6,250 research outputs found

    Logic Programming as Constructivism

    Get PDF
    The features of logic programming that seem unconventional from the viewpoint of classical logic can be explained in terms of constructivistic logic. We motivate and propose a constructivistic proof theory of non-Horn logic programming. Then, we apply this formalization for establishing results of practical interest. First, we show that 'stratification can be motivated in a simple and intuitive way. Relying on similar motivations, we introduce the larger classes of 'loosely stratified' and 'constructively consistent' programs. Second, we give a formal basis for introducing quantifiers into queries and logic programs by defining 'constructively domain independent* formulas. Third, we extend the Generalized Magic Sets procedure to loosely stratified and constructively consistent programs, by relying on a 'conditional fixpoini procedure

    A Step-indexed Semantics of Imperative Objects

    Full text link
    Step-indexed semantic interpretations of types were proposed as an alternative to purely syntactic proofs of type safety using subject reduction. The types are interpreted as sets of values indexed by the number of computation steps for which these values are guaranteed to behave like proper elements of the type. Building on work by Ahmed, Appel and others, we introduce a step-indexed semantics for the imperative object calculus of Abadi and Cardelli. Providing a semantic account of this calculus using more `traditional', domain-theoretic approaches has proved challenging due to the combination of dynamically allocated objects, higher-order store, and an expressive type system. Here we show that, using step-indexing, one can interpret a rich type discipline with object types, subtyping, recursive and bounded quantified types in the presence of state

    First steps in synthetic guarded domain theory: step-indexing in the topos of trees

    Get PDF
    We present the topos S of trees as a model of guarded recursion. We study the internal dependently-typed higher-order logic of S and show that S models two modal operators, on predicates and types, which serve as guards in recursive definitions of terms, predicates, and types. In particular, we show how to solve recursive type equations involving dependent types. We propose that the internal logic of S provides the right setting for the synthetic construction of abstract versions of step-indexed models of programming languages and program logics. As an example, we show how to construct a model of a programming language with higher-order store and recursive types entirely inside the internal logic of S. Moreover, we give an axiomatic categorical treatment of models of synthetic guarded domain theory and prove that, for any complete Heyting algebra A with a well-founded basis, the topos of sheaves over A forms a model of synthetic guarded domain theory, generalizing the results for S

    A Case Study on Logical Relations using Contextual Types

    Full text link
    Proofs by logical relations play a key role to establish rich properties such as normalization or contextual equivalence. They are also challenging to mechanize. In this paper, we describe the completeness proof of algorithmic equality for simply typed lambda-terms by Crary where we reason about logically equivalent terms in the proof environment Beluga. There are three key aspects we rely upon: 1) we encode lambda-terms together with their operational semantics and algorithmic equality using higher-order abstract syntax 2) we directly encode the corresponding logical equivalence of well-typed lambda-terms using recursive types and higher-order functions 3) we exploit Beluga's support for contexts and the equational theory of simultaneous substitutions. This leads to a direct and compact mechanization, demonstrating Beluga's strength at formalizing logical relations proofs.Comment: In Proceedings LFMTP 2015, arXiv:1507.0759
    corecore