25,286 research outputs found

    QCBA: Postoptimization of Quantitative Attributes in Classifiers based on Association Rules

    Full text link
    The need to prediscretize numeric attributes before they can be used in association rule learning is a source of inefficiencies in the resulting classifier. This paper describes several new rule tuning steps aiming to recover information lost in the discretization of numeric (quantitative) attributes, and a new rule pruning strategy, which further reduces the size of the classification models. We demonstrate the effectiveness of the proposed methods on postoptimization of models generated by three state-of-the-art association rule classification algorithms: Classification based on Associations (Liu, 1998), Interpretable Decision Sets (Lakkaraju et al, 2016), and Scalable Bayesian Rule Lists (Yang, 2017). Benchmarks on 22 datasets from the UCI repository show that the postoptimized models are consistently smaller -- typically by about 50% -- and have better classification performance on most datasets

    A Process to Implement an Artificial Neural Network and Association Rules Techniques to Improve Asset Performance and Energy Efficiency

    Get PDF
    In this paper, we address the problem of asset performance monitoring, with the intention of both detecting any potential reliability problem and predicting any loss of energy consumption e ciency. This is an important concern for many industries and utilities with very intensive capitalization in very long-lasting assets. To overcome this problem, in this paper we propose an approach to combine an Artificial Neural Network (ANN) with Data Mining (DM) tools, specifically with Association Rule (AR) Mining. The combination of these two techniques can now be done using software which can handle large volumes of data (big data), but the process still needs to ensure that the required amount of data will be available during the assets’ life cycle and that its quality is acceptable. The combination of these two techniques in the proposed sequence di ers from previous works found in the literature, giving researchers new options to face the problem. Practical implementation of the proposed approach may lead to novel predictive maintenance models (emerging predictive analytics) that may detect with unprecedented precision any asset’s lack of performance and help manage assets’ O&M accordingly. The approach is illustrated using specific examples where asset performance monitoring is rather complex under normal operational conditions.Ministerio de Economía y Competitividad DPI2015-70842-

    Interpretable multiclass classification by MDL-based rule lists

    Get PDF
    Interpretable classifiers have recently witnessed an increase in attention from the data mining community because they are inherently easier to understand and explain than their more complex counterparts. Examples of interpretable classification models include decision trees, rule sets, and rule lists. Learning such models often involves optimizing hyperparameters, which typically requires substantial amounts of data and may result in relatively large models. In this paper, we consider the problem of learning compact yet accurate probabilistic rule lists for multiclass classification. Specifically, we propose a novel formalization based on probabilistic rule lists and the minimum description length (MDL) principle. This results in virtually parameter-free model selection that naturally allows to trade-off model complexity with goodness of fit, by which overfitting and the need for hyperparameter tuning are effectively avoided. Finally, we introduce the Classy algorithm, which greedily finds rule lists according to the proposed criterion. We empirically demonstrate that Classy selects small probabilistic rule lists that outperform state-of-the-art classifiers when it comes to the combination of predictive performance and interpretability. We show that Classy is insensitive to its only parameter, i.e., the candidate set, and that compression on the training set correlates with classification performance, validating our MDL-based selection criterion

    Electricity clustering framework for automatic classification of customer loads

    Get PDF
    Clustering in energy markets is a top topic with high significance on expert and intelligent systems. The main impact of is paper is the proposal of a new clustering framework for the automatic classification of electricity customers’ loads. An automatic selection of the clustering classification algorithm is also highlighted. Finally, new customers can be assigned to a predefined set of clusters in the classificationphase. The computation time of the proposed framework is less than that of previous classification tech- niques, which enables the processing of a complete electric company sample in a matter of minutes on a personal computer. The high accuracy of the predicted classification results verifies the performance of the clustering technique. This classification phase is of significant assistance in interpreting the results, and the simplicity of the clustering phase is sufficient to demonstrate the quality of the complete mining framework.Ministerio de Economía y Competitividad TEC2013-40767-RMinisterio de Economía y Competitividad IDI- 2015004
    • …
    corecore