) and different types of networks (e.g., small cell and macrocell), ensuring the QoS level for different types of users becomes a challenging issue in wireless networks. Fractional frequency reuse (FFR) is an effective approach for increasing spectrum utilization and reducing interference effects in orthogonal frequency division multiple access networks. In this paper, we propose a new FFR scheme in which bandwidth allocation is based on RT/nRT traffic classification. We consider the coexistence of small cells and macrocells. After applying FFR technique in macrocells, the remaining frequency bands are efficiently allocated among the small cells overlaid by a macrocell. In our proposed scheme, total frequency-band allocations for different macrocells are decided on the basis of the traffic intensity. The transmitted power levels for different frequency bands are controlled based on the level of interference from a nearby frequency band. Frequency bands with a lower level of interference are assigned to the RT traffic to ensure a higher QoS level for the RT traffic. RT traffic calls in macrocell networks are also given a higher priority compared with nRT traffic calls to ensure the low call-blocking rate. Performance analyses show significant improvement under the proposed scheme compared with conventional FFR schemes

    Cooperative Interference Control for Spectrum Sharing in OFDMA Cellular Systems

    Full text link
    This paper studies cooperative schemes for the inter-cell interference control in orthogonal-frequency-divisionmultiple- access (OFDMA) cellular systems. The downlink transmission in a simplified two-cell system is examined, where both cells simultaneously access the same frequency band using OFDMA. The joint power and subcarrier allocation over the two cells is investigated for maximizing their sum throughput with both centralized and decentralized implementations. Particularly, the decentralized allocation is achieved via a new cooperative interference control approach, whereby the two cells independently implement resource allocation to maximize individual throughput in an iterative manner, subject to a set of mutual interference power constraints. Simulation results show that the proposed decentralized resource allocation schemes achieve the system throughput close to that by the centralized scheme, and provide substantial throughput gains over existing schemes.Comment: To appear in ICC201
    corecore