8 research outputs found

    Energy-Efficient Algorithm for Sensor Networks with Non-Uniform Maximum Transmission Range

    Get PDF
    In wireless sensor networks (WSNs), the energy hole problem is a key factor affecting the network lifetime. In a circular multi-hop sensor network (modeled as concentric coronas), the optimal transmission ranges of all coronas can effectively improve network lifetime. In this paper, we investigate WSNs with non-uniform maximum transmission ranges, where sensor nodes deployed in different regions may differ in their maximum transmission range. Then, we propose an Energy-efficient algorithm for Non-uniform Maximum Transmission range (ENMT), which can search approximate optimal transmission ranges of all coronas in order to prolong network lifetime. Furthermore, the simulation results indicate that ENMT performs better than other algorithms

    Maximizing Efficiency of Large Scale Homogeneous Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks is a set of sensors deployed in the area of interest, for the purpose of monitoring physical or environmental conditions. Due to limited battery capacity of sensors, Wireless Sensor Networks have limited lifetime. A large number of sensors deployed in a circular grid, sending the sensed data to base station located at the center are considered and the parameters of interest are monitored. This paper proposes two algorithms to enhance the lifetime, reliability and throughput of the Wireless Sensor Network. The first algorithm Reliable Zone Based Transmission (RZBT) reschedules the packet transmission time of the sensor nodes, to reduce the loss of packets and ensures reliability of network functioning. The second algorithm Energy Efficient Reduced Transmission (EERT) reduces the number of transmissions, without the loss of data, thus extending lifetime of the network. Simulation results prove that RZBT outperforms conventional DiReCT Transmission (DRCT) and EERT reduces the packets transmitted in each round, thus improves the lifetime of the sensor node and the network

    Zone Based Transmissions for Homogeneous Wireless Sensor Networks

    Get PDF
    —Wireless Sensor Network is a set of sensors deployed in the area of interest, for the purpose of monitoring physical or environmental conditions. Due to limited battery capacity of sensors, Wireless Sensor Networks have limited lifetime. A large number of sensors deployed in a circular grid, sending the sensed data to base station located at the center are considered and the parameters of interest are monitored. This paper proposes three algorithms to enhance the lifetime, reliability and throughput of the Wireless Sensor Network. The first two algorithms Reliable Zone Based Transmission (RZBT) and Reliable Circular Transmission (RCT) reschedule the packet transmission time of the sensor nodes, to reduce the loss of packets and ensures reliability of network functioning. The third algorithm Energy Efficient Reliable Transmission (EERT) reduces the number of transmissions, without the loss of data, thus extending lifetime of the network. Simulation results prove that 1) RCT outperforms conventional DiReCt Transmission (DRCT) and RZBT with respect to throughput and 2) EERT reduces the packets transmitted in each round, thus improves the lifetime of the sensor node and the network

    Zone Based Transmissions for Homogeneous Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network is a set of sensors deployed in the area of interest, for the purpose of monitoring physical or environmental conditions. Due to limited battery capacity of sensors, Wireless Sensor Networks have limited lifetime. A large number of sensors deployed in a circular grid, sending the sensed data to base station located at the center are considered and the parameters of interest are monitored. This paper proposes three algorithms to enhance the lifetime, reliability and throughput of the Wireless Sensor Network. The first two algorithms Reliable Zone Based Transmission (RZBT) and Reliable Circular Transmission (RCT) reschedule the packet transmission time of the sensor nodes, to reduce the loss of packets and ensures reliability of network functioning. The third algorithm Energy Efficient Reliable Transmission (EERT) reduces the number of transmissions, without the loss of data, thus extending lifetime of the network. Simulation results prove that 1) RCT outperforms conventional DiReCt Transmission (DRCT) and RZBT with respect to throughput and 2) EERT reduces the packets transmitted in each round, thus improves the lifetime of the sensor node and the network

    Improvement of non-uniform node deployment mechanism for corona-based wireless sensor networks

    Get PDF
    The promising technology of Wireless Sensor Networks (WSNs), lots of applications have been developed for monitoring and tracking in military, commercial, and educational environments. Imbalance energy of sensors causes significant reduction in the lifetime of the network. In corona-based Wireless Sensor Networks (WSNs), nodes that are positioned in coronas near the sink drain their energy faster than others as they are burdened with relaying traffic come from distant coronas forming energy holes in the network. This situation shows significant effects on the network efficiency in terms of lifetime and energy consumption. The network may stop operation prematurely even though there is much energy left unused at the distant nodes. In this thesis, non-uniform node deployments and energy provisioning strategies are proposed to mitigate energy holes problem. These strategies concerns the optimal number of sensors required in each corona in order to balance the energy consumption and to meet the coverage and connectivity requirements in the network. In order to achieve this aim, the number of sensors should be optimized to create sub-balanced coronas in the sense of energy consumption. The energy provisioning technique is proposed for harmonizing the energy consumption among coronas by computing the extra needed energy in every corona. In the proposed mechanism, the energy required in each corona for balanced energy consumption is computed by determining the initial energy in each node with respect to its corona, and according to the corona load while satisfying the network coverage and connectivity requirements. The theoretical design and modeling of the proposed sensors placement strategy promise a considerable improvement in the lifetime of corona-based networks. The proposed technique could improve the network lifetime noticeably via fair balancing of energy consumption ratio among coronas about 9.4 times more than other work. This is confirmed by the evaluation results that have been showed that the proposed solution offers efficient energy distribution that can enhance the lifetime about 40% compared to previous research works

    An Overview of Distributed Energy-Efficient Topology Control for Wireless Ad Hoc Networks

    Get PDF
    A wireless ad hoc network is composed of several tiny and inexpensive device such as wireless sensor networks (WSNs) which have limited energy. In this network energy, efficiency is one of the most crucial requirements. Data transmitting in minimum power level is one way of maximizing energy efficiency. Thus, transmission power level of nodes should be managed in a smart way to improve energy efficiency. Topology control is one of the main algorithms used in a wireless network to decrease transmission power level while preserving network connectivity. Topology control could improve energy efficiency by reasonably tuning the transmission power level while preserving network connectivity in order to increase network capacity and lifetime. In pursuit of energy efficiency and connectivity, nodes can be selfish and are conflicting with each other. Therefore to overcome the conflict, game theory is used to construct energy efficient topology, as well as minimizing energy consumption. In this paper, the main goal and most recent energy efficient topology control algorithms in WSNs and ad hoc network are classified and studied according to their specific goals

    An Optimal Data Propagation Algorithm for Maximizing the Lifespan of Sensor Networks

    No full text
    Abstract. We consider the problem of data propagation in wireless sen-sor networks and revisit the family of mixed strategy routing schemes. We show that maximizing the lifespan, balancing the energy among in-dividual sensors and maximizing the message flow in the network are equivalent. We propose a distributed and adaptive data propagation al-gorithm for balancing the energy among sensors in the network. The mixed routing algorithm we propose allows each sensor node to either send a message to one of its immediate neighbors, or to send it directly to the base station, the decision being based on a potential function depending on its remaining energy. By considering a simple model of the network and using a linear programming description of the message flow, we prove the strong result that an energy-balanced mixed strategy beats every other possible routing strategy in terms of lifespan maximiza-tion. Moreover, we provide sufficient conditions for ensuring the dynamic stability of the algorithm. The algorithm is inspired by the gradient-based routing scheme but by allowing to send messages directly to the base station we improve considerably the lifespan of the network. As a matter of fact, we show experimentally that our algorithm is close to optimal and that it even beats the best centralized multi-hop routing strategy.
    corecore