208 research outputs found

    Optimal Euclidean spanners: really short, thin and lanky

    Full text link
    In a seminal STOC'95 paper, titled "Euclidean spanners: short, thin and lanky", Arya et al. devised a construction of Euclidean (1+\eps)-spanners that achieves constant degree, diameter O(logn)O(\log n), and weight O(log2n)ω(MST)O(\log^2 n) \cdot \omega(MST), and has running time O(nlogn)O(n \cdot \log n). This construction applies to nn-point constant-dimensional Euclidean spaces. Moreover, Arya et al. conjectured that the weight bound can be improved by a logarithmic factor, without increasing the degree and the diameter of the spanner, and within the same running time. This conjecture of Arya et al. became a central open problem in the area of Euclidean spanners. In this paper we resolve the long-standing conjecture of Arya et al. in the affirmative. Specifically, we present a construction of spanners with the same stretch, degree, diameter, and running time, as in Arya et al.'s result, but with optimal weight O(logn)ω(MST)O(\log n) \cdot \omega(MST). Moreover, our result is more general in three ways. First, we demonstrate that the conjecture holds true not only in constant-dimensional Euclidean spaces, but also in doubling metrics. Second, we provide a general tradeoff between the three involved parameters, which is tight in the entire range. Third, we devise a transformation that decreases the lightness of spanners in general metrics, while keeping all their other parameters in check. Our main result is obtained as a corollary of this transformation.Comment: A technical report of this paper was available online from April 4, 201

    Relaxed spanners for directed disk graphs

    Get PDF
    Let (V,δ)(V,\delta) be a finite metric space, where VV is a set of nn points and δ\delta is a distance function defined for these points. Assume that (V,δ)(V,\delta) has a constant doubling dimension dd and assume that each point pVp\in V has a disk of radius r(p)r(p) around it. The disk graph that corresponds to VV and r()r(\cdot) is a \emph{directed} graph I(V,E,r)I(V,E,r), whose vertices are the points of VV and whose edge set includes a directed edge from pp to qq if δ(p,q)r(p)\delta(p,q)\leq r(p). In \cite{PeRo08} we presented an algorithm for constructing a (1+\eps)-spanner of size O(n/\eps^d \log M), where MM is the maximal radius r(p)r(p). The current paper presents two results. The first shows that the spanner of \cite{PeRo08} is essentially optimal, i.e., for metrics of constant doubling dimension it is not possible to guarantee a spanner whose size is independent of MM. The second result shows that by slightly relaxing the requirements and allowing a small perturbation of the radius assignment, considerably better spanners can be constructed. In particular, we show that if it is allowed to use edges of the disk graph I(V,E,r_{1+\eps}), where r_{1+\eps}(p) = (1+\eps)\cdot r(p) for every pVp\in V, then it is possible to get a (1+\eps)-spanner of size O(n/\eps^d) for I(V,E,r)I(V,E,r). Our algorithm is simple and can be implemented efficiently

    Fast Construction of Nets in Low Dimensional Metrics, and Their Applications

    Full text link
    We present a near linear time algorithm for constructing hierarchical nets in finite metric spaces with constant doubling dimension. This data-structure is then applied to obtain improved algorithms for the following problems: Approximate nearest neighbor search, well-separated pair decomposition, compact representation scheme, doubling measure, and computation of the (approximate) Lipschitz constant of a function. In all cases, the running (preprocessing) time is near-linear and the space being used is linear.Comment: 41 pages. Extensive clean-up of minor English error

    Incubators vs Zombies: Fault-Tolerant, Short, Thin and Lanky Spanners for Doubling Metrics

    Full text link
    Recently Elkin and Solomon gave a construction of spanners for doubling metrics that has constant maximum degree, hop-diameter O(log n) and lightness O(log n) (i.e., weight O(log n)w(MST). This resolves a long standing conjecture proposed by Arya et al. in a seminal STOC 1995 paper. However, Elkin and Solomon's spanner construction is extremely complicated; we offer a simple alternative construction that is very intuitive and is based on the standard technique of net tree with cross edges. Indeed, our approach can be readily applied to our previous construction of k-fault tolerant spanners (ICALP 2012) to achieve k-fault tolerance, maximum degree O(k^2), hop-diameter O(log n) and lightness O(k^3 log n)
    corecore