22,044 research outputs found

    An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown

    Full text link
    [EN] In this paper we propose an alternative for the study of local convergence radius and the uniqueness radius for some third-order methods for multiple roots whose multiplicity is known. The main goal is to provide an alternative that avoids the use of sophisticated properties of divided differences that are used in already published papers about local convergence for multiple roots. We defined the local study by using a technique taking into consideration a bounding condition for the derivative of the function with i=1,2. In the case that the method uses first and second derivative in its iterative expression and i=1 in case the method only uses first derivative. Furthermore we implement a numerical analysis in the following sense. Since the radius of local convergence for high-order methods decreases with the order, we must take into account the analysis of ITS behaviour when we introduce a new iterative method. Finally, we have used these iterative methods for multiple roots for the case where the multiplicity m is unknown, so we estimate this factor by different strategies comparing the behaviour of the corresponding estimations and how this fact affect to the original method.This work was supported by Secretaria de Educacion Superior, Ciencia, Tecnologia e Innovacion (Convocatoria Abierta 2015 fase II).Alarcon, D.; Hueso, JL.; Martínez Molada, E. (2020). An alternative analysis for the local convergence of iterative methods for multiple roots including when the multiplicity is unknown. International Journal of Computer Mathematics. 97(1-2):312-329. https://doi.org/10.1080/00207160.2019.1589460S312329971-2Argyros, I. (2003). On The Convergence And Application Of Newton’s Method Under Weak HÖlder Continuity Assumptions. International Journal of Computer Mathematics, 80(6), 767-780. doi:10.1080/0020716021000059160Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8McNamee, J. M. (1998). A comparison of methods for accelerating convergence of Newton’s method for multiple polynomial roots. ACM SIGNUM Newsletter, 33(2), 17-22. doi:10.1145/290590.290592Ortega, J. M. (1974). Solution of Equations in Euclidean and Banach Spaces (A. M. Ostrowski). SIAM Review, 16(4), 564-564. doi:10.1137/1016102Osada, N. (1994). An optimal multiple root-finding method of order three. Journal of Computational and Applied Mathematics, 51(1), 131-133. doi:10.1016/0377-0427(94)00044-1Schr�der, E. (1870). Ueber unendlich viele Algorithmen zur Aufl�sung der Gleichungen. Mathematische Annalen, 2(2), 317-365. doi:10.1007/bf01444024Vander Stracten, M., & Van de Vel, H. (1992). Multiple root-finding methods. Journal of Computational and Applied Mathematics, 40(1), 105-114. doi:10.1016/0377-0427(92)90045-yZhou, X., Chen, X., & Song, Y. (2013). On the convergence radius of the modified Newton method for multiple roots under the center–Hölder condition. Numerical Algorithms, 65(2), 221-232. doi:10.1007/s11075-013-9702-

    A Near-Optimal Algorithm for Computing Real Roots of Sparse Polynomials

    Full text link
    Let pZ[x]p\in\mathbb{Z}[x] be an arbitrary polynomial of degree nn with kk non-zero integer coefficients of absolute value less than 2τ2^\tau. In this paper, we answer the open question whether the real roots of pp can be computed with a number of arithmetic operations over the rational numbers that is polynomial in the input size of the sparse representation of pp. More precisely, we give a deterministic, complete, and certified algorithm that determines isolating intervals for all real roots of pp with O(k3log(nτ)logn)O(k^3\cdot\log(n\tau)\cdot \log n) many exact arithmetic operations over the rational numbers. When using approximate but certified arithmetic, the bit complexity of our algorithm is bounded by O~(k4nτ)\tilde{O}(k^4\cdot n\tau), where O~()\tilde{O}(\cdot) means that we ignore logarithmic. Hence, for sufficiently sparse polynomials (i.e. k=O(logc(nτ))k=O(\log^c (n\tau)) for a positive constant cc), the bit complexity is O~(nτ)\tilde{O}(n\tau). We also prove that the latter bound is optimal up to logarithmic factors

    Optimal designs for rational function regression

    Full text link
    We consider optimal non-sequential designs for a large class of (linear and nonlinear) regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. The proposed method treats D-, E-, A-, and Φp\Phi_p-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well established numerical optimization methods. In contrast to previous optimization-based methods proposed for similar design problems, it also has theoretical guarantee of its algorithmic efficiency; in fact, the running times of all numerical examples considered in the paper are negligible. The stability of the method is demonstrated in an example involving high degree polynomials. After discussing linear models, applications for finding locally optimal designs for nonlinear regression models involving rational functions are presented, then extensions to robust regression designs, and trigonometric regression are shown. As a corollary, an upper bound on the size of the support set of the minimally-supported optimal designs is also found. The method is of considerable practical importance, with the potential for instance to impact design software development. Further study of the optimality conditions of the main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory and additional example

    Nonlinear eigenvalue problem for optimal resonances in optical cavities

    Full text link
    The paper is devoted to optimization of resonances in a 1-D open optical cavity. The cavity's structure is represented by its dielectric permittivity function e(s). It is assumed that e(s) takes values in the range 1 <= e_1 <= e(s) <= e_2. The problem is to design, for a given (real) frequency, a cavity having a resonance with the minimal possible decay rate. Restricting ourselves to resonances of a given frequency, we define cavities and resonant modes with locally extremal decay rate, and then study their properties. We show that such locally extremal cavities are 1-D photonic crystals consisting of alternating layers of two materials with extreme allowed dielectric permittivities e_1 and e_2. To find thicknesses of these layers, a nonlinear eigenvalue problem for locally extremal resonant modes is derived. It occurs that coordinates of interface planes between the layers can be expressed via arg-function of corresponding modes. As a result, the question of minimization of the decay rate is reduced to a four-dimensional problem of finding the zeroes of a function of two variables.Comment: 16 page

    Memorizing Schroder's Method as an Efficient Strategy for Estimating Roots of Unknown Multiplicity

    Full text link
    [EN] In this paper, we propose, to the best of our knowledge, the first iterative scheme with memory for finding roots whose multiplicity is unknown existing in the literature. It improves the efficiency of a similar procedure without memory due to Schroder and can be considered as a seed to generate higher order methods with similar characteristics. Once its order of convergence is studied, its stability is analyzed showing its good properties, and it is compared numerically in terms of their basins of attraction with similar schemes without memory for finding multiple roots.This research was partially supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE).Cordero Barbero, A.; Neta, B.; Torregrosa Sánchez, JR. (2021). Memorizing Schroder's Method as an Efficient Strategy for Estimating Roots of Unknown Multiplicity. Mathematics. 9(20):1-13. https://doi.org/10.3390/math9202570S11392

    Moment inversion problem for piecewise D-finite functions

    Full text link
    We consider the problem of exact reconstruction of univariate functions with jump discontinuities at unknown positions from their moments. These functions are assumed to satisfy an a priori unknown linear homogeneous differential equation with polynomial coefficients on each continuity interval. Therefore, they may be specified by a finite amount of information. This reconstruction problem has practical importance in Signal Processing and other applications. It is somewhat of a ``folklore'' that the sequence of the moments of such ``piecewise D-finite''functions satisfies a linear recurrence relation of bounded order and degree. We derive this recurrence relation explicitly. It turns out that the coefficients of the differential operator which annihilates every piece of the function, as well as the locations of the discontinuities, appear in this recurrence in a precisely controlled manner. This leads to the formulation of a generic algorithm for reconstructing a piecewise D-finite function from its moments. We investigate the conditions for solvability of the resulting linear systems in the general case, as well as analyze a few particular examples. We provide results of numerical simulations for several types of signals, which test the sensitivity of the proposed algorithm to noise
    corecore