1,999 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Efficient approach for maximizing lifespan in wireless sensor networks by using mobile sinks

    Full text link
    Recently, sink mobility has been shown to be highly beneficial in improving network lifetime in wireless sensor networks (WSNs). Numerous studies have exploited mobile sinks (MSs) to collect sensed data in order to improve energy efficiency and reduce WSN operational costs. However, there have been few studies on the effectiveness of MS operation on WSN closed operating cycles. Therefore, it is important to investigate how data is collected and how to plan the trajectory of the MS in order to gather data in time, reduce energy consumption, and improve WSN network lifetime. In this study, we combine two methods, the cluster-head election algorithm and the MS trajectory optimization algorithm, to propose the optimal MS movement strategy. This study aims to provide a closed operating cycle for WSNs, by which the energy consumption and running time of a WSN is minimized during the cluster election and data gathering periods. Furthermore, our flexible MS movement scenarios achieve both a long network lifetime and an optimal MS schedule. The simulation results demonstrate that our proposed algorithm achieves better performance than other well-known algorithms

    Stochastic Models and Adaptive Algorithms for Energy Balance in Sensor Networks

    Get PDF
    We consider the important problem of energy balanced data propagation in wireless sensor networks and we extend and generalize previous works by allowing adaptive energy assignment. We consider the data gathering problem where data are generated by the sensors and must be routed toward a unique sink. Sensors route data by either sending the data directly to the sink or in a multi-hop fashion by delivering the data to a neighbouring sensor. Direct and neighbouring transmissions require different levels of energy consumption. Basically, the protocols balance the energy consumption among the sensors by computing the adequate ratios of direct and neighbouring transmissions. An abstract model of energy dissipation as a random walk is proposed, along with rigorous performance analysis techniques. Two efficient distributed algorithms are presented and analyzed, by both rigorous means and simulation. The first one is easy to implement and fast to execute. The protocol assumes that sensors know a-priori the rate of data they generate. The sink collects and processes all these information in order to compute the relevant value of the protocol parameter. This value is transmitted to the sensors which individually compute their optimal ratios of direct and neighbouring transmissions. The second protocol avoids the necessary a-priori knowledge of the data rate generated by sensors by inferring the relevant information from the observation of the data paths. Furthermore, this algorithm is based on stochastic estimation methods and is adaptive to environmental change

    Enhancing Lifetime of Wireless Sensor Networks: A Review

    Get PDF
    Low Energy Adaptive Clustering Hierarchy (LEACH) is a network of wireless sensors made up of tiny sensor nodes that are capable of sensing, processing, and transmitting information and feedback. These sensor nodes are distributed at random in a sensing environment or sensor field to sense real-world phenomena like heat, moisture, humidity, sound, vibration, etc., and then aggregate and send to the base station (BS). The significance of energy energy-effective routing algorithm has risen, since the energy constrain is the major factor affecting sensor nodes. To control and manage the energy consumption of sensor nodes, a significant number of techniques have been proposed by various scholars. This review paper presents published works that have been proposed for increasing the lifespan of wireless networks at the very beginning of this paper, a brief overview of Wireless networks, its architecture working and the problems associated with it are discussed. After the detailed overview of the approaches that have been presented for overcoming various limitations of current wireless systems. Lastly, in the conclusion of this paper the reviewed results were compared with earlier techniques, the results thus far show a notable improvement in the node mortality rate and network lifetime

    Non-Metaheuristic Clustering Algorithms for Energy-Efficient Cooperative Communication in Wireless Sensor Networks: A Comparative Study

    Get PDF
     Wireless Sensor Networks (WSNs) are now considered a vital technology that enables the gathering and distribution of data in various applications, such as environmental monitoring and industrial automation. Nevertheless, the finite energy resources of sensor nodes pose significant obstacles to the long-term viability and effectiveness of these networks. Researchers have developed and studied various non-meta algorithms to improve energy efficiency, data transfer, and network lifespan. These efforts contribute to enhancing cooperative communication modules. This analysis conducts a detailed examination and comparative evaluation of different well-known clustering methods in the field of Wireless Sensor Networks (WSNs), providing significant insights for improving cooperative communication. Our purpose is to provide a comprehensive perspective on the contributions of these algorithms to improving energy efficiency in WSNs. This will be achieved by examining their practical implementations, underlying mathematical principles, strengths, shortcomings, real-world applications, and potential for further improvement

    A Combined Dual Leader and Relay Node Selection for Markov Cluster Based WSN Routing Protocol

    Get PDF
    The major challenge in Wireless Sensor Networks (WSNs) is to increase the node’s lifespan and decrease energy utilization. To avoid this issue, many Clustering Routing Protocols (CRPs) have been developed, where Cluster Head (CH) in each cluster accumulates the data from each other node and transfers it to the sink through Relay Nodes (RNs). But both CHs and RNs dissipate more energy to aggregate and transfer data. As a result, it is vital to choose the appropriate CHs and RNs concurrently to reduce energy utilization. Hence, this article proposes a Weighted Markov Clustering with Dual Leader and Relay node Selection based CRP (WMCL-DLRS-CRP) in WSNs. This protocol aims to lessen energy dissipation during inter- and intra-cluster communication. Initially, a Markov Clustering (MCL) algorithm is applied by the sink to create nodes into clusters based on a threshold distance. Then, a dual leader selection scheme is proposed to elect dual CHs in each cluster according to the node weighting factor that considers the node’s remaining energy, the distance between CHs and sink, the distance among all nodes, and abundance. Also, an RN selection scheme is proposed to choose the appropriate RNs based on a new Predicted Transmission Rate (PTR) factor. Moreover, the elected RNs transfer the data from the CHs to the sink, resulting in a tradeoff between the node’s energy utilization and lifetime. At last, extensive simulations illustrate that the WMCL-DLRS-CRP achieves better network performance compared to the existing protocols

    Analytical Report on Metaheuristic and Non-Metaheuristic Algorithms for Clustering in Wireless Networks

    Get PDF
    This analytical report delves into the comprehensive evaluation of both metaheuristic and non-metaheuristic algorithms utilized for clustering in wireless networks. Clustering techniques play a pivotal role in enhancing the efficiency and performance of wireless networks by organizing nodes into meaningful groups. Metaheuristic algorithms, inspired by natural processes, offer innovative solutions to complex optimization problems, while non-metaheuristic algorithms rely on traditional mathematical principles. This report systematically compares and contrasts the efficacy of various algorithms, considering key metrics such as convergence speed, scalability, robustness, and adaptability to dynamic network conditions. By scrutinizing both categories of algorithms, this report aims to provide a holistic understanding of their respective advantages, limitations, and applicability in wireless network clustering scenarios. The insights derived from this analysis can guide network engineers, researchers, and practitioners in selecting the most suitable algorithms based on specific network requirements, ultimately contributing to the advancement of wireless network clustering techniques
    • …
    corecore