4 research outputs found

    Resilience Modeling of Surface Transportation System in Mixed Traffic Environment

    Get PDF
    Large-scale natural disasters challenge the resilience of surface transportation system. The objective of this research was to develop a resilience model of surface transportation system in mixed-traffic environment considering varying Connected and Automated Vehicle (CAV) penetration scenarios. As deployment of CAVs are expected to improve traffic operations, a resilience model was developed in this research to evaluate the resilience performance of a transportation system with several CAV penetration levels (0%, 25%, 50%, 75% and 100%) for a given budget and recovery time. The proposed resilience quantification model was applied on a roadway network considering several disaster scenarios. The network capacity in terms of trips at any phase of disaster was compared to the pre-disaster trips to determine the system resilience. The capacity variation and the travel time variation was also estimated. The analysis showed that the resilience phenomenon of the transportation system improved with CAVs in respect of travel time and capacity improvement. The rate of improvement in link travel time for varied CAV penetration was almost identical for different disaster scenarios. For each disaster scenario, the individual link travel time reduced significantly with increased CAV penetration. However, higher penetration of CAVs (i.e., 50% or more), increased the recovery budget requirement. For example, the recovery budget needed for medium and large-scale disasters were 50% and 90% higher respectively compared to the recovery budget needed for a small-scale disaster. These higher costs were primarily needed for repair and replacement of intelligent infrastructure required for CAV

    Intelligent Computational Transportation

    Get PDF
    Transportation is commonplace around our world. Numerous researchers dedicate great efforts to vast transportation research topics. The purpose of this dissertation is to investigate and address a couple of transportation problems with respect to geographic discretization, pavement surface automatic examination, and traffic ow simulation, using advanced computational technologies. Many applications require a discretized 2D geographic map such that local information can be accessed efficiently. For example, map matching, which aligns a sequence of observed positions to a real-world road network, needs to find all the nearby road segments to the individual positions. To this end, the map is discretized by cells and each cell retains a list of road segments coincident with this cell. An efficient method is proposed to form such lists for the cells without costly overlapping tests. Furthermore, the method can be easily extended to 3D scenarios for fast triangle mesh voxelization. Pavement surface distress conditions are critical inputs for quantifying roadway infrastructure serviceability. Existing computer-aided automatic examination techniques are mainly based on 2D image analysis or 3D georeferenced data set. The disadvantage of information losses or extremely high costs impedes their effectiveness iv and applicability. In this study, a cost-effective Kinect-based approach is proposed for 3D pavement surface reconstruction and cracking recognition. Various cracking measurements such as alligator cracking, traverse cracking, longitudinal cracking, etc., are identified and recognized for their severity examinations based on associated geometrical features. Smart transportation is one of the core components in modern urbanization processes. Under this context, the Connected Autonomous Vehicle (CAV) system presents a promising solution towards the enhanced traffic safety and mobility through state-of-the-art wireless communications and autonomous driving techniques. Due to the different nature between the CAVs and the conventional Human- Driven-Vehicles (HDVs), it is believed that CAV-enabled transportation systems will revolutionize the existing understanding of network-wide traffic operations and re-establish traffic ow theory. This study presents a new continuum dynamics model for the future CAV-enabled traffic system, realized by encapsulating mutually-coupled vehicle interactions using virtual internal and external forces. A Smoothed Particle Hydrodynamics (SPH)-based numerical simulation and an interactive traffic visualization framework are also developed
    corecore