147 research outputs found

    Metrics for Evaluating Surgical Microscope Usage During Myringotomy

    Get PDF
    Abstract Although teaching and learning surgical microscope manoeuvring is a fundamental step in middle ear surgical training, currently there is no objective method to teach or assess this skill. This thesis presents an experimental study designed to implement and test sets of metrics capable of numerically evaluating microscope manoeuvrability and qualitatively assessing surgical expertise of a subject during a middle ear surgery called myringotomy. The experiment involved performing a myringotomy on a fixed cadaveric ear. As participants, experienced ear-nose-throat (ENT) surgeons and ENT surgical residents were invited. While performing the procedure, their microscope manoeuvring motions were captured as translational and angular coordinates using an optical tracker. These data were analyzed in terms of motion path length, velocity, acceleration, jitter, manoeuvring volume, smoothness, rotation and time. Participants’ hand motion, body posture and microscopic view were also video recorded to qualitatively assess their surgical expertise. Several metrics were statistically identified as discriminatory. These metrics will be incorporated into a myringotomy surgical simulator to train ENT residents

    Haptics in Robot-Assisted Surgery: Challenges and Benefits

    Get PDF
    Robotic surgery is transforming the current surgical practice, not only by improving the conventional surgical methods but also by introducing innovative robot-enhanced approaches that broaden the capabilities of clinicians. Being mainly of man-machine collaborative type, surgical robots are seen as media that transfer pre- and intra-operative information to the operator and reproduce his/her motion, with appropriate filtering, scaling, or limitation, to physically interact with the patient. The field, however, is far from maturity and, more critically, is still a subject of controversy in medical communities. Limited or absent haptic feedback is reputed to be among reasons that impede further spread of surgical robots. In this paper objectives and challenges of deploying haptic technologies in surgical robotics is discussed and a systematic review is performed on works that have studied the effects of providing haptic information to the users in major branches of robotic surgery. It has been tried to encompass both classical works and the state of the art approaches, aiming at delivering a comprehensive and balanced survey both for researchers starting their work in this field and for the experts

    Factors of Micromanipulation Accuracy and Learning

    No full text
    Micromanipulation refers to the manipulation under a microscope in order to perform delicate procedures. It is difficult for humans to manipulate objects accurately under a microscope due to tremor and imperfect perception, limiting performance. This project seeks to understand factors affecting accuracy in micromanipulation, and to propose strategies for learning improving accuracy. Psychomotor experiments were conducted using computer-controlled setups to determine how various feedback modalities and learning methods can influence micromanipulation performance. In a first experiment, static and motion accuracy of surgeons, medical students and non-medical students under different magniification levels and grip force settings were compared. A second experiment investigated whether the non-dominant hand placed close to the target can contribute to accurate pointing of the dominant hand. A third experiment tested a training strategy for micromanipulation using unstable dynamics to magnify motion error, a strategy shown to be decreasing deviation in large arm movements. Two virtual reality (VR) modules were then developed to train needle grasping and needle insertion tasks, two primitive tasks in a microsurgery suturing procedure. The modules provided the trainee with a visual display in stereoscopic view and information on their grip, tool position and angles. Using the VR module, a study examining effects of visual cues was conducted to train tool orientation. Results from these studies suggested that it is possible to learn and improve accuracy in micromanipulation using appropriate sensorimotor feedback and training

    Computer analysis of individual cataract surgery segments in the operating room

    Get PDF
    Purpose: Objective feedback is important for the continuous development of surgical skills. Motion tracking, which has previously been validated across an entire cataract procedure, can be a useful adjunct. We aimed to measure quantitative differences between junior and senior surgeons’ performance in three distinct segments. We further explored whether automated analysis of trainee surgical videos through PhacoTracking could be aligned with metrics from the EyeSi virtual reality simulator, allowing focused improvement of these areas in a controlled environment. / Methods: Prospective cohort analysis, comparing junior vs. senior surgeons’ real-life performance in distinct segments of cataract surgery: continuous curvilinear capsulorhexis (CCC), phacoemulsification, and irrigation and aspiration (I&A). EyeSi metrics that could be aligned with motion tracking parameters were identified. Motion tracking parameters (instrument path length, number of movements and total time) were measured. t-test used between the two cohorts for each component to check for any significance (p < 0.05). / Results: A total of 120 segments from videos of 20 junior and 20 senior surgeons were analysed. Significant differences between junior and senior surgeons were found during CCC (path length p = 0.0004; number of movements p < 0.0001; time taken p < 0.0001), phacoemulsification (path length p < 0.0001; number of movements p < 0.0001; time taken p < 0.0001), and irrigation and aspiration (path length p = 0.006; number of movements p = 0.013; time taken p = 0.036). / Conclusion: Individual segments of cataract surgery analysed using motion tracking appear to discriminate between junior and senior surgeons. Alignment of motion tracking and EyeSi parameters could enable independent, task specific, objective and quantitative feedback for each segment of surgery thus mirroring the widely utilised modular training

    Entwicklung eines neurochirurgischen Trainingssimulators für intrakranielle Eingriffe

    Get PDF
    Die vorliegende Arbeit beschreibt die Entwicklung eines neurochirurgischen Trainingssimulators, mit dem Ärzte intrakranielle Eingriffe in einer virtuellen Realität trainieren können. Um die Schnittstelle zwischen Anwender und Simulator möglichst realitätsnah zu gestalten, wird ein neurochirurgisches Operationsmikroskop verwendet, das über einem Kopfphantom positioniert wird. Damit der Bildausschnitt der virtuellen Realität korrekt angezeigt werden kann, wird die Positionierung des Mikroskops mit optischen Trackingverfahren bestimmt. Die Zoom- und Fokuseinstellungen des Mikroskops werden über einen CAN-Bus ausgelesen. Die Okulare des optischen Systems werden durch ein Stereodisplay ersetzt, welches das computergenerierte Szenario dreidimensional anzeigt. Über verschiedene Instrumente kann der Anwender mit der virtuellen Realität interagieren. Die Positionierungen dieser werden mit Hilfe optischer und inertialer Trackingverfahren berechnet, sobald die Instrumente in das Kopfphantom eingeführt sind. Im Rahmen der Arbeit wurden sowohl abstrakte Trainingsmodule implementiert, mit denen grundlegende Fertigkeiten trainiert werden können, als auch die medizinische Prozedur des Aneurysmen-Clippings. Der Simulator baut auf einem modularen Softwaresystem auf und ist durch Plugins erweiterbar. Die Entwicklung des Simulators wurde in Kooperation mit der VRmagic GmbH in Mannheim und mit Ärzten der Neurochirurgischen Klinik Mannheim der Universität Heidelberg durchgeführt

    A haptic guidance tool for CT-directed percutaneous interventions

    Get PDF

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Asia Pac J Ophthalmol (Phila)

    Get PDF
    Purpose:Most published systematic reviews have focused on the use of virtual reality (VR)/augmented reality (AR) technology in ophthalmology as it relates to surgical training. To date, this is the first review that investigates the current state of VR/AR technology applied more broadly to the entire field of ophthalmology.Methods:PubMed, Embase, and CINAHL databases were searched systematically from January 2014 through December 1, 2020. Studies that discussed VR and/or AR as it relates to the field of ophthalmology and provided information on the technology used were considered. Abstracts, non\u2013peer-reviewed literature, review articles, studies that reported only qualitative data, and studies without English translations were excluded.Results:A total of 77 studies were included in this review. Of these, 28 evaluated the use of VR/AR in ophthalmic surgical training/assessment and guidance, 7 in clinical training, 23 in diagnosis/screening, and 19 in treatment/therapy. 15 studies used AR, 61 used VR, and 1 used both. Most studies focused on the validity and usability of novel technologies.Conclusions:Ophthalmology is a field of medicine that is well suited for the use of VR/AR. However, further longitudinal studies examining the practical feasibility, efficacy, and safety of such novel technologies, the cost-effectiveness, and medical/legal considerations are still needed. We believe that time will indeed foster further technological advances and lead to widespread use of VR/AR in routine ophthalmic practice.20212022-06-05T00:00:00ZR21 EY029605/EY/NEI NIH HHSUnited States/U01 DP006436/DP/NCCDPHP CDC HHSUnited States/34383716PMC91676431151
    corecore