5,755 research outputs found

    Ramsey-type theorems for metric spaces with applications to online problems

    Get PDF
    A nearly logarithmic lower bound on the randomized competitive ratio for the metrical task systems problem is presented. This implies a similar lower bound for the extensively studied k-server problem. The proof is based on Ramsey-type theorems for metric spaces, that state that every metric space contains a large subspace which is approximately a hierarchically well-separated tree (and in particular an ultrametric). These Ramsey-type theorems may be of independent interest.Comment: Fix an error in the metadata. 31 pages, 0 figures. Preliminary version in FOCS '01. To be published in J. Comput. System Sc

    Using genetic algorithms to create meaningful poetic text

    Get PDF
    Work carried out when all authors were at the University of Edinburgh.Peer reviewedPostprin

    Randomized online computation with high probability guarantees

    Full text link
    We study the relationship between the competitive ratio and the tail distribution of randomized online minimization problems. To this end, we define a broad class of online problems that includes some of the well-studied problems like paging, k-server and metrical task systems on finite metrics, and show that for these problems it is possible to obtain, given an algorithm with constant expected competitive ratio, another algorithm that achieves the same solution quality up to an arbitrarily small constant error a with high probability; the "high probability" statement is in terms of the optimal cost. Furthermore, we show that our assumptions are tight in the sense that removing any of them allows for a counterexample to the theorem. In addition, there are examples of other problems not covered by our definition, where similar high probability results can be obtained.Comment: 20 pages, 2 figure
    • ā€¦
    corecore