5,171 research outputs found

    Single-Rail Adiabatic Logic for Energy-Efficient and CPA-Resistant Cryptographic Circuit in Low-Frequency Medical Devices

    Get PDF
    Designing energy-efficient and secure cryptographic circuits in low-frequency medical devices are challenging due to low-energy requirements. Also, the conventional CMOS logic-based cryptographic circuits solutions in medical devices can be vulnerable to side-channel attacks (e.g. correlation power analysis (CPA)). In this article, we explored single-rail Clocked CMOS Adiabatic Logic (CCAL) to design an energy-efficient and secure cryptographic circuit for low-frequency medical devices. The performance of the CCAL logic-based circuits was checked with a power clock generator (2N2P-PCG) integrated into the design for the frequency range of 50 kHz to 250 kHz. The CCAL logic gates show an average of approximately 48% energy-saving and more than 95% improvement in security metrics performance compared to its CMOS logic gate counterparts. Further, the CCAL based circuits are also compared for energy-saving performance against dual-rail adiabatic logic, 2-EE-SPFAL, and 2-SPGAL. The adiabatic CCAL gates save on an average of 55% energy saving compared to 2-EE-SPFAL and 2-SPGAL over the frequency range of 50 kHz to 250 kHz. To check the efficacy of CCAL to design a larger cryptographic circuit, we implemented a case-study design of a Substitution-box (S-box) of popular lightweight PRESENT-80 encryption. The case-study implementation (2N2P-PCG integrated into the design) using CCAL shows more than 95% energy saving compared to CMOS for the frequency 50 kHz to 125 kHz and around 60% energy saving at frequency 250 kHz. At 250 kHz, compared to the dual-rail adiabatic designs of S-box based on 2-EE-SPFAL and 2-SPGAL, the CCAL based S-box shows 32.67% and 11.21% of energy savings, respectively. Additionally, the CCAL logic gate structure requires a lesser number of transistors compared to dual-rail adiabatic logic. The case-study implementation using CCAL saves 45.74% and 34.88% transistor counts compared to 2-EE-SPFAL and 2-SPGAL. The article also presents the effect of varying tank capacitance in 2N2P-PCG over energy efficiency and security performance. The CCAL based case-study was also subjected against CPA. The CCAL-based S-box case study successfully protects the revelation of the encryption key against the CPA attack, However, the key was revealed in CMOS-based case-study implementation

    EE-ACML: Energy-Efficient Adiabatic CMOS/MTJ Logic for CPA-Resistant IoT Devices

    Get PDF
    Internet of Things (IoT) devices have strict energy constraints as they often operate on a battery supply. The cryptographic operations within IoT devices consume substantial energy and are vulnerable to a class of hardware attacks known as side-channel attacks. To reduce the energy consumption and defend against side-channel attacks, we propose combining adiabatic logic and Magnetic Tunnel Junctions to form our novel Energy Efficient-Adiabatic CMOS/MTJ Logic (EE-ACML). EE-ACML is shown to be both low energy and secure when compared to existing CMOS/MTJ architectures. EE-ACML reduces dynamic energy consumption with adiabatic logic, while MTJs reduce the leakage power of a circuit. To show practical functionality and energy savings, we designed one round of PRESENT-80 with the proposed EE-ACML integrated with an adiabatic clock generator. The proposed EE-ACML-based PRESENT-80 showed energy savings of 67.24% at 25 MHz and 86.5% at 100 MHz when compared with a previously proposed CMOS/MTJ circuit. Furthermore, we performed a CPA attack on our proposed design, and the key was kept secret

    Designing Novel Hardware Security Primitives for Smart Computing Devices

    Get PDF
    Smart computing devices are miniaturized electronics devices that can sense their surroundings, communicate, and share information autonomously with other devices to work cohesively. Smart devices have played a major role in improving quality of the life and boosting the global economy. They are ubiquitously present, smart home, smart city, smart girds, industry, healthcare, controlling the hazardous environment, and military, etc. However, we have witnessed an exponential rise in potential threat vectors and physical attacks in recent years. The conventional software-based security approaches are not suitable in the smart computing device, therefore, hardware-enabled security solutions have emerged as an attractive choice. Developing hardware security primitives, such as True Random Number Generator (TRNG) and Physically Unclonable Function (PUF) from electrical properties of the sensor could be a novel research direction. Secondly, the Lightweight Cryptographic (LWC) ciphers used in smart computing devices are found vulnerable against Correlation Power Analysis (CPA) attack. The CPA performs statistical analysis of the power consumption of the cryptographic core and reveals the encryption key. The countermeasure against CPA results in an increase in energy consumption, therefore, they are not suitable for battery operated smart computing devices. The primary goal of this dissertation is to develop novel hardware security primitives from existing sensors and energy-efficient LWC circuit implementation with CPA resilience. To achieve these. we focus on developing TRNG and PUF from existing photoresistor and photovoltaic solar cell sensors in smart devices Further, we explored energy recovery computing (also known as adiabatic computing) circuit design technique that reduces the energy consumption compared to baseline CMOS logic design and same time increasing CPA resilience in low-frequency applications, e.g. wearable fitness gadgets, hearing aid and biomedical instruments. The first contribution of this dissertation is to develop a TRNG prototype from the uncertainty present in photoresistor sensors. The existing sensor-based TRNGs suffer a low random bit generation rate, therefore, are not suitable in real-time applications. The proposed prototype has an average random bit generation rate of 8 kbps, 32 times higher than the existing sensor-based TRNG. The proposed lightweight scrambling method results in random bit entropy close to ideal value 1. The proposed TRNG prototype passes all 15 statistical tests of the National Institute of Standards and Technology (NIST) Statistical Test Suite with quality performance. The second contribution of this dissertation is to develop an integrated TRNG-PUF designed using photovoltaic solar cell sensors. The TRNG and PUF are mutually independent in the way they are designed, therefore, integrating them as one architecture can be beneficial in resource-constrained computing devices. We propose a novel histogram-based technique to segregate photovoltaic solar cell sensor response suitable for TRNG and PUF respectively. The proposed prototype archives approximately 34\% improvement in TRNG output. The proposed prototype achieves an average of 92.13\% reliability and 50.91\% uniformity performance in PUF response. The proposed sensor-based hardware security primitives do not require additional interfacing hardware. Therefore, they can be ported as a software update on existing photoresistor and photovoltaic sensor-based devices. Furthermore, the sensor-based design approach can identify physically tempered and faulty sensor nodes during authentication as their response bit differs. The third contribution is towards the development of a novel 2-phase sinusoidal clocking implementation, 2-SPGAL for existing Symmetric Pass Gate Adiabatic Logic (SPGAL). The proposed 2-SPGAL logic-based LWC cipher PRESENT shows an average of 49.34\% energy saving compared to baseline CMOS logic implementation. Furthermore, the 2-SPGAL prototype has an average of 22.76\% better energy saving compared to 2-EE-SPFAL (2-phase Energy-Efficient-Secure Positive Feedback Adiabatic Logic). The proposed 2-SPGAL was tested for energy-efficiency performance for the frequency range of 50 kHz to 250 kHz, used in healthcare gadgets and biomedical instruments. The proposed 2-SPGAL based design saves 16.78\% transistor count compared to 2-EE-SPFAL counterpart. The final contribution is to explore Clocked CMOS Adiabatic Logic (CCAL) to design a cryptographic circuit. Previously proposed 2-SPGAL and 2-EE-SPFAL uses two complementary pairs of the transistor evaluation network, thus resulting in a higher transistor count compared to the CMOS counterpart. The CCAL structure is very similar to CMOS and unlike 2-SPGAL and 2-EE-SPFAL, it does not require discharge circuitry to improve security performance. The case-study implementation LWC cipher PRESENT S-Box using CCAL results into 45.74\% and 34.88\% transistor count saving compared to 2-EE-SPFAL and 2-SPGAL counterpart. Furthermore, the case-study implementation using CCAL shows more than 95\% energy saving compared to CMOS logic at frequency range 50 kHz to 125 kHz, and approximately 60\% energy saving at frequency 250 kHz. The case study also shows 32.67\% and 11.21\% more energy saving compared to 2-EE-SPFAL and 2-SPGAL respectively at frequency 250 kHz. We also show that 200 fF of tank capacitor in the clock generator circuit results in optimum energy and security performance in CCAL

    Side Channel Leakage Analysis - Detection, Exploitation and Quantification

    Get PDF
    Nearly twenty years ago the discovery of side channel attacks has warned the world that security is more than just a mathematical problem. Serious considerations need to be placed on the implementation and its physical media. Nowadays the ever-growing ubiquitous computing calls for in-pace development of security solutions. Although the physical security has attracted increasing public attention, side channel security remains as a problem that is far from being completely solved. An important problem is how much expertise is required by a side channel adversary. The essential interest is to explore whether detailed knowledge about implementation and leakage model are indispensable for a successful side channel attack. If such knowledge is not a prerequisite, attacks can be mounted by even inexperienced adversaries. Hence the threat from physical observables may be underestimated. Another urgent problem is how to secure a cryptographic system in the exposure of unavoidable leakage. Although many countermeasures have been developed, their effectiveness pends empirical verification and the side channel security needs to be evaluated systematically. The research in this dissertation focuses on two topics, leakage-model independent side channel analysis and security evaluation, which are described from three perspectives: leakage detection, exploitation and quantification. To free side channel analysis from the complicated procedure of leakage modeling, an observation to observation comparison approach is proposed. Several attacks presented in this work follow this approach. They exhibit efficient leakage detection and exploitation under various leakage models and implementations. More importantly, this achievement no longer relies on or even requires precise leakage modeling. For the security evaluation, a weak maximum likelihood approach is proposed. It provides a quantification of the loss of full key security due to the presence of side channel leakage. A constructive algorithm is developed following this approach. The algorithm can be used by security lab to measure the leakage resilience. It can also be used by a side channel adversary to determine whether limited side channel information suffices the full key recovery at affordable expense

    Threshold Implementations of the Present Cipher

    Get PDF
    The process of securing data has always been a challenge since it is related to the safety of people and society. Nowadays, there are many cryptographic algorithms developed to solve security problems. However, some applications have constraints which make it difficult to achieve high levels of security. Light weight cryptography aims to address this issue while trying to maintain low costs. Side-channel attacks have changed the way of cryptography significantly. In this kind of attacks, the attacker has physical access to the crypto-system and can extract the sensitive data by monitoring and measuring the side-channels such as power consumption, electromagnetic emanation, timing information, sound, etc. These attacks are based on the relationship between side-channels and secret data. Therefore, there need to be countermeasures to eliminate or reduce side channel leaks or to break the relationship between side-channels and secret data to protect the crypto systems against side-channel attacks. In this work, we explore the practicality of Threshold Implementation (TI) with only two shares for a smaller design that needs less randomness but is still leakage resistant. We demonstrate the first two-share Threshold Implementations of light-weight block cipher Present. Based on implementation results, two-share TI has a lower area overhead and better throughput when compared with a first-order resistant three-share scheme. Leakage analysis of the developed implementations reveals that two-share TI can retain perfect first-order resistance. However, the analysis also exposes a strong second-order leakage

    Greening Consumer Electronics: Moving Away From Bromine and Chlorine

    Get PDF
    Presents case studies of seven electronics companies that have engineered environmental solutions that eliminate the use of most brominated and chlorinated chemicals that generate toxic materials. Discusses global standards and regulations
    corecore