
Worcester Polytechnic Institute
Digital WPI

Doctoral Dissertations (All Dissertations, All Years) Electronic Theses and Dissertations

2015-01-27

Side Channel Leakage Analysis - Detection,
Exploitation and Quantification
Xin Ye
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations

This dissertation is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Doctoral Dissertations (All
Dissertations, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Ye, X. (2015). Side Channel Leakage Analysis - Detection, Exploitation and Quantification. Retrieved from
https://digitalcommons.wpi.edu/etd-dissertations/47

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/47?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Side Channel Leakage Analysis
– Detection, Exploitation and Quantification

A Dissertation
Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy
in

Electrical and Computer Engineering
by

Xin Ye
Dec 2014

APPROVED:

Dr. Thomas Eisenbarth Dr. Berk Sunar
Major Advisor

Dr. Lifeng Lai Dr. Adam Ding

Dr. Yehia Massoud
Department Head

Abstract

Nearly twenty years ago the discovery of side channel attacks has warned the

world that security is more than just a mathematical problem. Serious considera-

tions need to be placed on the implementation and its physical media. Nowadays

the ever-growing ubiquitous computing calls for in-pace development of security so-

lutions. Although the physical security has attracted increasing public attention,

side channel security remains as a problem that is far from being completely solved.

An important problem is how much expertise is required by a side channel adver-

sary. The essential interest is to explore whether detailed knowledge about imple-

mentation and leakage model are indispensable for a successful side channel attack.

If such knowledge is not a prerequisite, attacks can be mounted by even inexpe-

rienced adversaries. Hence the threat from physical observables may be underes-

timated. Another urgent problem is how to secure a cryptographic system in the

exposure of unavoidable leakage. Although many countermeasures have been devel-

oped, their effectiveness pends empirical verification and the side channel security

needs to be evaluated systematically.

The research in this dissertation focuses on two topics, leakage-model indepen-

dent side channel analysis and security evaluation, which are described from three

perspectives: leakage detection, exploitation and quantification. To free side chan-

nel analysis from the complicated procedure of leakage modeling, an observation-

to-observation comparison approach is proposed. Several attacks presented in this

i

ii

work follow this approach. They exhibit efficient leakage detection and exploita-

tion under various leakage models and implementations. More importantly, this

achievement no longer relies on or even requires precise leakage modeling.

For the security evaluation, a weak maximum likelihood approach is proposed.

It provides a quantification of the loss of full key security due to the presence of side

channel leakage. A constructive algorithm is developed following this approach.

The algorithm can be used by security lab to measure the leakage resilience. It can

also be used by a side channel adversary to determine whether limited side channel

information suffices the full key recovery at affordable expense.

iii

To my parents and my wife.

Acknowledgment

This dissertation is completed partially at the Department of Mathematics at Florida

Atlantic University and partially at the Department of Electrical and Computer En-

gineering at Worcester Polytechnic Institute. The research is supported by National

Science Foundation with grant 1261399.

First of all, I would like to express my deepest gratitude to my advisor Prof.

Thomas Eisenbarth. The interesting cryptography class he taught in 2010 has in-

troduced me into this research area. He has been organizing lots of seminars on

cryptography and security related topics and creating an open-minded academic

atmosphere. I am sincerely thankful for his continuous guidance and support in the

past five years.

I would also like to thank my committee Profs. Berk Sunar, Lifeng Lai and

Adam Ding. They have been making careful review, suggestions and critiques on

my research and dissertation. Special thanks are also given to Dr. William Martin

from WPI, Drs Lianfeng Qian, Lee Klingler and Rainer Steinwandt from FAU.

Thank you for providing academic intelligent support and sharing.

My gratitude shall also be given to my peers Yarkin, Gorka, Aria, Michael, Cong,

Wei, Yin and Chenguang. Thanks for being my trustworthy friends in the last two

years.

iv

v

Last but not the least, I want to truthfully thank my parents and my dear wife

Yu Zhang for encouraging me and being supportive all the time.

Contents

Abstract i

Acknowledgment iv

Contents vi

List of Figures ix

List of Tables xi

List of Acronyms xii

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contribution . 4
1.3 Outline of the work . 5

2 Preliminaries 6
2.1 Algebra Preliminaries . 6

2.1.1 Group . 6
2.1.2 Polynomial Ring and Finite Field Extension 11
2.1.3 Advanced Encryption Standard 14

2.2 Statistics Preliminaries . 17
2.2.1 Probabilities of Events . 17
2.2.2 Random Variables and Probability Distributions 18
2.2.3 Relation between Random Variables or Distributions 21

2.3 Information Theoretic Basics . 22
2.3.1 Entropy and Conditional Entropy 22
2.3.2 Mutual Information . 24

vi

CONTENTS vii

3 Overview of Side Channel Analysis 27
3.1 Side Channel Attack . 27

3.1.1 Adversarial Model . 28
3.1.2 Simple Power Analysis . 31
3.1.3 Differential Power Analysis . 32
3.1.4 Correlation Power Analysis 33
3.1.5 Template Attack . 34
3.1.6 Mutual Information Analysis 35

3.2 Side Channel Countermeasures . 37
3.2.1 Hiding . 37
3.2.2 Masking . 38
3.2.3 Leakage Resilience . 39

4 Leakage Detection 41
4.1 Current Challenges . 42
4.2 Wide Collision Detection . 43

4.2.1 Collision Attack . 44
4.2.2 Wide Collisions . 45
4.2.3 Outlier Method . 50
4.2.4 Template Based Collision Detection 54
4.2.5 Experimental Results . 58

4.3 Faster Leakage Detection . 64
4.3.1 Related Works . 64
4.3.2 Bundling Leakage Observation 69
4.3.3 Experiments . 77

4.4 Conclusion . 83

5 Leakage Exploitation 84
5.1 Challenges and Motivation . 85
5.2 Non-Linear Collision Attack . 87

5.2.1 Related Work: Linear Correlation Collision Attack 87
5.2.2 Existence of Non-Linear Collisions 88
5.2.3 Building a Non-linear Collision Attack 90
5.2.4 Comparison with other SCA 93
5.2.5 NLCA-Experiments . 97

5.3 Vulnerabilities of Low Entropy Masking Schemes 107
5.3.1 Low Entropy Masking Schemes 107
5.3.2 Leakage Distribution Composition 109
5.3.3 Leakage Distribution Decomposition Attack 111
5.3.4 Leaking Set/Group Collision Attack 116

CONTENTS viii

5.3.5 Experiments . 124
5.4 Conclusion . 130

6 Leakage Quantification 132
6.1 Motivations and Related Works . 133

6.1.1 Full Key Ranking Algorithm 134
6.1.2 Security Metrics . 135

6.2 Evaluating Full Key Security . 137
6.2.1 Weak Maximum Likelihood Approach 138
6.2.2 The Search Domain and its Calculus Model 140
6.2.3 An Optimized Key Space Finding Algorithm 144
6.2.4 Usage of the KSF algorithm 150

6.3 Experiment Results and Comparison 151
6.3.1 Experiment Setup . 151
6.3.2 Posterior Probabilities Derivation 151
6.3.3 Correctness and Influencing Factors 152
6.3.4 Comparing KSF algorithm with VGS algorithm 154

6.4 Conclusion . 158

7 Conclusion & Future Directions 159

Bibliography 162

List of Figures

3.1 Security Models . 29

3.2 SCA Lab Setup . 30

4.1 Potential Leaking Points over the Time Domain 48

4.2 Critical Points for Different Sensitive Values 49

4.3 Determine the Outlier Region . 52

4.4 Success Rate of Collision Detection with Template Methods 62

4.5 Univariate Leakage Detection with Leakage Bundling CPA 79

4.6 Success Rate of Regular CPA vs Leakage Bundling CPA 80

4.7 Univariate Leakage Detection with Leakage Bundling Welch T-test . 81

4.8 Multivariate Leakage Detection using Leakage Bundling 82

5.1 Observation-to-Model Comparison in Classical SCA 86

5.2 Linear Collisions vs Non-Linear Collisions 89

5.3 Use NLCA to distinguish the correct subkey and critical time sample. 98

5.4 The number of observations that suffices NLCA 99

5.5 Performance of NLCA vs CPA over Unprotected Implementation . . 101

5.6 NLCA’s immunity to Leakage Modeling Error 104

ix

LIST OF FIGURES x

5.7 Leakage Distribution Decomposition 113

5.8 Hypothesis Testing in the profiling LDDA 126

5.9 Hypothesis Testing in LSCA . 129

6.1 Flow Chart of the KSF algorithm. 145

6.2 Optimal Search Vector . 149

6.3 Correctness Verification of the Key Space Finding Algorithm 154

6.4 Guesswork Variation Factors . 155

6.5 Security Evaluation using KSF vs VGS 157

List of Tables

4.1 Collision Detection: Impact from the Dimension of the Feature 60

4.2 Collision Detection: Impact from the Choices of R and r. 61

4.3 Collision Detection: Impact from the Number of Traces 61

5.1 The Robustness of NLCA under Inhomogeneous Leakage Behavior . . 107

5.2 Performance Evaluation for Non-Profiling LDDA 127

5.3 Performance Evaluation for LSCA . 130

xi

List of Acronyms

AES Advanced Encryption Standard.

CPA Correlation Power Analysis.

DPA Differential Power Analysis.

FEMS Full Entropy Masking Schemes.

HOCPA Higher Order Correlation Power Analysis.

HOMIA Higher Order Mutual Information Analysis.

HOSCA Higher Order Side Channel Analysis/Attack.

KS Kolmogrov-Smirnov.

KSF Key Space Finding Algorithm.

LB Leakage Bundling.

LCCA Linear Collision Correlation Attack.

LDA Linear Discriminant Analysis.

LDDA Leakage Distribution Decomposition Attack.

xii

List of Acronyms xiii

LEMS Low Entropy Masking Schemes.

LGCA Leaking Group Collision Attack.

LSCA Leaking Set Collision Attack.

MIA Mutual Information Analysis.

ML Maximum Likelihood.

NLCA Non-Linear Collision Attack.

O2M Observation-to-Model.

O2O Observation-to-Observation.

PCA Principal Component Analysis.

RSM Rotating Sboxes Masking.

SCA Side Channel Analysis/Attack.

SPA Simple Power Analysis.

VGS Key Ranking Algorithm.

Chapter 1

Introduction

1.1 Motivation

Recent years have seen the ubiquitous computing touching almost every corner of

the world. For instance, RFIDs have been widely employed in public transporta-

tion and logistic systems; Wireless sensor networks allow convenient health care

and environment monitoring; Smart technologies even ”bring” the world into our

cellphones, automobiles and homes.

Together with the convenience and efficiency are the privacy and security issues

brought by those fast developing technologies. While different security requirement

and goals are defined from national or international standardization as well as com-

pany wide security policies, technical solutions are mostly sought from cryptography.

The original objective of cryptography is to provide a secure communication channel

between different parties. Modern cryptographic primitives also offer services such

as data confidentiality, integrity, authenticity and non-repudiation. The basic idea

is to make use of some mathematically hard problems such as factorization and dis-

1

CHAPTER 1. INTRODUCTION 2

crete logarithm so that the potential advantage a passive or active adversary might

obtain from the communication channel is limited to an negligible level. Various

cryptographic algorithms and protocols have been implemented in e.g. banking,

telecommunication, health care system, copyright protection and etc. They have

been and will be continuously protecting our privacy, securing our financial assets

and creating numerous business opportunities around the world.

The wide application of cryptography is supported by physical infrastructures on

different scales such as super computers, the cloud and distributed computing sys-

tems as well as the embedded systems. Implementation of cryptographic primitives

on those platforms is supposed to achieve their defined security objective. However,

the discovery of side channel analysis (SCA) in late 1990s alerts the world that the

computation on physical platforms can also become a secret teller that impedes any

achievement of security goals in the real world. Basically, the SCA considers the

execution of algorithm leaks sensitive information regarding internal system states

from physical media. The adversary is allowed to make use of such leakage to chal-

lenge the security of the system. It reminds us that the physical security is no longer

a negligible issue.

The past twenty years have seen numerous investigation on the threats from

physical observables. A variety of SCAs and countermeasures have been proposed

every year. While the studies facilitate us a more thorough understanding of the

nature of SCAs and some possible ways to mitigate or live with them, the threat

has been far away from being completely removed. Many problems remain unsolved

for both the academia and the industry. They include but are not restrict to:

• How should one define the security goal in the presence of a potential side

CHAPTER 1. INTRODUCTION 3

channel adversary? Securing against a particular SCA is easier. But enu-

merating all possible SCA and ensuring security against all of them is just

unmanageable. If the latter is desired, the only way is to show there is either

equivalent or fully ordered relationship between different SCAs such that se-

curing one will automatically secure the remaining. However, this put forward

the difficulty towards the relation between different SCAs even if some of them

might not even being proposed yet. The unclear security objective results in

a limited standardization on the common security goal of SCA resistance.

• Have the current SCAs reached their maximum potential? Efficient SCAs

require precise estimation of leakage models. It indicates that advancement

in leakage modeling techniques makes the SCA more powerful than they are

now. An alternative question is how much does SCA really need to rely on

leakage modeling. Is there any data analytic techniques that can capture

any data dependency while still provide meaningful side channel hypothesis

discrimination? If the answer is yes, then the technical difficulty for mounting

a SCA can be lower since an adversary who lack the experience in leakage

model estimation can still perform the attack. Attack efficiency is another

restricting factor. Existence of more efficient attack will definitely encourage

the harass from adversaries.

• How should one evaluate the effectiveness of some countermeasures? How

should one quantify the impact of the remaining leakage? Taking informa-

tion theoretical approach is one possible solution by analyzing the empirical

remaining key entropy. It is actually the approach that adopted by most cur-

rent related works. However, comparing to the entropies, security evaluator is

CHAPTER 1. INTRODUCTION 4

more interested in the change in leakage exploitability and adversaries’ ability

in key guessing. Unfortunately, a systematic study regarding those aspect is

not available.

Those unanswered questions provide us sufficient reasons for further researching

in this area.

1.2 Our Contribution

This dissertation conduct SCA studies from three major aspects: leakage detec-

tion, exploitation and quantification. We are particularly interested in possible side

channel distinguishers that do not rely on particular leakage behavior. Equivalently

speaking, we aim at returning to capturing the key related data dependency nature

of SCA without specifying a fixed dependency relation. Exploration in this respect

not just provide an alternative way of mounting SCA, but it tries to release the SCA

potentials and may contribute to the black box side channel attack and testing. A

second central interest is in evaluating the practical impact on full key security from

limited side channel observations. It tries to answer the questions like how much

winning probability an adversary can achieve with the limited side channel leakage;

How different observations influence her guessing strategy.

The summary of contribution is the following.

• A leakage bundling technique is introduced for leakage detection and exploita-

tion. It improves the computational efficiency of classical SCAs and testing. It

calls for an reevaluation on the effectiveness of side channel countermeasures

such as hiding and masking.

CHAPTER 1. INTRODUCTION 5

• A novel observation to observation comparison approach is proposed for leak-

age exploitation. Comparing to the traditional observation to model com-

parison, this approach removes the leakage model estimation or assumption

without sacrificing the capabilities of capturing generic leakage.

• A novel weak maximum likelihood approach is proposed for leakage quan-

tification. A constructive key space finding algorithm is introduced as its

instantiation. It help the security evaluator in determine whether bounded

leakage ensures full key security of the system. It also provides a probabilistic

winning strategy for the adversary and inform the respective guesswork load.

Most of the above listed contributions can be found in our recent publications [79,

80, 78, 81].

1.3 Outline of the work

We start from fundamentals in abstract algebra, statistics and information theory

from Chapter 2 to provide sufficient preliminaries. Next we provide an overview of

side channel attacks and countermeasures in Chapter 3. It is followed by the three

main Chapters 4, 5 and 6. They discuss leakage detection, exploitation and quan-

tification respectively. We summaries major findings and possible future directions

in Chapter 7.

Chapter 2

Preliminaries

This chapter provides some basics in algebra, statistics, and information theory as

necessary preliminary knowledge for this dissertation.

2.1 Algebra Preliminaries

In this section we provide the necessary preliminaries in abstract algebra where

modern cryptography is built upon. We start from the simplest structure to the

ring and finally reaches the more complicated field. In the end of this section we use

the popular block cipher Advanced Encryption Standard as an example to obtain a

first taste of the usage of those algebraic structure.

2.1.1 Group

The algebraic structure is defined within a set of elements and the operation defined

among them. The formal notation of a binary operation on a set G is a function

∗ : G × G → G. More specifically, the binary operation ∗ maps a pair (x, y)

6

CHAPTER 2. PRELIMINARIES 7

of elements in G to an element x ∗ y that is still in the set G. We say the set

G is closed under the operation ∗ if such operation can be defined on any pair

(x, y) ∈ G × G. Now we can introduce the concept of group, which is the simplest

algebraic structure.

Definition 2.1. A group, denoted as (G, ∗), is a set G that is closed under the

operation ∗ and satisfies the following three properties:

(i) The associative law holds. I.e. x ∗ (y ∗ z) = (x ∗ y) ∗ z for any x, y, z ∈ G;

(ii) There is an element e ∈ G called the identity with e ∗ x = x = x ∗ e for all

element x ∈ G;

(iii) For any x ∈ G, there is an inverse x′ ∈ G with x ∗ x′ = e = x′ ∗ x.

It is easy to see the uniqueness of the identity: if both e, e′ ∈ G are identity as

in Def. 2.1, then e = e ∗ e′ = e′. It follows the uniqueness of the inverse element: if

both x′, x′′ are inverse of x as in Def. 2.1, then

x′ = x′ ∗ e = x′ ∗ (x ∗ x′′) = (x′ ∗ x) ∗ x′′ = e ∗ x′′ = x′′

It is also easy to see that the inverse of the identity is the identity. We now give

some examples of groups.

Example 2.1. Typical examples of groups

• The set of all integers with additive operation, i.e. (Z,+). In this group, the

identity element is 0, and the inverse of x is −x.

• The set of all non-zero rational numbers with multiplicative operation, i.e.

(Q\{0},×). In this group, the identity element is 1, and inverse of x is x−1.

CHAPTER 2. PRELIMINARIES 8

• The set of integers modulo n with additive operation, i.e. (Zn,+n). The

notation Zn refers integers {0, 1, ..., n − 1}. The operation is also called mod

n addition , i.e. x +n y := x + y mod n. For notational convenience, the

operation +n is simplified as +.

• The set of non-zero integers modulo prime p with multiplicative operation,

i.e. (Zp\{0},×p). The notation Zp\{0} refers positive integers {1, 2, ..., p−1},

which can also be denoted as Z×p . The mod p multiplication ×p is defined as

x×p y := xy mod p.

Conventionally, additive group – the group operation being addition or its vari-

ants – is denoted as (G,+) with its identity being 0 and the additive inverse of x

being −x. The multiplicative group is likewise denoted as (G, ∗) with the identity

being 1 and the multiplicative inverse of x is denoted as x−1. We should point out

that such operational distinction only impacts the arithmetic that the operation

defines but does not make a difference from the abstract algebraic perspective since

group consider only one type of operation. Without loss of generality and for the

ease of notation, we use the notation of additive group (G,+)

For finite groups, we can also define group order. It is denoted as |G| and refers

the number of elements that is in this group. The term order can also be defined

for each element x ∈ G and it is denoted as ◦(x). More specifically, ◦(x) refers

the smallest positive integer d such that the summation of d copies of x returns

the identity, i.e., d · x := x + x + ... + x (d times) = 0. We omit the proof of the

existence and suggest the interested reader for the work [62]. Nevertheless should

we remember the important fact that the order of any group element is a divisor

of the order of the group, i.e. ◦(x) | |G|, for all x ∈ G. In the extreme case where

CHAPTER 2. PRELIMINARIES 9

◦(x) = |G|, we say the group G is a cyclic group and is generated by the element x.

To get a first taste of the group structure, we introduce the subgroup.

Definition 2.2. A subset H of a group (G,+) is a subgroup if

(i) It contains the identity, i.e. 0 ∈ H;

(ii) It is closed under the group operation. I.e. if x, y ∈ H then x+ y ∈ H;

(iii) It is closed under inversion. I.e. For any x ∈ H, then −x ∈ H.

It is easy to see that a subgroup (H,+) of the group (G,+) is itself a group.

Subgroups induce a special partition of the group into the cosets.

Definition 2.3. If H is a subgroup of the group (G,+), then a + H := {a + h |

∀h ∈ H} is called a coset of H.

We should see cosets are of the same cardinality and they are either disjoint or

completely overlap.

Theorem 2.1. Let H be a subgroup of a group (G,+), and let a, b ∈ G.

(i) |a+H| = |H| for any a ∈ G.

(ii) a+H = b+H if and only if a− b ∈ H.

(iii) (a+H) ∩ (b+H) 6= ∅ implies a+H = b+H.

The above three property yields an important property of the finite group as

summarized in the Lagrange’s Theorem.

Theorem 2.2. (Lagrange’s Theorem). If H is a subgroup of a finite group

(G,+), then |H| is a divisor of |G|.

CHAPTER 2. PRELIMINARIES 10

What it indicates is a finite partition of the group G into equal sized and pairwise

disjoint cosets: G = (a1 +H) ∪ (a2 +H) ∪ ... ∪ (at +H). The maximum number of

pairwise disjoint cosets is called the index of subgroup H and it satisfies t = |G|
|H| .

We now take a look at a particular example of group – the set of all n-bit strings

(Fn2 ,+) with bitwise additive operation. Although the notation Fn2 can have different

interpretation, their algebraic essence is the same, which is a binary field extension

and we will detail later. Nevertheless, one of its representation is the set of all n-bit

strings {a1a2...an | ai ∈ F2,∀i}. We should see if ~a,~b ∈ Fn2 , then ~a + ~b = ~c with

ci = ai + bi mod 2. The bitwise binary addition is also called bitwise xor and can

be denoted shortly as ~a⊕~b = ~c. The identity is the zero-string ~0 and the inverse of

any ~a is, not surprisingly, itself as each component is in F2.

The binary linear code is essentially a subgroup of the n-bit strings Fn2 . The

elements contained in this subgroup are called codewords. Moreover, the number of

different bits between two codewords is called the Hamming distance or in short the

distance between the two codewords. A binary linear code is denoted as C := [n, k, d]

indicating that the length of each codeword is n, the number of codes is 2k and the

minimum distance of all pairs of codewords is d. Since the order of Fn2 is 2n and the

order of the subgroup [n, k, d] is 2k, the index of the subgroup or namely the number

of disjoint cosets is 2n−k. Further, it further implies that the lowest Hamming weight

of non-zero codewords is exactly d, namely,

d = min{HW (c ∈ C\{~0})}

The reason is that the all-zero string ~0 is the identity of the group and must be

included in the linear code as the identity in the subgroup. Those parameters

CHAPTER 2. PRELIMINARIES 11

have important meaning in the context of coding theory. Interested readers are

recommended to follow [37] for better understanding.

2.1.2 Polynomial Ring and Finite Field Extension

Rings are an algebraic structure that is more complicated than groups. This is

reflected in the fact that a ring has two binary operations. To distinguish them,

we name one addition and the other multiplication. Here we only consider the case

where both of the operations are commutative. In formal, a binary operation ∗ is

called commutative on a set S if for any a, b ∈ S, a ∗ b = b ∗ a. We now give the

formal definition of a commutative ring.

Definition 2.4. A commutative ring (R,+,×) is a set of elements where addition

and multiplication are defined and the following holds:

(i) R is an additive group;

(ii) Both addition and multiplication are commutative, i.e. a + b = b + a and

ab = ba for all a, b ∈ R;

(iii) Multiplication is associative, i.e. a(bc) = (ab)c for all a, b, c ∈ R;

(iv) Existence of multiplicative identity (also called the unit): ∃1 ∈ R such that

1a = a for all a ∈ R;

(v) R satisfies distributivity, i.e. a(b+ c) = ab+ ac for all a, b, c ∈ R.

It is easy to prove the uniqueness of the unit. Moreover, if there exist a, b ∈ R

such that ab = 1, we say a, b are multiplicative inverse to each other. It is easy to

see that the multiplicative inverse of the unit is itself. The definition of the ring

CHAPTER 2. PRELIMINARIES 12

does not require the existence of multiplicative inverse for other elements in the ring.

However, if all non-zero elements are multiplicatively invertible and multiplicative

identity differs from additive identity, we say the ring actually qualifies a field. We

now give some examples.

Example 2.2. Typical examples of rings and fields

• (Z,+,×) , (Q,+,×), (R,+,×) and (C,+,×) are commutative rings with usual

addition and multiplication.

• (Zn,+n,×n), i.e. the set of integers modulo n with mod n addition and mod

n multiplication. Moreover, if n is a prime, then all non-zero elements are

invertible and hence it becomes a field. It is usually denoted as Fn.

• The set of polynomials k[X] := {∑d
i=0 aiX

i | d ≥ 0, ai ∈ k} with polynomial

addition and multiplication where k refers a field. This is clearly not a field

as e.g. the monomial X is not invertible.

In addition to subrings, there is a special structure called ideal.

Definition 2.5. An ideal in a commutative ring R is a subset I of R that satisfies

(i) 0 ∈ I;

(ii) I is closed under ring addition;

(iii) a ∈ I and r ∈ R imply ra ∈ I.

Conventionally we use (a) := aR = {ar | r ∈ R} to denote the ideal generated

by element a. The definition of ideal not necessarily require to include the unit. In

CHAPTER 2. PRELIMINARIES 13

fact, if an invertible element u is inside the ideal I, then I = R simply because u ∈ I

implies 1 = uu−1 ∈ I and obviously (1) = I.

We now consider an important field that is commonly used, which is called field

extension. We pay a particular attention to the case of finite field whose cardinality

can only be powers of a prime. The construction makes use of the polynomial modulo

reduction with an irreducible polynomial. In formal, let k[X] be a polynomial ring

with k being a field, a polynomial f(X) ∈ k[X] is called irreducible if there is

no g(X), h(X) ∈ k[X] such that f(X) = g(X)h(X) and deg g(X), deg h(X) <

deg f(X). For example, X2 +X + 1 is an irreducible polynomial in F2[X]. Theories

in abstract algebra shows that there exist irreducible polynomial of arbitrary degrees,

which we omitted here. The classical field extension technique is summarized in the

following theorem.

Theorem 2.3. Let k be a finite field, p(X) ∈ k[X] and the notation1 k[X]/(p(X))

represent the set of polynomials after modulo reduction by p(X), i.e. k[X]/(p(X)) :=

{a(X) mod p(X)}. Then k[X]/(p(X)) is a field if and only if p(X) is an irreducible

polynomial over k[X]. Moreover, if this is the case, then |k[X]/(p(X))| = |k|d where

d = deg p(X)

The construction through polynomial modulo reduction actually results in a

linear vector space over the original field k with a basis being 1, β, β2, ..., βd−1 where β

is a root of the irreducible polynomial in the extended field. More straightforwardly

as one’s intuition indicates, whenever p(X) is irreducible over k, we get

k[X]/(p(X)) ∼= {
d−1∑
i=0

aiX
i | ai ∈ k}

1This is in formal referred as the quotient ring, where one can consider each polynomial f(X)
is mapped to its equivalent class f(X) + (p(X))

CHAPTER 2. PRELIMINARIES 14

2.1.3 Advanced Encryption Standard

The Advanced Encryption Standard (AES) is a US NIST standard block cipher

and is listed in the Federal Information Processing Standard (FIPS) publication

197 [57]. It is the most popular block cipher in the contemporary world. For

instance it is included in protocols such as IPsec, TLS, SSH, the Wi-Fi encryption

standard IEEE 802.11i and so on. In this section we outline the design of AES and

use its mathematical structure as an example of the cryptography use of the ring

and field structure introduced in Section 2.1.2.

AES has block size of 128 bits and offers three different key length ranging from

128, 192 to 256 bits for encryption and decryption. The 128 bit block string, namely

16 bytes, is indexed from s0 to s15. Another common organization of the 16 bytes

is to treat them as a 4 x 4 matrix and each entry is indexed si,j where 0 ≤ i, j ≤ 3.

Moreover, the 8 bits in each byte value is indexed as b7b6...b0 with the leftmost being

the most significant bit (MSB) and rightmost being the least significant bit (LSB).

The design of AES follows a Substitution Permutation Network (SPN). The AES

encryption firstly xors the plaintext with the secret key then passes the state to 10,

12, or 14 (depending on the key length) round functions. The final output is returned

as the ciphertexts. Each round function except in the last round consists of four

subroutines called AddRoundKey, SubBytes, ShiftRows and MixColumns.

The last round omits the MixColumns operation with the purpose of making the

entire decryption routine equivalent to the encryption procedure. The key used in

each round is derived as an expansion from the initial key. We now list the algebraic

nature of each subroutine.

• The AddRoundKey operation s′ = s⊕ k is the bitwise addition in F2.

CHAPTER 2. PRELIMINARIES 15

• The SubBytes operation is a byte-wise one-to-one mapping. It treats the 8 bit

strings in a byte as a finite field extension F2[Y]/(m(Y)) where the irreducible

m(Y) = Y 8 + Y 4 + Y 3 + Y + 1

The transformation consists two steps. Firstly, it maps any non-zero element

to its multiplicative inverse in this field F2[Y]/(m(Y)), and maps the element

zero to itself. The second step is an affine transformation over F2 which is

defined as

b′i = bi + b[i+4]8 + b[i+5]8 + b[i+6]8 + b[i+7]8 + ci

where [·]8 is a short notation for the mod 8 operation, the index i refers the

i-th bit of a byte and c is the constant bit string 01100011.

• The ShiftRows operation cyclically shifts the byte values in each row of the

4 x 4 matrix with different offsets. In particular, entries in row i is shifted

cyclically to the left by i position such that si,j is moved to the position

(i, [j − i]4) .

• The MixColumns is more complicated. From the high level, it is a word-wise

transformation mapping 4 bytes in one column of the 4x4 matrix to another

4 bytes values. Its algebraic essence is the polynomial multiplication in the

quotient ring

F8
2[X]/(X4 + 1) := {a3X

3 + a2X
2 + a1X + a0 | ai ∈ F8

2}

CHAPTER 2. PRELIMINARIES 16

where if a(X), b(X) ∈ F8
2[X]/(X4 + 1), then

a(X)⊗ b(X) =
6∑

m=0

∑
i+j=m

(ai • bj)Xm mod X4 + 1 (2.1)

where all additions among coefficients are in F8
2 and are hence bitwise xor, and

the multiplications ai • bj in F8
2 are modulo reduction by m(Y).

In fact, AES chooses X4+1 for the quotient ring modulo to make the reduction

as simple as X i mod X4 + 1 = X [i]4 . It simplifies (2.1) as

a(X)⊗ b(X) = d(X) = d3X
3 + d2X

2 + d1X + d0

where

d0 = (a0 • b0)⊕ (a3 • b1)⊕ (a2 • b2)⊕ (a1 • b3)

d1 = (a1 • b0)⊕ (a0 • b1)⊕ (a3 • b2)⊕ (a2 • b3)

d2 = (a2 • b0)⊕ (a1 • b1)⊕ (a0 • b2)⊕ (a3 • b3)

d3 = (a3 • b0)⊕ (a2 • b1)⊕ (a1 • b2)⊕ (a0 • b3)

which is equivalent to



d0

d1

d2

d3


=



a0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0





b0

b1

b2

b3


(2.2)

CHAPTER 2. PRELIMINARIES 17

The input of the MixColumns plays the role as the polynomial b(X) and it

is multiplied by a specific choice of a(X) = 03X3 + 01X2 + 01X1 + 02 where

all coefficients are the hexadecimal representation of the 8-bit string in F8
2. In

other words, the MixColumns is exactly b′(X) = a(X)⊗b(X) with the a(X)

specified above and can be computed as the equation (2.2). Remember that

since the modulus X4 + 1 is not irreducible, the polynomial quotient ring is

not a field and hence not all polynomials have multiplicative inverse. However,

the above specified a(X) is chosen in the way such that it does have an inverse

which is a−1(X) = 0bX3 + 0dX2 + 09X1 + 0e. Consequently, the inversion of

MixColumns is just b(X) = a−1(X)⊗ b′(X).

2.2 Statistics Preliminaries

Side channel attacks can be interpreted as applying statistical methods to discrim-

inate key hypotheses. This section provides the fundamental concepts in random

variables, probabilities and their distribution as well as relationship between vari-

ables and distributions.

2.2.1 Probabilities of Events

Probabilities are firstly used to describe the frequency of the occurrence of certain

event in repeated experiments. For example, if within N repeated independent ex-

periments, event A occurs 0 ≤ NA ≤ N times, then the event A is said to have

empirical probability Pr(A) = NA/N . Clearly the quantity of probability is a real

number between 0 and 1. If multiple events are considered within a single experi-

CHAPTER 2. PRELIMINARIES 18

ment, one might be interested in how the occurrence of one event impact another.

This motivates the definition of conditional probability and posterior probability.

In formal, the probability of occurrence of A given the condition of the occurrence

of B is defined as

Pr(A | B) = Pr(AB)/Pr(B)

where Pr(AB) stands for the probability that both event A and B occur. In particu-

lar, the two events are independent to each other if and only if Pr(A | B) = Pr(A),

indicating the condition B does not affects the probability of A. An equivalent

expression for independence relation is Pr(AB) = Pr(A)Pr(B) The posterior prob-

ability Pr(B | A) describes the probability of event B after knowing that A occurs.

Expressively, it is defined as

Pr(B | A) = Pr(A|B)Pr(B)
Pr(A)

2.2.2 Random Variables and Probability Distributions

The set of all possible results from a single experiment is referred as the sample space.

Random variables are defined on the sample space. Assigning a random variable

with a particular experimental result creates an event and one can therefore define

probability for this event. The assignment of probabilities for all possible results

provides a probability distribution of the random variable. We use X to denote the

random variable and Ω be the sample space. If Ω is continuous, e.g. R then the

defined random variable X is continuous and a probability density function (pdf)

is used to describe the distribution. The integral of the pdf over Ω is 1. If Ω is

discrete, e.g. Z, then X is said to be discrete and a probability mass function (pmf)

CHAPTER 2. PRELIMINARIES 19

describes its distribution. The summation of the pmf over Ω is also 1.

Using parametric methods, distributions can be depicted with parameters such

as mean, median, mass, standard deviation and etc, which can be estimated empir-

ically. For example, repeating the experiments for n times and one obtains results

denoted as x1, ..., xn, then the mean value is obtained from (2.3) and the standard

deviation is evaluated from (2.4).

µ̃X = 1
n

n∑
i=1

xi (2.3)

σ̃X =
√√√√ 1
n− 1

n∑
i=1

(xi − µ̃X)2 (2.4)

They serve as an unbiased estimation of the population mean µ and the population

standard deviation σ. Another popular parameter estimation is the maximum like-

lihood estimator. It has the same expression of sample mean as in equation (2.3).

The formulation for sample variance is slightly changed to

σ̃X =
√√√√ 1
n

n∑
i=1

(xi − µ̃X)2

Details of estimation of parameters can be found in the textbook [16].

Now we present two commonly seen probability distributions. The first one is

the uniform distribution with its pmf and pdf expressed as

p(X = x) = 1
‖Ω‖

Intuitively from its name, the probability mass/density at any instance of the sample

space is a constant value. No sample instance is more probable or less probable than

CHAPTER 2. PRELIMINARIES 20

any other instance. This is actually the ideal situation where modern cryptography

intends to achieve. For example, a random number generator is supposed to generate

pseudo random numbers that appear just like real random numbers to win the real-

or-random security games. A perfect side channel secrecy requires that probability

distribution of all key candidates remain uniform both before and after the leakage

observation.

The probably most widely used probability distributions is the Gaussian distri-

bution (also called the normal distribution). A random variable X that follows a

Gaussian distribution is denoted as X ∼ N (µ, σ2). It is a probability distribution

for continuous variable that is uniquely determined by the population mean µ and

the population standard deviation σ. The pdf is expressed as,

p(X = x) = 1√
2πσ

exp
(
−(x− µ)2

2σ2

)
(2.5)

Statistical theory shows that if the observed samples are from Gaussian distribu-

tion, then E(µ̃) = µ and Var(µ̃) = σ2/n. In fact, the sample mean x̄ from n samples

follows the Gaussian distribution N (µ, σ2/n).

In many communication theory literatures it is shown that the noise in com-

munication channel exhibits Gaussian distribution. Many times it is referred as

additive white Gaussian noise (AWGN). Lots of earlier literatures on SCA assume

the distribution of noises or leakage in side channel is also AWGN. Later in this

dissertation we will use the notation N (L;µ, σ2) to indicate the leakage L follows a

normal distribution with mean µ and standard deviation σ.

CHAPTER 2. PRELIMINARIES 21

2.2.3 Relation between Random Variables or Distributions

The most commonly used statistic for describing the relation between two random

variables is the Pearson product-moment correlation coefficient or in short correla-

tion coefficient. The correlation coefficient between random variables X and Y is

formally defined as the ratio between the covariance to the product of their standard

deviation. That is,

ρ(X, Y) = cov(X, Y)
σXσY

= E{(X − µX)(Y − µY)}
σXσY

If the proability distributions for the two random variables are unknown, one can

estimate it from their instantiations x1, ..., xn and y1, ..., yn by applying

ρ̃(X, Y) =
∑ (xi − µ̃X)(yi − µ̃Y)√∑ (xi − σ̃X)2 ·

√∑ (yi − σ̃Y)2
(2.6)

The correlation coefficient is a real number between −1 and 1. The closer the

absolute value is to 1, the more linear relationship is observed from the two random

variables. However, if the correlation coefficient is close to 0, it does not indicate

the two variables are not related. It only tells that the linear correlation is not

significant.

Another common way to tell the relation between two random variables is by

computing the distance between their probability distributions. The Kolmogorov-

Smirnov (KS) distance is one of the candidate. The KS test first evaluates the

empirical cumulative distribution functions (cdf) FX (and same for FY resp.) for

the variable X (and Y resp.) from N samples x1, ..., xN . The evaluation of cdf at

CHAPTER 2. PRELIMINARIES 22

a point at is from

FX(at) = 1
N

N∑
i=1

χxi≤at (2.7)

The two cdf s are further compared in

DKS(X‖Y) = max
t
|FX(at)− FY (at)| (2.8)

Higher KS distance indicates a greater difference between the two distributions. We

will see many applications of the correlation coefficients and KS distance throughout

this dissertation.

2.3 Information Theoretic Basics

Information theory has been widely applied in many fields such as data processing

and communications. With respect to the side channel security, information theory

plays a big role in leakage resilience (c.f. Section 3.2) and leakage quantification

(c.f. Chapter 6). This section introduces the most basic concepts such as entropy,

mutual information and guesswork and we only consider discrete random variables

here. For more detailed context and proofs it is recommended to read early chapters

in [15].

2.3.1 Entropy and Conditional Entropy

The term entropy is a quantitative description of the uncertainty of a random vari-

able with respect to its underlying distribution. We follow its classical definition.

Definition 2.6. A discrete random variable X with its probability mass function

CHAPTER 2. PRELIMINARIES 23

(pmf) Pr(X) has entropy

H(X) = −
∑
x∈X

Pr(x) logPr(x) (2.9)

By convention, the log in Def. 2.6 is of base 2 and the resulting quantity is

measured as the number of bits. The remaining context also apply this convention.

The expression can also include the case where pmf of X vanishes. In particular,

if Pr(x) = 0 then Pr(x) logPr(x) := 0. From this definition, it is easy to see that

the entropy of a random variable has the range 0 ≤ H(X) ≤ log ‖X‖. The left

equality holds if and only if there exists x ∈ X such that Pr(X = x) = 1 and

Pr(X 6= x) = 0, namely, the pmf is trivial and there is no uncertainty about this

variable. The second equality holds if and only if Pr(X = x) = Pr(X = x′) for

all x, x′ ∈ X , i.e., the random variable X has uniform distribution over its space

and therefore has maximum uncertainty. The entropy is also a synonym of self-

information which will be explained later.

Considering the uncertainty of two or more variables, one can define their joint

entropy.

Definition 2.7. A sequence of discrete random variables X1, X2, ..., Xn has joint

distribution Pr(X1, X2, ..., Xn), their joint entropy is defined as

H(X1, X2, ..., Xn) = −
∑

(x1,...,xn)∈X1×...×Xn

Pr(x1, ..., xn) logPr(x1, ..., xn) (2.10)

Before discussing the properties of the joint entropy, we need a quantitative de-

scription of the remaining uncertainty of a random variable X2 given the knowledge

of another random variable X1. This is called the conditional entropy and is denoted

CHAPTER 2. PRELIMINARIES 24

as H(X2 | X1).

Definition 2.8. Two discrete random variables X1 and X2 have joint distribution

Pr(X1, X2), the conditional entropy of X2 given knowledge of X1 is defined as

H(Y | X) =
∑
x1∈X1

Pr(X1 = x1)H(X2 | X1 = x1) (2.11)

Without providing proofs, we summarize two important properties of conditional

entropy and joint entropy as follows.

1. The conditional entropy is no more than the entropy of the same variable,

namely, H(X2 | X1) ≤ H(X2) for any X1, X2. The equality holds if and only

if the two variables are independent.

2. The joint entropy can be expressed using the Chain Rule as the summation of

a sequence of entropy and conditional entropies. In formal,

H(X1, X2, ..., Xn) = H(X1) +H(X2 | X1) + ...+H(Xn | X1, ..., Xn−1) (2.12)

2.3.2 Mutual Information

Mutual information is used to quantify the information that one random variable

contains about another random variable. In other words, it describes the reduced

uncertainty of one random variable due to the knowledge of another.

Definition 2.9. Two random variablesX1 andX2 have joint distribution Pr(X1, X2),

CHAPTER 2. PRELIMINARIES 25

the mutual information is defined as

I(X1;X2) =
∑

(x1,x2)∈X1×X2

Pr(x1, x2) log Pr(x1, x2)
Pr(x1)Pr(x2) (2.13)

From this definition we should first see the symmetric property of mutual infor-

mation, i.e.

I(X1;X2) = I(X2;X1) (2.14)

With some mathematical derivation, we should also see the link in the tuple of

the entropy, conditional entropy and the mutual information.

I(X1;X2) = H(X1)−H(X1 | X2) (2.15)

I(X1;X2) = H(X1) +H(X2)−H(X1, X2) (2.16)

I(X1;X2) = H(X2)−H(X2 | X1) (2.17)

More specifically, the mutual information between two random variable is the en-

tropy loss of either one given the knowledge of the other. If we simply consider the

mutual information ofX to itself, equation (2.13) gives I(X;X) = H(X). Therefore,

the entropy of a random variable is sometimes referred to as the self information.

Last but not the least should we mention the quantitative impact on the entropies

and mutual information given that the two random variables are independent. Since

independence implies Pr(X, Y) = Pr(X)Pr(Y), it is easy to see that the conditional

entropy H(X | Y) = H(X) and I(X;Y) = 0. In other words, there is no entropy

reduction of one random variable due to the knowledge of any other random variable

that is independent from it. Equivalently, there is 0 mutual information between

CHAPTER 2. PRELIMINARIES 26

two independent random variables.

Chapter 3

Overview of Side Channel Analysis

This chapter presents an overview of the side channel security. We start from the

change of security model due to the discovery of side channel attack (SCA) in late

1990s. We revisited the evolution of SCA variants in the last two decades and

its common countermeasures. We end this chapter by summarizing several major

direction of the contemporary research in SCA.

3.1 Side Channel Attack

We have seen numerous security notions such as known / chosen plaintexts / cipher-

texts security, which are commonly used in cryptography textbooks e.g. [30, 49].

These security models view the crypto algorithms as black boxes where the knowl-

edge of the adversary is limited upto the input and/or the output of these black

boxes. For example, the security of an encryption scheme requires plaintext secu-

rity such that pure knowledge of the ciphertexts does not enable decrypting and

recovering the plaintext without the knowledge of the key. Another example is,

27

CHAPTER 3. OVERVIEW OF SIDE CHANNEL ANALYSIS 28

cryptographically secured hash function requires pre-image resistance 2nd pre-image

resistance. It implies that the a polynomial adversary who is given the hash check-

sum cannot find the exact input of the hash function or even another input that

results in the same hash output. This black box model was not challenged until

the discovery of side channel attack (SCAs) in [32]. The SCA shows the fact that

the execution of crypto primitives on physical devices unavoidably leaks sensitive

information from side channels such as EM, power consumption, timing channels.

Such information leakage can be detected and exploited by the adversary vanish the

security goal established in the main (input-output) channel. As a consequence, the

security community calls for a remodeling of security that considers also the threat

from side channel information leakage as shown in Figure 3.1(a) and 3.1(b). In this

revised model, the knowledge of an adversary is not limited to the algorithmic in-

puts and outputs, she can also observe signals from the side channels. It requires the

security goals that were previously defined in black box scenario also being achieved

even if the adversary obtains such additional information. By the channel where the

adversary gets further benefits from, the SCA can be categorized as Timing Attacks

(e.g. [32]), Power Analysis Attack (e.g. [31]), EM Attacks [1] or even multi-channel

attacks [2]. In this work, we consider mostly the power analysis attacks. We first

present the adversarial model as follows.

3.1.1 Adversarial Model

The SCA is viewed as the most powerful attack that can be mounted by an adver-

sary. This is because the adversary is assumed to have physical access to the physical

device where the crypto algorithm is implemented and executed. She is sometimes

CHAPTER 3. OVERVIEW OF SIDE CHANNEL ANALYSIS 29

(a) Security Model without the SCA (b) Security Model with the SCA

Figure 3.1: In a black box model (a), only the algorithmic input and output are
exposed to adversaries. In the model with SCA consideration (b), the side channel
information, i.e. the observed leakage provides adversaries extra knowledge about
the internal system states. The protection from the underlying crypto core risks
being compromised.

even assumed to be able to choose the algorithmic inputs and outputs. In the

presence of such powerful adversarial knowledge model, the goal of SCA is unique:

secret key recovery. For power based SCA, the setup in a research lab is shown in

Figure 3.2(a). The target implementation of crypto algorithm in software/hardware

is connected to a SCA workstation that controls the algorithmic inputs and outputs.

The crypto device is also connected to a sampling equipment such as a digital oscil-

loscope, which monitors the side channel, i.e.here the power consumption changes,

and returns the saved side channel measurement (also referred to as power traces)

to the workstation for further analysis as shown in Figure 3.2(b). More detailed

experiment setup can be found in [23].

For example, if the crypto primitive is an encryption scheme Encsk(·), the main

channel returns W = Encsk(X) based on the plaintext input X and the side channel

returns L = φ(fsk(X)). Here f , called a target function, represents a part of the

crypto algorithm Encsk(·) that generate sensitive internal system state Y = fsk (X).

As SCA usually proceed in a divide-and-conquer manner, the target function is

CHAPTER 3. OVERVIEW OF SIDE CHANNEL ANALYSIS 30

(a) Power based SCA Setup

2800 2900 3000 3100 3200 3300

20

40

60

80

100

120

140

160

180

200

Time

P
ow

er

(b) Observation from the Power Channel

Figure 3.2: To setup a typical power based SCA (a), one connects the crypto device,
an oscilloscope and a laptop together. An adversary/ lab tester queries the crypto
core from the laptop. The oscilloscope records the signal of power consumption on
the crypto device and returns the captured power traces (b) back to the laptop for
further analysis.

usually related with only partial key k from the whole key sk and can therefore also

be denoted as fk(X). The other function φ(·) represents the actual power model

that characterizes the power consumption caused by the sensitive internal state

Y . Unless specified in simulations, the true power model is assumed unknown to

adversaries or evaluators in security labs. Nevertheless, one can estimate a degraded

power model φ̃(·) as an approximation to the actual underlying power function φ(·).

The estimation may come either from the knowledge of the implementation or a

profiling stage (c.f. 3.1.5).

The side channel observation can be viewed as a time series, namely, L =

[L1,L2, ...,LN] with N time samples. If the adversary is allowed to makes a max-

imum of q queries (also referred as q-limited adversary) to the target device with

inputs Xq = [X1, ..., Xq], and she observes the respective power leakage time series

CHAPTER 3. OVERVIEW OF SIDE CHANNEL ANALYSIS 31

Lq = [Lq
1,L

q
2, ...,L

q
N] which is further expressed as

Lq =



L1,1 L1,2 ... L1,N

L2,1 L2,2 ... L2,N

...

Lq,1 Lq,2 ... Lq,N


(3.1)

with the first sub-script indicating the query-index and the second for the time

index.

To sum up, the knowledge of a q-limited adversary include the algorithmic inputs

Xq, the power observations Lq as well as an estimated or pre-assumed power model

φ̃(·).

3.1.2 Simple Power Analysis

Simple Power Analysis (SPA) is the earliest SCA proposed by Kocher et al. in [32].

It often just makes use of only one power trace. In other words, the extra knowledge

obtained by the adversary is L1 = [L1,1, L1,2, ..., L1,N]. By comparing the relative

height of the consumed power or the relative time length of the operation, it attempts

to assign a one-to-one correspondence between the leakage measurement and the

internal sensitive value and thereby recovers the key. For example, if RSA uses

the square-and-multiply algorithm for modulo exponentiation, the adversary might

try to identify if both the squaring and the multiplication occur (corresponding to

an 1 on the exponent) or if only a squaring occurs (corresponding to an 0 on the

exponent). If all bits of the exponent are recovered in an decryption oracle, the

decrypting key is revealed. In general, SPA often requires detailed knowledge about

CHAPTER 3. OVERVIEW OF SIDE CHANNEL ANALYSIS 32

the implementation of the crypto primitive and it often requires very clear signal

or high signal-to-noise ratio (SNR) in practice. Although SPA as an attack can be

prevented by decreasing SNR, it can still be very helpful in terms of providing an

education on distinguishing the part of crypto algorithm from the measurements.

3.1.3 Differential Power Analysis

The original Differential Power Analysis (DPA) has significantly impacted later re-

searches in physical security. It was proposed by Kocher et al. in [31]. Unlike SPA,

it does not require the detailed knowledge of the device under attack. As a trade-off

it reveals the secret key by using a relatively large volume of measurements. From

the data analytic point of view, the DPA is performed across different measurements

at fixed time sample each iteration. This is fundamentally different from the SPA,

which is only performed over the time-axis. The DPA generally follows a four-step

procedure.

1. Choose a target internal state Y = fk(X) and a power model φ̃(Y).

2. Take side channel measurement and obtain knowledge Xq,Lq.

3. Make subkey hypothesis g and evaluate the hypothetical power values Hq =

φ̃(fg(Xq)) in the power model.

4. Compare the observed power traces Lq with the hypothetical values Hq and

try to distinguisher the correct subkey from all hypotheses.

In particular, the original DPA uses one bit power model such as taking φ̃(Y) as

the least/most significant bit of the value Y . From this power model it obtains

CHAPTER 3. OVERVIEW OF SIDE CHANNEL ANALYSIS 33

two populations of the hypothetical power values, namely 0 and 1. The DPA dis-

tinguishes the correct key by looking at the difference between the mean values of

side channel observations in the population ‘Zero’ and that in the population ‘One’.

The argument is that on one side the correct key guess predicts the internal leaky

state Y correctly for every input X and hence the adversary obtains the single bit

correctly every time. While on the other side, a wrong key hypothesis predicts the

state Y wrongly which further results in a wrong partition of the Zero population

and the One population.

3.1.4 Correlation Power Analysis

Correlation Power Analysis (CPA) is originally presented in the work [10] as a

variant of DPA. The used power model is usually taking as Hamming weight HW

or Hamming distance HD depending on details of the implementation. As always,

the Hamming weight of a value Y is the summation of its binary representation.

And the Hamming distance of two values Y1, Y2 is the Hamming weight of their xor

HD(Y1, Y2) = HW(Y1 ⊕ Y2). This assumption views that each bit of the sensitive

value contributes independently and equally to the total power consumption. As a

consequence, each subkey hypothesis yields n+1 partitions of the entire population,

namely the populations that correspond to power model value being 0, 1,..., n where

n is the bit size of internal state, e.g. 8 for a byte. In the distinguishing step, the

Pearson correlation coefficient (c.f. Section 2.2) is used to compare the observation

with hypothetical power values. The validity argument of CPA is similar to that for

the DPA in that only the correct hypothesis results in n+ 1 correct partitions that

further yields a significant correlation value.

CHAPTER 3. OVERVIEW OF SIDE CHANNEL ANALYSIS 34

3.1.5 Template Attack

Template attack (TA) proposed in [11] belongs to the profiling SCA that differs

dramatically from the previous SCAs. It does not assume a power model φ̃(·) prior

to obtaining side channel measurement. Instead, it allows a profiling stage where

the adversary is assumed to know the key and is given full control of the device.

During this stage she makes as many measurements as she can which enables an

estimation of the underlying power model φ̃(·). Following the profiling stage is the

attacking stage, where all privileges are deprived and the adversary is only given

knowledge Xq,Lq.

In the original proposal, the estimated power model (also called the template)

considers the leakage samples follow a Gaussian distribution where the two pa-

rameters are fully determined by the sensitive internal state Y . Depending on the

dimensionality of the leakage (e.g. number of time points it contains) being con-

sidered, the Gaussian distribution can be either univariate or multivariate and is in

general denoted as L ∼ N (~µy,Σy). Or equivalently,

P (L) =
exp

(
−1

2 (L− ~µy)T Σ−1
y (L− ~µy)

)
√

(2π)d det (Σy)

where ~µy refers to the mean leakage vector given that the internal state being y

and the Σy is the covariance matrix for profiled leakage vectors in this population.

The exponent d indicates the time dimensionality of the leakage. In a simplified

case, each template only contains the mean leakage vector and is therefore referred

as the reduced template. In other words, each time sample of the leakage vector is

considered as independent from other time points and the variances do not vary for

CHAPTER 3. OVERVIEW OF SIDE CHANNEL ANALYSIS 35

different values y or different time point. The resulting formulation becomes

P (L) =
exp

(
−1

2 (L− ~µy)T (L− ~µy)
)

√
(2π)d

In the attacking stage, each newly observed leakage sample is substituted into

templates N (~µy,Σy) for all possible y. The evaluation of probability prioritizes

different subkey guesses. The template with highest probability density evaluation

is matched to this leakage sample and the respective subkey guess is determined as

the key. Furthermore, the reduced template matching is in fact equivalent to finding

the shortest Euclidean distance ‖ L − ~µy ‖ between the observed leakage vector L

and the template mean vector ~µy.

3.1.6 Mutual Information Analysis

The Mutual Information Analysis / Attack (MIA) proposed in [26] is motivated

from the pursuit of a generic SCA that does not rely on profiling leakage models

such as in Template approach 3.1.5 and stochastic modeling approach [63]. It follows

the information theoretic intuition. It computes the mutual information (c.f. 2.3)

I(L; φ̃(Y)) between the physically observed L and the leakage model φ̃(Y). Here

the leakage model is not necessarily the one that approximate the unknown leakage

function. The functionality is more to provide a partition on the queries.

The initial purpose of MIA is to build a generic distinguisher and hence it in-

volves the procedures of the key hypothesis discrimination. The procedure is, for

each subkey hypothesis g, the mutual information I(L; φ̃(fg(X))) is computed. The

subkey guess that gives the highest empirical mutual information is selected as the

CHAPTER 3. OVERVIEW OF SIDE CHANNEL ANALYSIS 36

correct key. It is important that the used leakage model cannot be the identity

model given an injective target function f(). That is to say, the most generic situ-

ation – the term φ̃(Y) is the same as Y – cannot be applied. The reason is a one

to one correspondence will just permute the summand within the computation of

the mutual information. For example, AES Sbox is a very popular target function.

It is however a one-to-one mapping from the knowntext byte to the output Sbox

byte. If an identity model is used for computing MIA, constant mutual information

will be returned regardless of the hypothesis g and diminish the distinguishability

of subkey hypothesis testing. Practically, a less-than fully generic model, namely

the 7 LSB model is normally used.

MIA has another popular use case: it serves as a metric for quantifying the leak-

age. The purpose has changed from revealing the key to evaluating implementation.

In other words, the central interest has changed from comparing MI from different

subkey hypothesis at the leaking time point to comparing MI computed from the

same true key but over different time points. A roughly constant behavior of the

computed mutual information over all time points indicates the remaining leakage

is hard to detect or exploit. Since subkey hypothesis distinguishing is not required

for the quantification, it is safe to choose the leakage model as the identity model.

Many other works studied MIA from various perspectives. The work [74] dis-

cusses the usability, pros and cons for using MIA compared with traditional SCAs.

Authors in [55] provided a theoretical analysis of this information theoretical tool.

It is also integrated in leakage detection testing methods as shown in [13, 12].

CHAPTER 3. OVERVIEW OF SIDE CHANNEL ANALYSIS 37

3.2 Side Channel Countermeasures

Different countermeasures have been proposed and developed to counteract the

threat from side channel attacks during the last 15 years. This section lists three

main categories. One starts from an implementation level and aims at hiding the

leakage by making the side channel observable independent from the processed data.

Another features secret sharing nature and masks the sensitive values with random

values locally in the device. The other one discusses how to achieve the side channel

leakage resiliency from a protocol level.

3.2.1 Hiding

Hiding is a categorical name of side channel countermeasures that pursues an inde-

pendent leakage observation from processing different internal states. It is mainly

achieved by either increasing the noise or decreasing the signal, i.e. reducing the

signal-to-noise ratio (SNR). The purpose is to reduce the information retrievability

from the adversary.

With respect to the power based SCA, common hiding practices should hide

leakages both in the time dimension and in the amplitude dimension. Popular ap-

proaches for hiding leakage in the time dimension include randomly inserting dummy

instructions or operations, randomizing order of execution, random delaying, and

etc. They increases the difficulty for power trace alignment as the hiding technique

makes a particular internal state being processed at different time samples in differ-

ent queries. On the other side, hiding leakage from the amplitude dimension can be

achieved through making constant power consumption such as dual-rail precharge

logic.

CHAPTER 3. OVERVIEW OF SIDE CHANNEL ANALYSIS 38

One should see that the hiding countermeasure does not completely eliminate

the threat from side channel. Instead, it increases the difficulty of mounting such

attacks.

3.2.2 Masking

Masking schemes (c.f. [14, 29, 24]) were introduced as a generic countermeasure

to prevent first order SCA. A d-th order masking scheme protects every internal

algorithmic state Y with d randomly generated mask values M1,M2, ...,Md from

the mask groupM. More specifically, the sensitive algorithmic internal values were

processed indirectly in a masked representation

YM = Y ∗M1 ∗M2 ∗ ... ∗Md (3.2)

in the embedded computing environment where ∗ refers as the group operation such

as ⊕ in the Boolean masking scheme [14], × in multiplicative masking scheme [29].

Since the device can only manipulate the masked representations, the execution does

not directly leak information about the sensitive algorithmic internal value Y .

From a secret sharing perspective, the secrets hidden in sensitive algorithmic

internal values Y are split into d + 1 shares, namely, M1,M2, ...,Md and YM . This

corresponds to, with our notations introduced earlier in this chapter, d + 1 time

samples Lt0 , ..., Ltd where Lt0 refers the time sample when the masked output YM

is processed and the remaining Ltis refer the time point when the mask Mis are

processed. In particular, a software implementation of d-th order masking scheme

creates d+1 distinct time points to eliminate univariate SCA. While for a hardware

implementation, although the time shares are ”compressed” into one clock cycle,

CHAPTER 3. OVERVIEW OF SIDE CHANNEL ANALYSIS 39

the behavior of the leakage is changed dramatically to prevent being explored by

first-order SCAs. Nevertheless, a common nature they share is that a perfect secret

sharing scheme ensures the secret being independent from any d shares from the d+1

tuple. That is to say, even if an adversary can obtain non-decaying information of

any d shares from the side channel measurement, she still gains zero information

about the algorithmic sensitive states Y and hence the secret key k.

The attacks that overcome the masking countermeasure are called higher order

SCA indicating they either explore leakage in a multivariate (higher time order)

manner or in the nature of higher order statistical moments. Such attacks are much

more complicated than the classical attacks described in this chapter. We will have

a detailed discussion in Chapter 4.

Implementing masking scheme in practice is fairly costly because it produces

significant overhead of computation. A practical simplification is the low entropy

masking schemes. It uses only a few carefully chosen mask values with the purpose

of preventing attacks such as DPA and CPA. However, the reduced cardinality of

masks does not satisfy the requirement of a perfect secret sharing any more. This

leaves the possibility of even univariate attacks. We will address this issue later in

Section 5.3.

3.2.3 Leakage Resilience

The discovery of SCA has called for redefining the security model. The milestone

work is the physically observable cryptography from Micali et al. in [42]. It redefines

the security goal and the targeting strongest adversary. It proposes five axioms in the

settings where the ones that have deepest influences are ”only computation leaks”

CHAPTER 3. OVERVIEW OF SIDE CHANNEL ANALYSIS 40

and ”leakage is local”. The work inspires the establishment of the research area

of leakage resilient cryptography. Proposals includes leakage resilient signatures,

leakage resilient pseudo random number generation, leakage resilient symmetric

encryption, leakage resilient mode of operation and etc. Important theoretical works

include [21, 67, 22, 3, 50]. They admit the information leakage and they attempt to

incorporate physical threat into the traditional black-box security model and seek

formal security proof. Triggered by the need of the proofs, they make assumptions

such as bounded leakage, bounded retrieval, non-adaptive chosen leakage function

etc.

Leakage resilient designs of a key-ed cryptography primitive share a common

feature of key updating. The idea is simple: since leakage occurs locally and is

bounded, one should frequently updating the key to prevent the information leakage

cumulates and the key entropy drops too much. As a result, leakage resilient designs

should be viewed as a high level or protocol level countermeasure of SCA, which

is not an alternative solution for the countermeasures such as hiding and masking.

In fact the countermeasures in implementation level and secret sharing perspective

affects the ability of retrieval of local leakage.

Although most works focus on the information theoretical proof, the validity of

the leakage resiliency stands on a precise estimation of retrievable leakage bound.

Therefore there are two central questions for practitioners: given a q-limited ad-

versary, how to estimate the leaked information and how does such leakage impact

quantitatively adversary’s ability in guessing the key. We will address these ques-

tions in Chapter 6.

Chapter 4

Leakage Detection

Side channel leakage detection refers to the process of locating possible time points

from side channel observation which offers adversary some advantages in distinguish-

ing secret key. It is a topic that is interested to both adversaries and security labs.

For the former, the process is itself part of the key recovery attack. For security

labs, the detection is to provide a yes or no answer to determine whether the target

implementation or device is leaking information and at what confidence level. In

this case, the tester can even complete the detection task with the knowledge of the

key.

In this chapter we first present two challenges for side channel leakage detection.

One regards generic leakage models and the other is about the computational com-

plexity especially for the multivariate leakage scenario. Their possible solutions are

discussed later in this chapter.

41

CHAPTER 4. LEAKAGE DETECTION 42

4.1 Current Challenges

For side channel adversaries, detecting leakage is a prerequisite for mounting a

successful SCA. Classical attacks introduced in Section 3.1 integrate the leakage

detection as part of the leakage exploitation or the attack. Some other proposed

attacks [7, 60] run the leakage detection prior to distinguishing the secret keys.

From the adversarial model in Section 3.1.1, one can see that the observed leakage

Lj depends on the leakage function φ(·). A first challenge is, if without any knowl-

edge of the leakage model, can an adversary still detect the leakage successfully?

We should see that, if in different queries the same internal states are processed by

the same instruction, homogeneous leakage observations should be expected. That

is to say, leakages that correspond to processing the same values can be viewed as

being sampled from the same distribution. It is independent from the knowledge

about the function φ(·) or its approximation. In fact, it is essential for making a

successful SCA without relying on the leakage model. More details are presented in

Section 4.2.

A second challenge regards the computational complexity of detecting leakage.

Classical SCAs and testing methods complete the detection in a point-wise manner.

For example, given some side channel time series Lq in equation (3.1) that contains

N time samples, the complexity for detecting leakages or mounting SCA is at the

level of O(N). Remember, this is only for the detection of univariate leakage for

unprotected implementation. In fact, multivariate leakage detection is a much more

complicated task. For example, given a software implementation is protected by a

1st order masking scheme, the leakage is bivariate, i.e. it consists of two time sam-

ples. Locating the two samples correctly at the same time requires checking all the

CHAPTER 4. LEAKAGE DETECTION 43

(
N
2

)
= 1

2(N2−N) combinations of time samples. In other words, the computational

complexity is O(N2). In general, the complexity of detecting multivariate leakage is

of combinatoric nature. That is, a d-th order masking scheme in a software imple-

mentation produces d + 1 variate leakage. Trying all the d + 1 combinations from

a total of N time samples results in the detection complexity
(
N
d+1

)
= N !

(d+1)!(N−d−1)!

and hence O(Nd+1) since N >> d. We will later discuss a more efficient leakage

detection procedure in Section 4.3 to resolve this problem.

4.2 Wide Collision Detection

Collision attack such as [64, 5] is a different SCA from the classical attacks introduced

in Section 3.1. It does not include a subkey hypothesis testing phase. Instead, it tries

to use the side channel information together with the ciphers’ algebraic property to

eliminate impossible key candidates until the correct one is found. The side channel

information is used to detect the event of a collision from different queries. Successful

collision detection provides a set of correct algebraic relations that further eliminates

wrong key candidates.However, errors in collision detection are detrimental. False

detection almost surely yields the correct key being eliminated.

The false positive issue motivates the proposal of wide collision attack that pro-

vides reliable collision detection. In this section we first review the two concepts of

collision attack and wide collision attack. We focus on the topic of the wide collision

detection and propose methods that offer high detection rate.

CHAPTER 4. LEAKAGE DETECTION 44

4.2.1 Collision Attack

We have seen in the adversarial model in Section 3.1.1, the target function can

be chosen at adversary’s will. In general, we say an internal collision in some

cryptographic primitive occurs if the target function fk(·) produces the same output

value y for two different inputs x1, x2, i.e.,

fk (x1) = y = fk (x2) (4.1)

For example, any non-injective mapping such as the DES Sboxes will cause internal

collisions. Internal collisions in AES were defined by [64] and generalized by [5].

Collisions occur at the output of the MixColumns transformation in each round

function of AES. This is because the AddRoundKey, SubBytes are one-to-one

mappings hence cannot produce collisions at the same position. ShiftRows only

affects the order of bytes but does not alter state values. As we have seen in

Section 2.1.3 the MixColumns is a word-oriented operation, mapping from F32
2

to itself. The formulation of equation (2.2) further reveals each output byte of the

column is a function of all the four input bytes. This results in a non-injective

mapping and hence produces collisions. For example, given two plaintexts Xa =(
xaij
)

and Xb =
(
xbij
)

with i, j ∈ {0, 1, 2, 3} in query a and query b, an internal

collision at byte 0 (or the position (0, 0) in matrix representation) after round 1

MixColumns can represented by

02 · ya00 ⊕ 03 · ya10 ⊕ 01 · ya20 ⊕ 01 · ya30 = 02 · yb00 ⊕ 03 · yb10 ⊕ 01 · yb20 ⊕ 01 · yb30 (4.2)

CHAPTER 4. LEAKAGE DETECTION 45

where Y a = (yaij) and Y b = (ybij) refer to the internal states before the MixColumns

operation for the two queries 1. Since each yai0 = S (kii ⊕ xaii) and ybi0 = S
(
kii ⊕ xbii

)
,

the equation (4.2) can be viewed as a function

F (k00, ..., k33) = 0 (4.3)

that is algebraically related to the four bytes of key at the diagonal positions (i, i).

The plaintext knowledge xa00, ..., x
a
33, x

b
00, ..., x

b
33 are the parameters for the func-

tion (4.3). It is clear that four independent collisions determine a unique solution

this function, namely the four-byte key. Hence 16 correct collision detections suf-

fice the full key recovery. That is to say, applying collision attack is equivalent to

the problem solving of a set of linear equations. However, this is in the ideal case

assuming that the side channel leakage reveals non-degraded information about the

internal state. In other words, it only happens in the case of error free collision

detection –that the decision is always correct regarding the equality of the values

on two sides of equation (4.2). In fact, the side channel leakage in the real world

practices is usually more sophisticated than the ideal case. One can only learn de-

graded information about the internal state. As a consequence, it risks in making

the set of linear equations being ”corrupted” and hence eliminating the correct key

from the key space.

4.2.2 Wide Collisions

Pursuing higher collision detection success rate is the proposal of wide collision

attack. It is firstly defined in [7] as an chosen plaintexts SCA. More specifically,
1Each side of equation (4.2) is the finite field multiplication explained in Section 2.1.3.

CHAPTER 4. LEAKAGE DETECTION 46

plaintexts in all queries are chosen to satisfy the condition that the off-diagonal

bytes are pairwisely equal i.e. xaij = xbij for all i 6= j. The basic idea is that if

an internal collision occurs for after first round MixColumns, more collision will

be generated in the second and third rounds. Consequently, this gives rise to one

byte collision in Round 2 SubBytes and four additional byte collisions in Round 3

SubBytes, resulting in a total of five byte collisions. This phenomenon is referred

to as wide collision.

For example, if two queries a and b collide at byte 0 after Round 1 MixColumns

za00 = zb00 (equivalently represented as in equation (4.2)), the two states will continue

to be the same after Round 2 SubBytes:

S (k′00 ⊕ z′a00) = S
(
k′00 ⊕ z′b00

)

due to one-to-one correspondence, where k′ refers the first round key. After ShiftRows,

all the four byte states in Column 0 are pairwisely equal and hence yield four addi-

tional internal collisions after Round 2 MixColumns z′′ai0 = z′′bi0 for all i ∈ {0, 1, 2, 3}.

The states will remain pairwisely identical after Round 3 SubBytes

S (k′′i0 ⊕ z′′ai0) = S
(
k′′i0 ⊕ z′′bi0

)
.

To sum up, the chosen plaintexts enable expanding one internal collision (if any)

after first round MixColumns to

• one byte collision after second round SubBytes;

• one column collision after second round MixColumns;

CHAPTER 4. LEAKAGE DETECTION 47

• four byte collisions after third round SubBytes.

Procedures: The wide collision attack is described as a three stage algorithm

in [7]: an online stage where side channel leakage is measured for the chosen plain-

texts, a collision detection stage which returns several pairs of plaintexts which

most likely give wide collisions, and finally a key recovery stage. It has the same

key recovery complexity as in earlier collision attacks: every 4 correctly detected

wide collisions reveal four key bytes and a total of 16 wide collisions allows full key

recovery.

In the most important collision detection phase, the collected measurements are

partitioned into different bins, which are formed in the way that certain bytes of

the intermediate state of the cipher collide to the same value. The partition follows

the basic idea that when the same value is processed by certain operations (e.g.

MixColumns, SubBytes in AES) of the cryptographic primitive, the pattern of

the power consumption of these operations should be highly similar. Consequently,

all possible 256 values of a given byte give rise to 256 bins, hence 256 different

patterns for each colliding byte position. In a wide collision scenario, traces of

each bin provide at least 5 internal byte collisions, spanning from MixColumns in

round one up to SubBytes in round three of an AES execution. As a result, the

side channel leakage for the two queries is homogeneous over this wide span in the

time domain. Hence, detecting wide collisions should be much easier than detecting

simple collisions.

Conventionally, leaking points or critical time points refer to a subset of sam-

ples in the side channel measurement (or its transformation), which represents the

features of its pattern. Locating these points usually requires knowledge of the im-

CHAPTER 4. LEAKAGE DETECTION 48

2000 4000 6000 8000 10000 12000 14000
0

100

200

300
Partial Trace: from Round 1 MixColumns to Round 3 SubBytes

2000 4000 6000 8000 10000 12000 14000
0

10

20

30
|Avg(Bin 7) − Avg(all traces)|

Figure 4.1: The pattern of a single power trace (upper) indicates possible crypto-
graphic operations that are executed at different time. The peaks of the differential
trace (lower) reveal the possible location where strong data dependency can be ex-
ploitable. X-axis represents time samples; Y-axis is the digital representation of
single or differential power signal.

plementation and leakage properties of the platform or profiling. As an example,

the two plots in Figure 4.2.2 show a single trace (the upper plot) over the region

from round one MixColumns to round three SubBytes and a differential trace

(the lower plot) calculated as the absolute value of difference between an average of

traces of bin 7 and the average of all traces obtained. It can be seen from this figure

that peaks, which indicate the location of promising leaking points, are spread out

all over this region.

CHAPTER 4. LEAKAGE DETECTION 49

Another observation of leakages in the wide collision attack is that the positions

of peaks are not invariant with respect to all wide collision bins. Some bins share

one or more positions of leakages, while no pair of two different bins follows an

identical pattern. Figure 4.2 gives an intuitive idea of the distribution of leakages

for some bins.

5000 10000 15000
0

10

20

30
| Avg(Bin 39) − Avg(all traces)|

5000 10000 15000
0

10

20

30
| Avg(Bin 40) − Avg(all traces)|

5000 10000 15000
0

5

10

15

20
| Avg(Bin 41) − Avg(all traces)|

5000 10000 15000
0

10

20

30
| Avg(Bin 42) − Avg(all traces)|

Figure 4.2: The leakages for different bin numbers (or internal values) occur at
different time points. This observation makes it possible to distinguish different bin
numbers using the power signal at these critical time points.

Hence, picking only a single point from all important points for the purpose

of collision detection is rather risky because only few bins leak at this point. In

other words, if the closeness of two traces at one fixed point is the only criterion for

CHAPTER 4. LEAKAGE DETECTION 50

wide collision detection, the detection can only succeed in rare cases because power

traces of other bins that do not leak locally at this point are dominantly influenced

by noise. Such traces make it difficult for a correct collision detection, since, while

randomly scattered, they are far more numerous than colliding traces.

We distinguish two different kinds of multiple-point-based approaches: One

builds on a template-based detection, the other does not require templates. When

generating templates is not possible, we propose an outlier method which assumes

that a pair of traces forms a collision in the case they are close to each other and

simultaneously far away from the average of all traces. As a comparison, we show

that wide collisions can easily be detected using templates. The challenge in this

case is to discover the characteristics of each pattern and to correctly recognize each

individual power trace from all the patterns with high probability.

Furthermore, we introduce the concepts of Inner-Bin-Variation and Inter-Bins-

Variation as two parameters determining the effect of collision detection. We propose

methods with the application of Principal Component Analysis (PCA) and iterative

PCA so that the idea of maximizing Inter-Bins-Variation is realized.

4.2.3 Outlier Method

Generally, the outlier method assumes that two traces in the outlier region – with

distance sufficiently far away from the average of all traces – are more likely to form

a collision pair if additionally they are sufficiently close to each other. It includes

one distance function dist (La,Lb) that gives a distance metric between two trace

representatives La and Lb. It also includes two distance parameters R and r, where

R is the outlier lower bound ratio determining if one trace is inside the outlier region,

CHAPTER 4. LEAKAGE DETECTION 51

and r is the mutual distance upper bound ratio determining if two traces are close

by enough. Both R and r should be a number between 0 and 1. The procedure of

the outlier method as follows:

Step 1: Compute the average L̄ of the q trace representations collected in the online

stage using L̄ =
∑

i
Li

q
where Li represents the side channel observation in i-th

query at this point.

Step 2: Compute the distances vector d = (d1, ..., dq) where each entry di =

dist
(
L̄,Li

)
is the distance between the trace representation Li and the average

L̄ computed in Step 1.

Step 3: Find the set OR of outliers by

OR := {Li | di ≥ R ·max (d)}

It is a collection of trace representations with distance of no less than R ·

max (d) from the average trace x̄. Figure 4.3 gives an example of the location

of the outlier region.

Step 4: Find the list of pairwise distance

Od :=
{
d(i,j) = dist (Li,Lj) |Li,Lj ∈ OA, i 6= j

}

Note that if there are n outliers in set OR, then the set Od contains distances

of n(n−1)
2 pairs of traces.

CHAPTER 4. LEAKAGE DETECTION 52

Step 5: Find the set OC by

Or =
{

(Li,Lj) | di,j ≤ r ·max (d) , d(i,j) ∈ Od

}

This is a filtration from the set OR of those pairs with mutual distance greater

than r · max (d). The set OC is the output of the outlier method containing

pairs of traces that are promising candidates for collisions.

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

distance to the average trace

fr
eq

ue
nc

y

outlier
region

R = 0.8 maxd

Figure 4.3: Each power trace over the critical time points is treated as elements
in a finite dimensional vector space. With a distance metric such as the Euclidean
distance, the radius or the maximum possible distance max(d) is computed. Given
an outlier lower bound ratio R, an element at a distance more than R · max(d) is
called an outlier.

CHAPTER 4. LEAKAGE DETECTION 53

Please note that in general the distance function dist (·) is a combination of all

components. In practice, one could use the Euclidean distance for the dist function,

viewing the trace representatives as elements in a finite dimensional vector space and

assuming that components are independent from one another and each component

contributes equally to the resulting distance.

Pros and Cons

The existence of leaking points is a necessary prerequisite for the wide collision de-

tection. The points depend on the target device and implementation and should be

chosen wisely by the attacker. Usually, either prior knowledge about the implemen-

tation or a profiling phase is needed. For detecting significant leakage points, SPA

or DPA methods can be applied.

Choice of the parameters R and r is subjective. In practice, decreasing R while

increasing r will eventually result in more non-colliding pairs that are detected as

collisions. On the other side, decreasing r and increasingR will eventually increase to

the set of detected collisions that does not contain enough pairs for key recovery. The

Euclidean distance is a convenient metric, since it is a straightforward combination

of the influence of each leaking point. However, it is often weaker than a template

attack on the same points. Using Euclidean distance makes two additional non-

justified assumptions: that the points leak independently of one another and that

they contribute equally to the output distance. For improved detection results, it

can be replaced by some function g (·) such that the influence of different points can

be more accurately reflected.

CHAPTER 4. LEAKAGE DETECTION 54

4.2.4 Template Based Collision Detection

Inter-Bins Variation and Inner-Bin Variation

One way of selecting significant leakage points for collision detection is described

in [8] and [9]. Both publications describe the maxmin function for selecting the

most informative point of power traces and computing characteristics from traces

at this point. Specific speaking, they first find for each fixed time point the lowest

signal difference between all pairs of traces. They then find the time point that

gives rise to the biggest one among all the lowest signal differences and consider

that point to be the best choice. The logic of this method is that the lowest signal

difference determines the level of difficulty of trace separation at each time point.

The larger such lowest signal difference, the easier the separation of traces. However,

this method makes use of a single point of the power trace, while ignoring all other

remaining points. It yields for the attack a strong reliance on the single point that

has been selected, which still suffers the risk of being influenced by the signal noise

for each individual collision detection.

In contrast to single point selection, we propose an improved method. First, one

should only include the leaking part of the power traces, i.e. the targeted round. For

example, in wide collision attack, we only analyze the region starting from round 1

MixColumns to round 3 SubBytes. In this situation, two parameters – inter-bins

variation (ITV) and inner-bin variation (INV) – determine the ease and probability

of correct collision detection.

ITV describes the variation of the characteristics of the averaged traces mi of

CHAPTER 4. LEAKAGE DETECTION 55

each bin value. It is computed as a Euclidean distance as

ITV =
√∑

i

(mi − m̄)2

where m̄ = ∑mi/256 is the mean trace of all the bin average traces. An increased

ITV indicates an easier separation of the bins and more accurate pattern matching

of each individual trace. Notice that the computation of ITV can also be applied

to any representation of the traces. We refer the notion of maximizing ITV as

computing the maximal ITV amongst all representations of the traces. Maximizing

the ITV is therefore desired for the successful collision detection.

INV describes the variation of the characteristics of each individual trace x(i)
j

from that of the averaged trace mi = avgj
(
x(i)
j

)
of a particular bin Bi. That is

INV (i) =
√√√√∑

j

(
x(i)
j −mi

)2

INV can similarly be applied to any representation of the traces and we refer min-

imizing INV as computing the minimal of INV amongst all representations of the

traces. Note that INV is a tuple of 256 entries, corresponding to the inner-bin vari-

ation of 256 bins, and minimizing one entry does not imply small values for the rest

of entries. Hence, although minimizing INV is desired, it might not be practically

feasible.

One should note that the existence of the bin average traces does not necessar-

ily guarantee the feasibility of its computation. In fact, only if one can build up

templates for the 256 bins, one can also obtain a raw representation of the average

traces of bins. Since each representation gives a computational result for the ITV,

CHAPTER 4. LEAKAGE DETECTION 56

the adversary would profit from a representation that maximizes the ITV.

In our experience, we realize the magnification of ITV through finding the repre-

sentation of the average traces in the principal subspace, which are detailed in 4.2.4

and 4.2.4.

Templating using Principal Component Analysis

In cases where creating templates is possible, the attacker can build a template

for each bin of collision in the time domain, as detailed in [38] and described in

Section 2.3. Point selection can be automated by using principal component analysis

(PCA) [4]. Template-based collision detection can achieve good detection rates, as

shown in Section 4.2. PCA is a three step algorithm:

1. Finding the mean vector L̄ and the centered data matrix L′ =
(
L′1, ...,L′q

)T
of

all the raw data record L = (L1, ...,Lq)T , where L′i = Li − L̄;

2. Computing the covariance matrix S = 1
q
(L′)T (L′) and its d eigenvectors

(v1, ...,vd) corresponding to the largest d eigenvalues (λ1, ..., λd) of S;

3. Projecting L into the subspace spanned by the d eigenvectors (also called

components) L · (v1, ...,vd).

PCA performs an orthogonal projection into a subspace called principal subspace.

The projection maximizes the variance of the data. Hence, a point selection with

minimal information loss becomes possible.

Constructing templates in principal subspace is only one additional step to the

build-up of the templates in the time domain. That is, the raw traces need to

be projected into the principal subspace before the construction of templates. For

CHAPTER 4. LEAKAGE DETECTION 57

this step, the principal components could be obtained in two ways: from all the raw

traces L, or from the bin average matrix M = (m0, ...,m255)T, consisting bin average

traces mi of bin Bi where mi = avg {Lj | Lj ∈ Bi}. The consequence of applying

PCA for the first choice is the maximization of the variance amongst individual

traces and for the second approach amongst bin average traces. It is clear that the

second method —computing principal components from bin averages— is desired

because it achieves the goal of maximizing the ITV. After getting the projected

traces in the principal subspace, the regular template building — the computation

of bin averages and bin covariance — is performed as discussed in Section 2.3.

Finally, in the template matching phase, each analyzed trace is firstly projected

onto principal components, then matched to the closest template through the eval-

uation of the probability densities. Every two different analyzed traces that are

matched to the same template form a collision pair.

Collision Detection using Iterative PCA

A further improvement can be achieved by repeatedly conducting PCA. This gives

rise to an iterative algorithm using projection. That is, in the template building

phase, if two bins are too close or overlapping after the first PCA projection, one

can repeat PCA projection (for which the computation of components only involves

the average traces of that two bins) to further separate those two bins. The algorithm

is given as follows:

Step 1: Use M(1) = {m̄0, ..., m̄255} to compute the first set of principal components

V(1) = (v1, ...,vr) and the projection of each trace P(1) = X ·V(1).

Step 2: Partition the 256 bins into C(1)
α and C(1)

β where bins from C(1)
α can be clearly

CHAPTER 4. LEAKAGE DETECTION 58

separated from other bins, while bins from C
(1)
β are still clustered with some

other bins. That is, if bin Bi ∈ C(1)
β , then there exists bin Bj ∈ C(1)

β such that

traces of bin Bi are not separable from traces in Bj.

Step 3: If C(1)
β is not empty, compute the set M(2) which consists of the averages

of projected traces of non-separable bins in C
(1)
β

M(2) =
{
m̄i = avgj {pj | pj ∈ Bi} | Bi ∈ C(1)

β

}

Then based on M(2), compute a second set of principal components V(2) and

obtain another set of projected traces P(2) = P(1) · V(2) from the previously

projected ones.

Step 4: Repeat steps 2 and 3 until after k iterations C(k)
β is empty so that all bins

are sufficiently separated.

4.2.5 Experimental Results

All experiments have been performed on a smart card featuring an 8-bit micro-

controller based software implementation of AES. The measurements have been

performed using a Tektronix digital sampling oscilloscope with an 8 bit A/D con-

verter. The sampling rate of 50MS/s provides about 12 sampling points per clock

cycle.

We first evaluate the detection rate of the outlier method. We explore the impact

on the detection rate of several parameters: the number of promising leaking points,

the choices of the outlier lower bound ratio R and the mutual distance upper bound

ratio r, as well as the number of traces being investigated. Detection results are

CHAPTER 4. LEAKAGE DETECTION 59

shown in Tables 4.1 through 4.3. The first column contains the analyzed influencing

factor. The second column is the average size of set A, i.e. the average number

of the outliers, as described in Section 3.1. Again, if n traces were in the outlier

region, n (n− 1) /2 pairs are further analyzed by computing pairwise closeness. The

third column shows the size of the set C, i.e. the average number of output pairs

of promising collisions. The next column counts the number of correctly detected

collisions, that is the detected pairs which actually form wide collisions. The last

column is the ratio between the third and the fourth column, i.e. the ratio of

correctly detected collisions.

For comparison we apply template-based collision detection in three different

scenarios, (1) reduced templates in the time domain, (2) full template in time do-

main and (3) full template in the principal subspaces. Figure 4.4 shows how many

traces per bin are necessary for training good templates and further indicates the

asymptotic recognition rate for the three cases for our platform.

Results for the Outlier Method

We apply the outlier method as detailed in Section 3.1 to detect wide collision from

the power traces. In our experiment, we define the distance function with the norm

‖ · ‖1. That is,

dist (x,y) =‖ x−y ‖1=
∑
i

|xi − yi|

gives the distance from trace x = (x1, ..., xt) to y = (y1, ..., yt). In our experiments

we use 3000 traces and fix the parameter R to 0.9 and r to 0.3. We locate between 1

to 8 promising leaking points to analyze the influence of the combination of leaking

points. Table 4.1 confirms that using multiple points results in a better collision

CHAPTER 4. LEAKAGE DETECTION 60

detection rate comparing to the case of locating only one important point per power

trace.

Table 4.1: Collision Detection: Impact from the Dimension of the Feature
Points # Outliers # Detected # True Collisions Success Rate

1 19.6 127.7 21.9 23.0%
4 30.6 46.3 33.4 71.1%
6 110.7 126.3 105.4 86.2%
8 81.7 88.1 82.3 93.7%

Next, we explore different choices of the parameter pair (R, r) to analyze the

effect on the collision detection rate. As explained in the algorithm in Section 3.1,

R is the parameter determining which traces are in the region of “outliers” (the

set OR), sufficiently far away from the center of all traces. The larger R is, the

fewer traces are considered as outliers. On the other hand r is the parameter that

determines if two outliers are close enough to each other. The smaller r is, the fewer

pairs of traces are detected as collisions, namely the smaller the cardinality of the

set Or . Our experiments use 3000 traces (the same as above) and fix 6 locations

of promising leaking points. They confirm that the stricter the choice of (R, r), i.e.

the larger choice of R and the smaller choice of r, the more accurate the detection

is, as shown in Table 4.2.

As a last analysis of the outlier method, we explore the relationship between the

successful detection and the number of traces being used in the experiment. In this

experiment, 6 leaking points are fixed, the parameter R is set to 0.8 and r is 0.2. It

is found that increasing the number of traces yields the increase in the number of

outlier traces and the number of pairs being detected, meanwhile the detection rate

CHAPTER 4. LEAKAGE DETECTION 61

Table 4.2: Collision Detection: Impact from the Choices of R and r.
(R, r) # Outliers # Detected # True Collisions Success Rate

(0.7, 0.2) 382.1 807 551 68.4%
(0.8, 0.2) 110.7 126.3 105.4 86.2%
(0.9, 0.2) 19.9 8.3 7.7 89.6%
(0.9, 0.3) 19.9 16.1 12.9 81.3%
(0.9, 0.4) 19.9 22.9 13.9 60.8%

does not significantly increase, as shown in Table 4.3.

Table 4.3: Collision Detection: Impact from the Number of Traces
Traces # Outliers # Detected # True Collisions Success Rate

1000 37.1 13.4 12.1 93.6%
3000 81.7 88.1 82.3 93.7%
5000 118.7 217.1 200.1 93.7%
7000 127.3 277 256.9 94.3%

Results for Template-based Detection

In the preceding outlier method, it is assumed that one can locate several leaking

points and these points are independent of each other and contribute equally to the

computation of distance function. The same assumptions hold if a reduced template

attack is mounted in the time domain. But if a full template attack is applied, these

assumptions do not need to be fulfilled. If the templates are built in the time

domain, one only needs to locate good leaking points. While templates built in

principal subspaces, as described in Section 3.3, even locating leaking points is no

longer necessary. This is because the attacker can make use of all the region of power

CHAPTER 4. LEAKAGE DETECTION 62

traces that corresponds to wide collisions operations. Our experiment compares the

method using reduced template and the full template to see how the dependency

amongst leaking points helps with assigning an analyzed trace to its collision bin.

We also compare the recognition rate between templates in the time domain and in

the principal subspace through which we can verify that magnifying ITV enhances

the recognition rate.

10 12 14 16 18 20 22
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

number of traces per bin

re
co

gn
iti

on
 r

at
e

PCA, full
time, full
time, reduced

Figure 4.4: When templates are built over the selected time samples, the success
rate of collision detection maintains around 77% (Y-axis). The number of training
traces can be as low as 10. Including more time samples does not improve the
success rate at all. When templates are built in the principal subspace with PCA,
the success rate can reach as high as 95%, given more than 20 training traces.

Our experiments use 8 leaking points in the time domain. The counterpart in

CHAPTER 4. LEAKAGE DETECTION 63

PCA is 8 principal components that correspond to the 8 largest eigenvalues com-

puted as specified in Section 3.4. We use 2560 to 5632 traces to build up templates

so that each template makes use of 10 to 22 traces. We test 1000 traces to match

to the templates and interpret #(correct recognition)/1000 as the recognition rate.

From Figure 4.4 we can draw the following conclusions:

1. Using reduced templates in the time domain gives very stable recognition rate

for a wide range of the number of used training traces for the templates.

The asymptotic rate is at approx. 0.8. This is lower than the result for the

two full models when sufficient training traces are provided. Therefore, the

assumption of independence of leaking points cannot provide a strong collision

distinguisher.

2. Full templates with PCA gain better recognition results comparing to the full

templates in the time domain. Full templates in principal subspace gain close

to 0.95 recognition rate given more than 20 training traces per bin. While full

model in the time domain achieves only around 0.8 to 0.85. This confirms the

contribution of PCA for maximizing ITV in terms of recognition.

3. Full models have stricter requirements on the number of training traces. In

particular, if the attacker chooses n leaking points in the time domain or n

principal components in the principal subspace, then the number of training

traces per bin cannot be less than n, otherwise a singular covariance matrix

C is an unavoidable result and this makes the computation of probability

density infeasible. Even when the least number of training traces is satisfied,

the computation of the covariance matrix can still be remarkably impacted by

CHAPTER 4. LEAKAGE DETECTION 64

the noise in the side channel. That is why the recognition rate for both of the

full templates is low when fewer than 14 traces per bin are used.

4.3 Faster Leakage Detection

As mentioned earlier in this chapter, the efficiency of locating critical time samples

is another challenging issue for leakage detection. In this section we first review

earlier works on univariate and multivariate leakage detection. We then propose a

novel technique called leakage bundling which enables efficiently locating univariate

and multivariate leakages. We finish this section with experiments that validate the

complexity reduction.

4.3.1 Related Works

On Univariate Leakage Detection

Given an unprotected implementation, the side channel leakage is of univariate

nature as seen from the adversary knowledge model from Section 3.1.1. Processing

a sensitive internal state Y results in a leakage Lj at a specific time point j. The

leakage detection is to locate the critical time sample ty ∈ [1 : N] which provides

maximum distinguishability of subkey hypotheses.

The first type of detection methods is provided by classical SCAs described in

Section 3.1 where the leakage detection process is integrated with the leakage ex-

ploitation process. More specifically, the distinguisher is applied to leakage samples

over each time point from 1 to N . For example, if the CPA is used, the goal is to

find the time point j and the most promising subkey candidate g that gives higher

CHAPTER 4. LEAKAGE DETECTION 65

correlation coefficient ρ(φ̃(Yg), Lj) between the prediction φ̃(fg(X)) and the obser-

vation Lj than any other subkey hypothesis. If mutual information is used as a side

channel distinguisher, the goal is to find the time point j and the most promising

subkey guess g that gives the highest amount of mutual information I(φ̃(Y);Lj)

between the prediction φ̃(fg(X)) and the univariate side channel observation Lj.

The pointwise operation implies a total of |K| × N times hypothesis testing with

each key hypothesis g ∈ K and each time point.

Another common technique inherits the idea of the least square optimization.

With respect to the SCA scenario using the adversarial model in 3.1.1, it is to

locate the time sample that maximizes the variance of side channel observation at

all time points.

t = argmaxj
{ q∑
i=1

(Li,j − Ei(Li,j))2
}

(4.4)

The resulting time point shows maximum variability of all collected side channel

traces. However it neglects the key distinguishing objective of SCA. One step further

is to emphasize the knowledge of the input so that one first computes a group mean

signal L̄[x]
j for input-based query partition Gx = {i ∈ [1 : q]|Xi = x} at time sample

j as

L̄
[x]
j = 1

|Gx|
∑
i∈Gx

Li,j.

After that the maximization using the least square can be taken with respect to the

group mean signals, namely,

t = argmaxj
{∑
x∈X

(
L̄

[x]
j − Ej(L̄[x]

j)
)2
}

(4.5)

The located time sample exhibits maximum separability of the leakage patterns

CHAPTER 4. LEAKAGE DETECTION 66

amongst all input partition groups.

A third common approach (c.f. [28]) is the Welch T test. The central interest is

to determine whether there is univariate leakage amongst the side channel measure-

ment. From statistical perspective, the Welch T test is interested in the problem of

whether there is significant difference between the means µA and µB for two pop-

ulations A and B based on a total of NA samples LA from population A and NB

samples LA from B. The test statistic is computed from

t = µ̃A − µ̃B√
σ̃2
A/NA + σ̃2

B/NB
(4.6)

where µ̃ and σ̃ represent the empirical means and standard deviation as in equa-

tion 2.3 and 2.4. The tester checks whether |t| > C for a pre-assigned parameter

C for the purpose of significance test and confidence estimation. The samples from

the two populations A and B are derived more or less like the original single bit

DPA 3.1.3. One important difference is that there is no subkey hypothesis testing.

The tester uses the knowledge of the key to compute the interested internal states

Y and maps them to each bit. A natural partition of bit being 0 and 1 forms two

populations, namely

A = {Li,j : i ∈ [1 : q], φ (fk(Xi)) = 0}

B = {Li,j : i ∈ [1 : q], φ (fk(Xi)) = 1}

where the leakage model function φ is to take one bit of the internal values Y =

fk(X). The T-test in the SCA setting also include Fixed-to-Random or Random-

to-Random tests for population partitioning. More details can be found in original

CHAPTER 4. LEAKAGE DETECTION 67

proposal [28].

On Multivariate Leakage Detection

Masking is a popular countermeasure. As discussed in Section 3.1.1, it splits the

secret internal state into multiple shares. Unless all shares are detected and re-

covered, the secret information remain a mystery. For software implementations

of masking schemes, the shares are processed at different clock cycles. Detecting

side channel leakage in this scenario is then equivalent to finding all time points

(t0, t1, ..., td) ∈ [1 : N] from the side channel measurements where the d + 1 shares

are processed (t0 refers to the time sample on which YM is processed).

Most of previous literatures assume that critical time points are known. Under

this assumption, exploiting the multivariate leakage is equivalent to find a distin-

guisher that converts the information contained in the d+1 shares to key dependency

and therefore reveals the key. The distinguisher here is also called higher order SCA

(HOSCA). There are two main streams. One seeks for a combining function that

convert the multivariate leakage into a univariate leakage and then apply classical

univariate SCA to attack. Examples of combining functions are absolute differ-

ence of leakages at two distinct time samples [41] and the centered product of two

points [56]. Recent paper [17] confirms the optimality of the choice of centered

product combining function. The others [25] seek the information analysis from the

distribution of leakages even in a multivariate setting.

In particular, the centered product combining function makes the following pre-

CHAPTER 4. LEAKAGE DETECTION 68

processing on the traces.

C(Lt0 , ..., Ltd) =
d∏
i=0

(Lti − E(Lti)) (4.7)

This combined leakage is then correlated with the predicted leakage model φ̃(fg(X))

for each subkey hypothesis g just like regular univariate CPA.

The information analysis approach seeks the multivariate mutual information

analysis (MMIA). Works in [25] treat the d shares of leakages as a whole and intend

to check how much information it infers the leakage model by evaluating

I(φ̃(fg(X)); (Lt0 , ..., Ltd)) (4.8)

as a generic distinguisher. In other words, they compute the mutual information

between the predictable power model and the actual multivariate leakage. Similar

to the univariate MIA distinguisher, the power model cannot be the identity model

if the target function fg induces an one-to-one correspondence between the input

and the algorithmic internal values.

Other proposals indicate to use MMIA as a leakage detection test. Since there

is no subkey discrimination process, the power model can be an identity model.

The objective becomes to quantify the information leakage from the empirical leak-

age distribution. The mutual information can either be between the measurement

samples and either the algorithmic inputs or the internal values derived from the

key. In fact, if the internal values and inputs are in one-to-one correspondence, the

two computation does not differ at all. Another interesting work is [60]. It aims

at finding promising tuples of time points where multivariate leakage might occur.

CHAPTER 4. LEAKAGE DETECTION 69

It considers the mutual interaction (as seen in equation (4.9)) amongst different

shares as well as the algorithmic inputs.

I(Lt0 ; ...;Ltd ;X) = I(Lt0 ; ...;Ltd)− I(Lt0 ; ...;Ltd | X) (4.9)

One can recursively apply this equation until all terms is expressed as regular mu-

tual information and conditional mutual information. The computation is not key

dependent, and therefore only need to be executed once. After filtering time tuples

that do not result in a significant negative values, classical multivariate SCA can

be applied to distinguish the subkey. The main argument is the mutual interac-

tion amongst shares become remarkable when conditioned at each particular input

X. I.e. I(Lt0 ; ...;Ltd) < I(Lt0 ; ...;Ltd | X) Consequently the interaction among the

shares and the input should be a negative value.

4.3.2 Bundling Leakage Observation

Methods in all the above related works process the data pointwisely from the entire

observed power traces. Detecting univariate leakage needs to traverse all N time

points, while for multivariate leakage it needs to trial all
(
N
d+1

)
combinations. In

this section we introduce a novel technique called leakage bundling. Instead of

processing each time sample independently, it treats a set of samples as a whole and

process it with the leakage detection or exploitation method at adversary’s or tester’s

choice. The expected benefit is to reduce the number of times of subkey hypothesis

testing from the overall observations. Meanwhile, the expected disadvantage is the

cumulation of the noises decreases the SNR and more traces are required to overcome

the noise.

CHAPTER 4. LEAKAGE DETECTION 70

We denote Ω0 = [1 : N] as the whole set of time samples and S be a subset of

Ω0. Bundling leakages for time samples in a set S means to compute the summation

of each power trace over the time samples inside the set S.

LS :=
∑
j∈S

Lj (4.10)

It serves as a representation of leakage over the set of time points. Integrating the

leakage bundling (LB) with SCA or tests is to determine whether leakage is more

likely to occur in the set S or its complement Sc. We show how the technique can

be applied for classical SCAs, Welch T test, and even HOSCAs.

Integrate LB with univariate SCA

Given an unprotected implementation, we can mount an fast SCA (given distin-

guisher D) using the following iterative process. During the i-th iteration,

• Step 1. Obtain the half-and-half partition of Ωi−1, namely Si = [min(Ωi−1) :

max(Ωi−1)/2] and Sci = Ωi−1\Si. Evaluate leakage bundles LSi
and LSc

i
for

the set Si and its complement Sci from equation (4.10)

• Step 2. Make subkey hypothesis testing on the two leakage bundles separately

using the distinguisher D at adversary’s choice. That is, for each subkey guess

g, compute the scores

Rg
Si

= D(φ̃(Yg), LSi
) and Rg

Sc
i

= D(φ̃(Yg), LSc
i
);

• Step 3. Obtain the more favored scores RSi
and RSc

i
for the two sets of

hypothesis testing. They are computed as in the normal SCA that RSi
=

CHAPTER 4. LEAKAGE DETECTION 71

max{Rg
Si
|g ∈ K. Assign the next round time sample whole set Ωi

Ωi =


Si if RSi

> RSc
i

Sci otherwise

The iteration terminates when the set Ωi becomes a singleton set, i.e. only contain

one time point.

More specifically, in each iteration the adversary partitions the time sample

whole set Ωi−1 into the first half Si and the second half Sci . She wants to identify

which one is the more probable region of the occurrence of the leakage. Using a

predetermined distinguisher D, she attempts regular hypothesis testing only on the

two leakage bundles LSi
and LSc

i
and obtains the scores Rg

Si
and Rg

Sc
i

for each subkey

hypothesis g. Based on the nature of the distinguisher, the most favored scores RSi

and RSc
i

are returned for the two bundles. The subkey candidates gα and gβ that

achieve the scores are also returned. For example, in MIA, it returns the hypothesis

that gives the maximum of mutual information; in CPA, the one that gives highest

absolute value of correlation coefficient is returned; and in Kolmogorov Smirnov

SCA, the guess that yields the minimum of KS distance is returned. Further, the

two best scores are compared to determine whether it is Si or its complement Sci is

more likely to contain the critical time sample of the leakage.

Clearly, iterating the three step procedure provides a sequence of inclusive sets

of decision: Ω0) Ω1) The cardinality of each set Ωi is reduced to a half of its

predecessor Ωi−1. And it quickly becomes a trivial case that contains only one time

point. This time sample is returned to the adversary as the critical time instance

where the internal Y is leaking information. At the same time, the respective

CHAPTER 4. LEAKAGE DETECTION 72

hypothesis gα or gβ that wins in the last iteration becomes the final subkey decision.

Complexity: Leakage bundles can be precomputed using a binary tree structure

at complexity of O(logN). Clearly, the total number of iterations is log2N as the

size of decision set Ωi is reduced by a factor of 2 after each session. And as in

each iteration there are 2|K| subkey hypothesis tests, the total number of subkey

hypothesis tests is 2|K| × logN . Therefore, applying leakage bundling reduces the

total number of hypothesis testing significantly.

However, one should notice that the essence of leakage bundling is to sum up

observation sample points. Unavoidably, the noise is added up. As for example, if

L1, L2, ..., Lm are independent variables that follow Gaussian distribution N (µi, σ2
i),

then∑j Lj follows distributionN (∑j µj,
∑
j σ

2
j). The added up noise not only affects

the correct hypothesis testing but also the incorrect ones. Section 4.3.3 explores the

impact on the number of traces required from leakage bundling.

Potential Impact on Random Order of Execution: Randomizing execution

order is a type of hiding countermeasure. It can significantly decrease the SNR

to increase the minimum volume of the side channel measurement for a successful

attack. By applying the leakage bundling, the leakage samples are summed up and

therefore the critical time sample has more chance to be included in the bundle.

The effect of hiding might be mitigated.

Integrate LB with Multivariate SCA

When the implementation is protected with masking schemes, the secret of the

sensitive internal state splits into several shares. Therefore, the leakage detection in

CHAPTER 4. LEAKAGE DETECTION 73

this scenario refers the detection of the position of all the shares from all the time

samples. Naturally, this results in the problem of the multivariate leakage detection.

As mentioned earlier in this chapter, a naive approach for detecting d+ 1 shares of

leakage from N time samples is of the so called combinatorial complexity O(Nd+1).

Mounting higher order SCA is therefore a rather expensive process. In this section

we try to apply leakage bundling to reduce the overall complexity to O(Nd) log(N).

The idea is simple. In order to find all the d+ 1 shares, we fix the first d shares

and bundle the leakage samples to locate the last share. In formal, assume the first

d shares td := {t1, ..., td} are found with tj ∈ [1 : N], ti 6= tj, the last leakage sample

t0 lies in the remaining set Ω\td.

We do the following modification to the three step procedure. To begin with,

the set Ω0 should exclude the points in td. As a consequence, none of the set Si,

Sci , or Ωi contain any known point tj with 1 ≤ j ≤ d. There is no change in step

1: the computation of leakage bundles LSi
and LSc

i
over the two sets are the same

as in Equation (4.10). In step 2, the leakage bundles LSi
and LSc

i
together with

observations at other known samples Ltj s are used as inputs for the higher order

SCA distinguisher to derive the subkey hypothesis scores. For example, if higher

order CPA is used, then one computes the correlation coefficients for each subkey

guess g as

Rg
Si

= ρ(φ̃(Yg);C(Lt1 , ..., Ltd , LSi
)) (4.11)

Rg
Sc

i
= ρ(φ̃(Yg);C(Lt1 , ..., Ltd , LSc

i
)) (4.12)

where the combining function C(Lt1 , ..., Ltd , LS) is computed from Equation (4.7).

CHAPTER 4. LEAKAGE DETECTION 74

If MMIA is used, then one computes the mutual information as

Rg
Si

= I(φ̃(Yg); (Lt1 , ..., Ltd , LSi
)) (4.13)

Rg
Sc

i
= I(φ̃(Yg); (Lt1 , ..., Ltd , LSc

i
)) (4.14)

as defined in Equation (4.8). Finally there is nothing to be changed for step 3:

the decision set is derived in the same manner as in the univariate case. And the

iteration of such modified three step procedure will shrink the range of the location

of the last leaking time point t0. The final decision also reveals the decision of

subkey.

Complexity: Computing Leakage bundles that exclude the known d shares is

still trivial in with a binary tree structure at complexity of O(logN). The total

number of iterations changes slightly from log2N to log2(N − d) but this change is

negligible since usually d is far less than the window size N . Remember the time

points for the first d shares are assumed to be known. In fact, this assumption is

realized at the cost of exhaustive searching the d shares from all possible N-choose-d

combinations and hence still suffices the complexity of O(Nd). Therefore, applying

leakage bundling reduces the complexity benefit from O(Nd+1) to O(Nd logN) in

terms of the total number of subkey hypothesis testings. For example, to tackle

a first order masking protection, the adversary breaks down the complexity of the

problem of locating a bivariate leakage from a quadratic level to an almost linear

level. This might re-alert the security evaluation of a masking scheme.

CHAPTER 4. LEAKAGE DETECTION 75

Integrate LB with Univariate Leakage Tests

We have seen that the central objective of the side channel testing is to determine

the existence of leakage in the side channel time series. In addition to the yes or no

answer, a significance level or a confidence interval is also expected. This is because

the quantities of type I and type II errors are highly interested. Therefore, high vol-

ume of side channel measurements is often available. The two main stream leakage

detectors are the Welch T test [28] and the mutual information based test [13] as

compared in [39].

In this section, we show how to apply leakage bundling for univariate leakage

tests with the following procedure.

• Step 1. Evaluate leakage bundles LSi
and LSc

i
the same as before.

• Step 2. Evaluate the test scores for TSi
and TSc

i
with the testing operator T

T gSi
= T (φ̃(Yk), LSi

) and T gSc
i

= T (φ̃(Yk), LSc
i
);

• Step 3. Assign the set that corresponds to the more favored score as the next

round whole set Ωi

Ωi =


Si if TSi

> TSc
i

Sci otherwise

Comparing to the three step procedure for LB-SCA, the main difference is on

the second step. Remember there is no subkey hypothesis testing but only leakage

testing. If Welch T test is used, then Step 2 should return the t-scores for the

two populations for each of the two sets of leakage bundles. That is, one needs to

CHAPTER 4. LEAKAGE DETECTION 76

compute TSi
and TSc

i
, which can be evaluated from equation (4.6) where the two

populations are defined as

A = {Li,S : φ̃(fk(Xi)) = 0}

B = {Li,S : φ̃(fk(Xi)) = 1}

If MI based test is used, then Step 2 should return the mutual information

MISi
= I(LSi

; φ̃(Y)) (as well as MISc
i

= I(LSc
i
; φ̃(Y))) between the leakage bundles

LSi
, LSc

i
and the model φ̃(Y).

Multivariate Leakage Testing: Testing leakages in the multivariate scenario is

difficult. Probably the only known method that enables significance level or confi-

dence interval estimations is through multivariate mutual information estimation.

Yet another interesting approach is to locate time sample combinations that gives

no advantage for side channel adversaries. Typically the work [60] belongs to this

category. In order to ease the second order attack, it computes the mutual inter-

actions I(Lt1 ;Lt2 ;X) between the two time samples Lt1 , Lt2 and the algorithmic

inputs X for eliminating impossible combination of bi-variate leakage samples. The

computation can be seen in Equation (4.9). The main idea is that for fixed X = x,

the leakage shares of the mask M and the masked state yM are related by differing a

constant y = fk(x) and hence the conditional mutual information I(L1;L2 | X = x)

significant non-zero. If the input X is not fixed (i.e. without using the knowledge

each specific x), however, the mask M and the masked state YM are differing by a

variable Y . As a consequence, the time sample L1 and L2 for processing the two

shares are independent, i.e. I(L1;L2) approximates to 0. In short, a successful

CHAPTER 4. LEAKAGE DETECTION 77

locating both of the shares features in a negative mutual interaction I(Lt1 ;Lt2 ;X).

This gives some rationals to eliminate impossible combinations.

This process may not be integrated with the leakage bundling, since the pro-

cedure is used to reduce the possible combinations rather than directly finding the

actual time position of the shares. In other words, it is not necessarily true that the

time samples L1 and L2 for the two shares gives smallest interaction quantity.

4.3.3 Experiments

In this section we run experiments to test the performance of leakage bundling when

it is applied to leakage exploitation and detection. Targeting the univariate leakage

scenario, we use the real measurement of the RjindaelFurious software AES [53]

running on an 8 bit AVR microcontroller. Targeting the multivariate leakage, we

use the measurements from DPA contest V4 [69], which is a software implementation

of AES with the Rotate Sboxes Masking countermeasure. We run the SCA code

written in Python 3.3 on a 64-bit Ubuntu server with 2.50 GHz Intel Xeon CPU

and 64 GiB memory.

Univariate Leakage Scenario

First experiments are performed for the unprotected AES implementation. Fig-

ure 4.5(a) shows the univariate leakage exploitation with regular CPA and the leak-

age bundling CPA (LB-CPA) using 10,000 traces. The window size N is fixed to

10,000 time samples. Both attacks start with loading the measurements into the

memory as a 10000 × 10000 matrix L, each row of which corresponds with one

measurement while each column of which corresponds with one time moment. To

CHAPTER 4. LEAKAGE DETECTION 78

distinguish one correct subkey from |K| = 256 subkey candidates, regular CPA runs

|K| × N correlation coefficient computations and each computation is assumed to

cost tc time. For LB-CPA, the precomputation of leakage bundle tree costs tp and

the LB-CPA itself costs 2|K| × logN × tc. Therefore, the overall improvement rate

r equals

r = |K| ×N × tc
2|K| × logN × tc + tp

= |K| ×N
2|K| × logN + tp

tc

(4.15)

In our practical experiments, the timing costs excluding the data loading proce-

dure for both attacks are 1192.31 seconds and 11.39 seconds respectively. Each cor-

relation coefficient computation costs tc = 0.00046 seconds while leakage bundling

precomputation costs tp = 5.14 seconds. The practical results comply with the

equation (4.15) very nicely when plugged into with the above value and verify the

effectiveness of leakage bundling.

We also observe that the regular CPA provides three main regions where the

leakage occurs. Leakage bundling returns the last region. Moreover, the leakage

bundling does not necessarily return the position where the regular CPA has the

highest value of Pearson correlation coefficient. A zoom in Figure 4.5(b) confirms

this observation. It may be caused by the partition of time samples in the middle

of some clock cycles and the three step procedure determines as the next region the

partition whose leakage bundle contains gives higher correlation although it does

not contain the heaviest leaking point.

Next, we compare the success rates of regular CPA and LB-CPA when increasing

CHAPTER 4. LEAKAGE DETECTION 79

(a) (b)

Figure 4.5: Univariate leakage detection using CPA and Leakage Bundling CPA,
both applied to 10,000 traces with a window size of 10,000 samples per trace. Plot
(b) is a zoomed version of (a).

the number of traces used to perform the attacks. Figure 4.6 shows that the success

rate of regular CPA is already 1 with only 100 traces. In contrast, the success rate of

LB-CPA is relatively very low as no more than 0.2 with 100 traces. As the number

of traces increases to 1000, its success rate grows close to 1. This is because that

while bundling leakage decreases the SNR, increasing number of traces will raise it

up.

We apply the Welch t-test to determine the existence of the univariate leakage

using 10,000 measurements. An illustration is shown in Figure 4.7 with the same

window size of N = 10, 000 samples. The curve represents a pointwise testing

procedure and the * marks the time sample location returned from the leakage

bundling. Similar to the exploitation case, the LB t-test successfully locates the

time sample that has extremely high t-score.

In terms of complexity, the regular one consumes 26.5 seconds while the LB t-

test costs 6.5 seconds, of which leakage bundling precomputation consumes tp = 6.39

CHAPTER 4. LEAKAGE DETECTION 80

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

number of trace

S
uc

ce
ss

 r
at

e

LB CPA

Regular CPA

Figure 4.6: With the unprotected implementation, the regular CPA reaches almost
100% success rate (Y-axis) with the number of traces (X-axis) being as low as
100. The leakage bundling CPA reaches comparable success rate given much more
traces. The efficiency in the time complexity is at the cost from larger number of
measurements.

seconds and t test on each time sample costs tc = 0.0025 seconds. Unlike leakage

exploitation, the subkey is fixed as the correct one when applying t-test, hence |K|

equals as 1 in this case. The practical results also comply with equation (4.15) very

nicely when plugged into with the above value and verify the effectiveness of leakage

bundling when applied to t-test.

CHAPTER 4. LEAKAGE DETECTION 81

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

Time sample

T
−

sc
or

e

Welch T−test
LB Critical sample

Figure 4.7: Integrating leakage bundling with Welch-t-test successfully captures
univariate leakage (* point) for the unprotected implementation. The detected point
does not necessarily correspond to the highest score (Y-axis) among the scores of
regular Welch-t-test on all time points (X-axis).

Multivariate Leakage Scenario

Next, we combine leakage bundling with a second order CPA and apply it to the

traces of the DPA contest V4, which applied a first order low entropy masking

schemes. The available 40, 000 measurements are pre-processed using peak detec-

tion, effectively compressing the time domain from 435002 to 5661. With peak

detection we implicitly assume a strong leakage to occur on the peak point of a

clock cycle. Further, we select a window of size N = 1000 peaks based on some

knowledge of the measurements to perform the analysis.

CHAPTER 4. LEAKAGE DETECTION 82

Figure 4.8: Applying leakage bundling in the 2nd order CPA reduces the complexity
into O(N logN). For each data point on the curve, the X-axis fixes one time sample
as a possible leakage. A total of 2|K| logN absolute values of correlation coefficients
(Y-axis) are computed and compared to locate the second leakage. It also returns
the highest absolute value as the Y-axis. The experiment is performed on 40,000
traces in DPA contest V4 with a window size being 1000 peak points. The hypothesis
on the highest score is verified to be the correct key.

Figure 4.8 returns the correct key at more than 0.1 correlation coefficient. It

should be mentioned that the 2 dimensional visualization is enabled because LB-

2OCPA reduces the task of locating bivariate leakage samples from N(N − 1)/2 to

2N logN . In fact, each data point (t, ρt) on the correlation trace is obtained by fixing

one of the time sample at t and using binary search for the other point. Therefore

the subkey decisions for each (t, ρt) may be different. In terms of time complexity,

CHAPTER 4. LEAKAGE DETECTION 83

LB-2OCPA costs 200 minutes to recover one subkey while regular second order CPA

needs 8300 minutes.

4.4 Conclusion

In this chapter we have defined two challenging issues on the detection of side

channel leakages. One is to reliably detect leakages without a-priori knowledge

about the leakage model. The other is to improve the efficiency on locating critical

time samples of leaking shares from the physical observables.

To address the first issue, we presented the wide collision detection method

which reduces false positives and suffices an combined algebraic side channel at-

tack. One major finding is the outlier method which shows that neighboring power

traces within the outlier region exhibits a much higher chance of forming a colli-

sion pair. We have also shown that template-based approaches are a great method

for detecting collisions provided that profiling is possible. Different ways of build-

ing collision-detecting templates are compared. Using PCA for finding independent

strong leaking points seems to be better than hand-picking points in the time do-

main.

On the second issue, we have shown that classical SCAs and testing methods can

be mounted with a sub-combinatorial complexity. The achievement of higher time

efficiency is at the cost of lower SNR and hence more measurement requirement.

Chapter 5

Leakage Exploitation

We have seen that side channel analysis reveals information leakage from capturing

data dependency. Moreover, it provides adversaries a simple divide-and-conquer

approach to exploit the leakage and recover the secret key in a crypto system. De-

veloping efficient and generic side channel distinguishers has been highly interesting

to the community. Most classical SCAs introduced in Section 3.1 rely on the knowl-

edge of the underlying leakage model. This is because a successful key recovery

attack comes from a series of comparison between the observed side channel leakage

and the hypothetical ones evaluated from the leakage model.

In this chapter, we first present the challenge and motivation for finding a side

channel distinguisher that does not require the knowledge of leakage model. We

then propose an novel approach that directly compares observations to observations

without the need of leakage model. We provide two instantiations of this idea and

show how they are applied in exploiting leakages for both unprotected and protected

implementations. The advantage over traditional approach is also discussed.

84

CHAPTER 5. LEAKAGE EXPLOITATION 85

5.1 Challenges and Motivation

SCA achieves its key recovery objective through exploring the data dependency

between side channel observables and the internal state of the system. Such data

dependency has usually been exploited in a series of observation-to-model (O2M as

shown in Figure 5.1) comparisons with some particular leakage models in classical

DPA (c.f. 3.1.3) and CPA (c.f. 3.1.4). Briefly, an adversary makes a sequence of

comparisons between the observed leakage (Lk,p) and the hypothetical leakage value

(Mg,p) under the subkey hypothesis g and leakage model M . The subkey hypothesis

that produces the closest match between the observations and the model is selected

as the correct key. A critical component in the O2M approach is the leakage model.

The model can range from Hamming weight/distance models to more complicated

toggle count models depending on the a-priori knowledge about the implementation.

It is unavoidable that the leakage model differs from the reality. In an extreme

situation, the error from leakage modeling assumption or the lack of detailed a-

priori knowledge can aggravate or even prevent successful attacks.

Recent studies [59, 39, 19] call for generic distinguishers that do not rely on a-

priori knowledge about the implementation and have minimum assumption on the

leakage distribution. Perhaps the most generic distinguisher is the MIA (c.f. 3.1.6).

Although it follows the information theoretic intuition, it is well known that the

identity model with an injective target function 1 does not enable MIA’s discrim-

ination of wrong key candidates. This fact reveals the hidden requirement for a

successful SCA – only the correct hypothesis can capture the meaningful data de-

pendence. Recent theoretical study [77] even shows that generic univariate attacks
1the identity model together with an injective function implies a one to one correspondence,

which assumes no a-priori knowledge of the leakage function

CHAPTER 5. LEAKAGE EXPLOITATION 86

with a leakage model exist only for a very limited selection of target functions. It is

indicated that profiling attacks such as template attacks (c.f. 3.1.5) and stochastic

modeling attacks [63] are necessary for security evaluation. The profiling attacks re-

quire a separate profiling stage only for the purpose of precise estimation of leakage

model, which is later used in the attacking phase to be compared with the observa-

tion. In short, profiling attack still follows an O2M intuition. Naturally comes the

question whether knowing the leakage model is a prerequisite for a successful SCA.

Or equivalently, are there any alternative approaches to the O2M comparison that

also provides reliable key distinguishability?

Figure 5.1: Classical SCAs make observation-to-model comparison to reject or ac-

cept subkey hypotheses.

In fact, a lesson we have learned from Section 4.2 is that processing the same val-

ues results in homogeneous leakage. It enables comparing side channel observations

directly to another observation without even mattering the behavior of underlying

leakage function. The attacking approach can be generalized as the observation-

to-observation (O2O) comparison in contrast to the traditional observation-to-

model comparison. The O2O approach allows direct comparison between one or

CHAPTER 5. LEAKAGE EXPLOITATION 87

one set of leakage observation to another one or another set. The comparison incor-

porates subkey hypotheses hence the key distinguishing objective is still achievable.

We propose a Non-Linear Collision Attack (NLCA) in Section 5.2 that exploits

generic bivariate leakage. We also propose a series of distribution based collision

attacks in Section 5.3 that even suffice univariate attacks on implementations with

low entropy masking protection. Both of the works follow the O2O comparison and

hence do not suffer from leakage modeling error.

5.2 Non-Linear Collision Attack

Although previously discussed collision attacks risk in potential false positive colli-

sion detection, they remind us that SCA can be mounted without estimating leakage

models. A further step in resolving the false detection issue is the work [45]. It is

the first work that not only takes advantage of side channel collisions but also makes

the attack proceeding in a hypothesis testing manner. We first review the algorithm

they provide.

5.2.1 Related Work: Linear Correlation Collision Attack

In [45], an interesting algorithm has been proposed to attack AES using correlation

enhanced linear collision, which is called here the linear correlation collision attack

(LCCA). It is different from the classical collision attack since it does not use collision

detection to reduce the total number of valid key hypotheses. In fact, it works more

like classical DPA/CPA style attacks that firstly make hypothesis and then use

distinguisher to determine the correct key that actually generates collisions. But

CHAPTER 5. LEAKAGE EXPLOITATION 88

unlike classical DPA/CPA, LCCA does not recover each subkey directly, but instead

it tests hypothesis of the difference between subkeys as shown in Figure 5.2(a). More

specifically, if the adversary aims at recovering the difference ∆ = ka ⊕ kb between

subkey ka and kb at byte a and b, she needs to test all possible hypotheses δ of the

subkey difference. For each hypothesis δ, the adversary computes the correlation

ρ(LXa , LX⊕δb) between the averaged leakage trace LXa of the byte-a-plaintext Xa = X

and the averaged leakage trace LX⊕δb of the byte-b-plaintext Xb = X ⊕ δ. Upon

completion of all hypotheses, the adversary makes the decision of the hypothesis

that gives highest correlation, i.e. δ∗ = argmaxδ{ρ(LXa , LX⊕δb)}. The attack works

because when testing the correct hypothesis δ = ∆ = ka ⊕ kb, the Sbox outputs of

the two bytes cause collisions as seen from below.

Xa ⊕Xb = X ⊕X ⊕ δ = ∆ = ka ⊕ kb

⇐⇒ Xa ⊕ ka = Xb ⊕ kb

⇐⇒ S(Xa ⊕ ka) = S(Xb ⊕ kb)

Therefore the averaged leakage traces LXa and LX⊕∆
b gives high correlation. If a

wrong hypothesis δ 6= ∆ is assumed, the above equalities do not hold any more,

neither are collisions generated. Therefore a wrong hypothesis results in low corre-

lation.

5.2.2 Existence of Non-Linear Collisions

The LCCA takes advantage of the similar leakage behavior between linear collisions

processed by the same operations. Now we show that the concept of exploitable

CHAPTER 5. LEAKAGE EXPLOITATION 89

collisions can be extended so that they occur for different internal states, even

if processed under different operations. We first explain the idea of generating

non-linear collisions and then detail how to exploit them and use them to build a

side channel distinguisher called Non-Linear Collision Attack (NLCA). Its validity,

complexity and relation to other side channel attacks are also discussed.

(a) (b)

Figure 5.2: Linear Correlation Collision Attack (LCCA) (a) VS Non-Linear Collision
Attack (NLCA) (b).

We introduce the following notations that are additional to the ones defined in

Section 3.1.1. Let two internal states of the target implementation be denoted by Y

and Z for the NLCA. The first state Y = fk (X) is the output of a function of the

plaintext X with the secret key k. For notational convenience, we use f−1
k (Y) to

denote the set of all pre-images of plaintexts that lead to the internal state Y . The

second state Z = τ (Y) is mapped through an intermediate non-linear function τ

from the predecessor state Y . It is clear that the state Z is a functional composition

output, represented as Z = τ ◦ fk (X). Note that both of Y and Z should produce

observable side channel leakage to be exploitable by the side channel adversary. We

CHAPTER 5. LEAKAGE EXPLOITATION 90

use LY and LZ to denote the observed leakages for processing the two respective

states Y and Z.

The goal of NLCA is to generate collisions between state Y and state Z and

to exploit them by detecting the correlated leakage behavior. That is, for a given

plaintext X, we want to find another X ′ such that the induced internal states

Y, Y ′, Z, Z ′ satisfy the cross-state collision of either Y ′ = Z or Z ′ = Y . Without loss

of generality, we explore the first type Y ′ = Z, i.e.

fk (X ′) = τ ◦ fk (X) (5.1)

Clearly, if X ′ is chosen as one of the pre-images of τ ◦fk (X) , then it is a solution to

equation (5.1). In other words, X ′ ∈ f−1
k (τ ◦ fk (X)) implies that the internal state

Y ′ = fk (X ′) is guaranteed to be colliding with the internal state Z = τ ◦ fk (X).

Hence the observed leakage behavior of LZ and LY ′ can be expected to be very

similar.

5.2.3 Building a Non-linear Collision Attack

We now show how this idea can be used and converted to a side channel attack on

AES. The described approach can be easily adjusted to target many other block

ciphers. We choose the non-linear operation τ as the first round2 SubBytes. More

precisely, we only consider τ as a single Sbox S (·) in the following context. The

states Y and Z are then the input and output of the same Sbox respectively. The

function fk is the initial key addition (xor) operation. Figure 5.2(b) visualizes the

idea of NLCA in this setting. The cross state collision in equation (5.1) becomes
2It can easily be translated to last round SubBytes with known ciphertexts.

CHAPTER 5. LEAKAGE EXPLOITATION 91

X ′ ⊕ k = S (X ⊕ k) and clearly it has a unique solution

X ′ = k ⊕ S (X ⊕ k) (5.2)

In other words, if the AES encryption algorithm is executed with plaintexts X and

X ′ computed from equation (5.2), the produced side channel leakages LY ′ and LZ

(with Y ′ = X ′ ⊕ k and Z = S (X ⊕ k)) will be closely correlated. The adversary,

however, does not know the subkey k and therefore cannot directly plug it into

the equation and find such X ′. Nevertheless, all possible subkey hypotheses can

be checked to find the correct subkey k. Algorithm 5.1 shows the detailed proce-

dure for the attack on AES. Basically, the adversary makes a total of 256 subkey

hypotheses g ∈ {0, 1}8. For each hypothesis g, she computes X ′g = g ⊕ S (X ⊕ g)

for all possible plaintext bytes X. The resulting list of plaintext pairs X and X ′g

is assumed to generate cross-state collisions Z = Y ′g , under this hypothesis g. The

respective average leakage signals LZ , LY ′g are stored in vectors α, βg. The Pear-

son correlation coefficient ρ(α, βg) between them is finally computed for testing the

subkey hypothesis g. After testing all subkey hypotheses, the adversary picks the

subkey hypothesis k∗ that yields the highest correlation coefficient and determines

it as the correct subkey k, i.e. k∗ = argmaxg {ρ(α, βg)}.

CHAPTER 5. LEAKAGE EXPLOITATION 92

Algorithm 5.1 Non-Linear Collision Attack on AES
Input: Number of Traces q, plaintext-byte values X = [X1, ..., Xq] Leakages LY =
[LY,1, ..., LY,q] and LZ = [LZ,1, ..., LZ,q]
Output: Subkey Decision k∗

1: for x = 0 to 255 do
2: Ux = {i | Xi = x, i ∈ [1 : q]} . the set of indices where plaintext is x
3: α[x] = avg{LZ,i | i ∈ Ux} . mean leakage for processing Z
4: γ[x] = avg{LY,i | i ∈ Ux} . mean leakage for processing Y
5: end for
6: for g = 0 to 255 do
7: for x = 0 to 255 do
8: x′g = g ⊕ S(x⊕ g) . x and x′g cause hypothetical collision z = y′g
9: βg[x] = γ[x′g] . get the leakage for processing Y ′g

10: end for
11: R[g] = ρ(α, βg) . Pearson correlation coefficient
12: end for
13: k∗ = argmaxg {R[g]}
14: return k∗

Validity

If the hypothesis is correct, i.e. g = k, the computed X ′g = X ′k has the same format

as in equation (5.2). It follows that

X ′g = g ⊕ S(X ⊕ g) = k ⊕ S(X ⊕ k)

⇐⇒ X ′g ⊕ k = S (X ⊕ k)

⇐⇒ Y ′g = Z

Hence the respective mean signals α, βg of the observed leakage should be similar

and have high correlation. However if the hypothesis is wrong, i.e. g 6= k, then the

above equations do not hold anymore. Hence Y ′g does not collide with Z and their

respective leakage should only give low correlation.

CHAPTER 5. LEAKAGE EXPLOITATION 93

Adaptable with Higher Order Statistical Moments

Generic distinguisher has low assumption on the leakage distribution. In certain

scenario, leakage cannot be captured with the first order statistical moment (empir-

ical mean) but is able to be detected through higher order moments (e.g. empirical

variance, skewness, etc) as pointed out by [43]. The proposed non-linear collision

attack can easily be extended to capture such hidden leakages. The adjustment is

on line 3 of Algorithm 5.1. The original vector α is used to precompute the mean

signal (i.e. 1st order moment) of leakage LZ . That is

α[x] = avg{LZ,i | i ∈ Ux} = 1
|Ux|

∑
i∈Ux

LZ,i

with Ux defined in line 2 of the algorithm. The d-th order moment dα of leakage LZ

can also be precomputed for any integer d > 1

dα[x] = 1
|Ux|

∑
i∈Ux

(LZ,i − α[x])d

Similarly dγ can be computed on line 4 to store the d-th order moment of leakage

LY . Finally, one can finish the changes by replacing the first order moment terms

α, βg in line 9 and 11 with d-th order dα,d βg respectively. The adjusted algorithm

can then distinguish subkey hypothesis using higher order statistical moments. A

detailed description of the methods as well as the benefits can be found in [43].

5.2.4 Comparison with other SCA

In the following we explore possible benefits and drawbacks of NLCA when compared

to other attacks.

CHAPTER 5. LEAKAGE EXPLOITATION 94

Comparing NLCA with DPA,CPA

The big difference between NLCA and DPA,CPA lies in the fact that NLCA does

not rely on a particular leakage model, e.g. Hamming weight model. DPA and CPA

correlate leakage sample to the leakage model of hypothesis, while NLCA makes

correlation between leakage samples. In fact, NLCA only requires the minimal as-

sumption that processing the same internal state results in similar leakage behavior.

If the leakage behavior is precisely captured by the leakage model assumed in the

DPA and CPA, NLCA might not show advantage. However, if the leakage model

deviates from the physical observables, the two classical methods are more likely to

fail while the NLCA is still robust. More details can be found in Section 5.2.5.

On the negative side, NLCA requires identifying the bivariate leakage samples

for processing states Y and Z respectively, prior to the attack. With a known

implementation this is not an issue. As Z = S(Y) is processed after Y with a fixed

offset of clock cycles, finding the two critical time samples is equivalent to locating

the first sample for LY and adding the offset to get the second sample for LZ . For

unknown implementations the location and offsets have to be guessed. This can

be easy, e.g. if it is highly likely that the non-linear function is implemented as a

table-lookup, resulting in an offset of a few clock cycles. But this might not always

be the case.

Comparing NLCA with Collision Attacks

The earlier works of side channel collision attacks [65, 64, 5, 6, 8, 79] define col-

lisions as the same value of one target state from different inputs. The NLCA

extends the definition such that collision occurs on two different targets Y and Z

CHAPTER 5. LEAKAGE EXPLOITATION 95

of the same value. The second difference is that the previous works belong to the

chosen plaintext attacks since only plaintexts in certain pattern can make sure to

cause collisions. The NLCA is not a chosen plaintext attack. It works with traces

associated with random plaintext inputs and hence belongs to the known plaintext

attacks. It sorts traces into different bins Ux and uses all of them. The last but

not the least difference is that previous works rely on successfully detecting the

collisions from traces before making use of their algebraic property to shrink the

space of key hypotheses. The NLCA works in a CPA manner that it tests different

subkey hypotheses and ensures that only the correct hypothesis generates collisions

– not just a few collisions, but all the resulting input pairs x, x′ cause collisions. In

other words, previous works exploit leakage similarity of collisions prior to the use

of its algebraic property, while the order reverses for NLCA. The benefit is to avoid

the false acceptance of collision detection and hence to reduce the risk of misuse of

algebraic property in earlier proposals.

Comparing NLCA with the Linear Correlation Collision Attack.

The NLCA and LCCA have one common feature that they do not require a leakage

model. This is because both are computing the correlation amongst leakage samples

rather than comparing leakage samples to model values. Their complexity is also

at the same level. For LCCA, there are totally 15 independent subkey differences

amongst the 16 bytes in AES. It means that there is a remaining 8 bit key entropy

even after disclosing all subkey differences. Therefore, the total complexity for

recovering a full AES key using LCCA is 15× 28 recoveries of subkey relations plus

28 full key verification. While on the other side, the NLCA recovers all subkeys

CHAPTER 5. LEAKAGE EXPLOITATION 96

independently. Its total complexity is 16× 28 in subkey recoveries.

Yet there are critical differences between the two. Firstly, LCCA exploits linear

collision of two different state bytes at the same stage in the cipher round, NLCA can

exploit the non-linear collision of the same state byte at two different stages of the

cipher round. Consequently, the LCCA is categorized by [73] as non-standard side

channel attack because it hypothesizes on relation between two subkeys rather than

a subkey itself. While NLCA follows a more straightforward divide-and-conquer

approach. Secondly, the collision exploited in the LCCA reveals the homogeneity

of leakage behavior under the same operations. More specifically, both states Za

and Zb are the output of Sbox as seen from Figure 5.2(a). Hence they are derived

from the same routine in the embedded system. For example, both are loaded

from program memory into the state registers. The collisions generated from the

correct hypothesis results in homogeneous leakage that should have high magnitude

of correlation, which is shown in [45]. The NLCA, however, explores the similarity of

leakage behavior caused by different operations. As can be seen from Figure 5.2(b)

that Y ′ is the output of key xor and Z is the output of Sbox. It means they are

processed with different instructions. For instance, Y ′ is xored or moved to a register

and Z is loaded from program memory onto a register. Such operational difference

results in leakages of non-linear collisions behaving similarly but not homogeneously.

Therefore, it is not surprising that the level of correlation obtained from NLCA is

lower than from LCCA. However, especially in the case of software implementations,

it can be assumed that locating the second colliding state is easier for NLCA, as

both leakages are more likely to occur close to each other.

CHAPTER 5. LEAKAGE EXPLOITATION 97

Some Limitations

The non-reliance of leakage model does not come for free. One prerequisite of the

non-linear collision attack is the existence of the bivariate leakages: it is satisfied in

the situation of software implementation but not in the hardwares. This restricts

the applicability of the NLCA. In addition, it is not clear whether the NLCA can be

extended such that it can also overcome countermeasures such as masking schemes.

5.2.5 NLCA-Experiments

Three different groups of experiments are described in the following. The first group

is the NLCA attack performed on power measurements of an 8-bit microcontroller

executing AES-128. It also compares the performance of NLCA and CPA on the real

measurements. The second group discusses situations where NLCA has significant

advantage over CPA. The experiments are performed on simulated leakage traces for

well-chosen leakage models. The third group focuses on the impact of the similar but

inhomogeneous leakage behavior caused by exploiting leakages at different stages of

a round.

Experiments on Smart Card Power Measurements

We first run the proposed NLCA using real measurements of the power consump-

tion of an 8-bit AVR microcontroller, i.e. the ATXMEGA 256A3B processor. The

microcontroller runs the Rjindael Furious [53]– a popular and efficient software im-

plementation of AES-128 for AVR. A Tektronix digital sampling oscilloscope is used

to measure power leakage traces. The sampling rate is set to 200M Samples per

second which provides 100 sampling points per clock cycle. The Rjindael Furious

CHAPTER 5. LEAKAGE EXPLOITATION 98

6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time

P
ea

rs
on

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Figure 5.3: Use NLCA to distinguish the correct subkey and critical time sample.

implements the SubBytes operation on each byte as an S-box look up table (LUT).

It firstly takes 1 clock cycle to move the input Y of Sbox into a particular register

for relative addressing the LUT, then uses 3 cycles to load the output Z of Sbox

from program memory into another register. It is therefore expected that there is

an offset of 3 clock cycles (approximately 300 time points) between processing input

state Y and the output state Z of Sbox.

Using Algorithm 5.1, we test all 256 subkey hypotheses over all time samples.

That is, testing at time sample t refers to assuming LY occurring at sample t and

LZ occurs at sample t+ 300.

Figure 5.3 shows how NLCA distinguishes the correct subkey from wrong ones

CHAPTER 5. LEAKAGE EXPLOITATION 99

100 200 300 400 500 600 700 800 900 1000
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Traces

P
ea

rs
on

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Figure 5.4: The number of observations that suffices NLCA

using 1000 traces. the correct subkey hypothesis (red) stands out remarkably from

wrong hypotheses (gray) at the time sample around 6500, which means Y is pro-

cessed around that time instance and Z around 6800. The clear distinguishability

of the correct Pearson correlation coefficient verifies the validity of the non-linear

collision attack. It also indicates that leakages of collisions at different states under

different instructions also behave similarly.

Next, the number of traces needed for a successful NLCA is explored. The

correlation experiment is repeated on the discovered critical time point, as visualized

in Figure 5.3, using 75 to 1000 traces. The observed trend is depicted in Figure 5.4.

The correct hypothesis (red/dark) always features a higher correlation than the

CHAPTER 5. LEAKAGE EXPLOITATION 100

wrong ones (gray). The correlation computed from the correct subkey increases

with the number of used traces, and seems not to have reached the limit with 1000

used traces. The counterparts from the wrong hypotheses, however, are bounded

from -0.2 to 0.2. It is clear that the distinguishability in NLCA becomes increasingly

remarkable with more traces.

Note that the performance of NLCA using fewer traces is not covered in the

plot. One might be interested in the performance of NLCA when, for example,

only 20 or traces are available. However, NLCA requires finding a sequence of pairs

(X,X ′) such that the resulted Y ′ and Z collide. With limited availability of leakage

traces, it is very likely that intermediate states cannot be paired with the colliding

counterpart. In other words, too few pairs or even no pairs of LY ′ and LZ can be

used for computing correlation, which is easily biased or even undefined.

Next, the performance of NLCA and correlation based DPA (CPA) are compared

on the same measurement setup. The attacks use the same set of 500 leakage mea-

surements. The NLCA is tested on the critical time point discovered in Figure 5.3.

The CPA assumes the Hamming weight leakage model of the output Sbox and it is

therefore only performed on the most relevant time point for looking up the output

state Z of the Sbox. As can be seen from Figure 5.5(a) and 5.5(b), both NLCA and

CPA work well in this setting, outputting the correct subkey 43 with the highest

correlation coefficient. It is hard to determine which attack performs better simply

from the two plots. The NLCA gives the correlation for the correct subkey a little

higher than the CPA. But the level of correlation for wrong hypotheses in NLCA

(roughly between -0.2 to 0.2) is also higher than the CPA (roughly between -0.15

to 0.15). Nevertheless, the CPA assumes the Hamming weight leakage model. The

CHAPTER 5. LEAKAGE EXPLOITATION 101

experiment only indicates that the behavior of leakage obtained from the target

microcontroller is well captured by the leakage model in CPA. In general, if the

leakage does not behave according to the assumed leakage model, CPA might fail

due to the modeling error. This effect is studied in greater detail in the following

simulations.

0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

X: 43
Y: 0.5085

Subkey Hypothesis

P
ea

rs
on

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

NLCA

(a)

0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

X: 43
Y: 0.492

Subkey Hypothesis

P
ea

rs
on

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

CPA

(b)

Figure 5.5: Performance of NLCA (a) VS classical CPA (b) over microcontroller
measurements.

Experiments on Simulations: Immunity to Modeling Errors

In this section, we run experiments to test the robustness of the proposed NLCA

under different simulations of the leakage function. We show situations where the

NLCA has significant advantage over the CPA and Mutual Information Analysis

(MIA).

Adversaries. We consider four non-profiling adversaries: the classical CPA, the

univariate MIA (UMIA), the multivariate MIA (MMIA), and our NLCA. The uni-

variate target of CPA and UMIA is the output of Sbox. While for the MMIA and

CHAPTER 5. LEAKAGE EXPLOITATION 102

NLCA the targets are both the input and the output of Sbox. The CPA and the

two mutual information based distinguishers all assume Hamming weight leakage

model 3. All probability densities for UMIA and MMIA are estimated through the

histogram method using 9 bins. The NLCA does not assume any power model.

Leakage Simulation Design. We follow the design proposed in [75] of three

situations of simulation—the optimistic, the realistic and the challenging scenario.

The optimistic scenario assumes the leakage behaves proportionally to the Hamming

weight of the state value. I.e.

φop(Z) = HW(Z) + ε

where ε ∼ N (0, σ2) is the additive white Gaussian noise that has variance σ2. The

realistic scenario assumes an unevenly weighted Hamming weight model. That is,

the least significant bit (LSB) of the intermediate data has a relative weight of 10

while all the other bits have weight of 1. So the leakage function is expressed as

φre(Z) = HW(Z >> 1) + 10LSB(Z) + ε

The third case, i.e. the challenging scenario, assumes a non-linear leakage function,

and it is instantiated as Sbox mapping composition with the Hamming weight func-

tion. That is when the state Z is processed, the leakage function evaluated at Z

is

φch(Z) = HW(S(Z)) + ε

3As pointed out in [75], the near generic 7LSB power model for AES does not perform well for
the MIA and it even fails catastrophically in strong signal setting

CHAPTER 5. LEAKAGE EXPLOITATION 103

In other words, processing state Z gives a leakage of the Hamming weight of the

Sbox output of Z. It is clear to see that the modeling bias for CPA, UMIA and

MMIA become increasingly severe in the three simulation scenarios.

Performance Comparison. We use the first order success rate and the guessing

entropy [66] to evaluate the subkey recovery performance of the four distinguish-

ers – NLCA, CPA, UMIA and MMIA – as shown in Figure 5.6. They are tested

with the three simulation scenarios – Optimistic (Upper), Realistic (Middle), and

Challenging (Lower) – as discussed before. All metrics are derived empirically from

1000 independent experiments. In each experiment, the two correlation based dis-

tinguishers i.e. CPA and NLCA are fed with 256 simulated traces while the two

mutual information based adversaries use 2560 traces because of the demand of pdf

estimation.

It can be seen that only NLCA and MMIA survived from all three simulation

scenarios: both their first order success rate and guessing entropy converge to 1.

The CPA and UMIA are efficient when the Hamming weight model captures the

simulated leakage functions very well. However, they become increasingly impacted

by the leakage modeling errors. They succeed in the realistic scenario at a much

higher SNR and remain as failure in the challenging scenario no matter how SNR

varies. Interestingly, in the challenging situation, the guessing entropy of CPA and

UMIA grow much higher than 128 – the quantity for a random guess without using

side channel leakages– even if provided with strong signal. It indicates that the

impact of false leakage model can be as catastrophic as misleading the adversary.

A first glance at the behavior of the two remaining distinguishers MMIA and

NLCA appears to tell that former has some advantage over the latter. But one

CHAPTER 5. LEAKAGE EXPLOITATION 104

−8 −6 −4 −2 0 2 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
(SNR)

F
irs

t O
rd

er
 S

uc
ce

ss
 R

at
e

Optimistic
Scenario

NLCA
CPA
UMIA
MMIA

(a)

−8 −6 −4 −2 0 2 4
0

50

100

150

200

log
2
(SNR)

G
ue

ss
in

g
E

nt
ro

py

Optimistic
Scenario

NLCA
CPA
UMIA
MMIA

(b)

−8 −6 −4 −2 0 2 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
(SNR)

F
irs

t O
rd

er
 S

uc
ce

ss
 R

at
e

Realistic
Scenario

NLCA
CPA
UMIA
MMIA

(c)

−8 −6 −4 −2 0 2 4
0

50

100

150

200

log
2
(SNR)

G
ue

ss
in

g
E

nt
ro

py

Realistic
Scenario

NLCA
CPA
UMIA
MMIA

(d)

−8 −6 −4 −2 0 2 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
(SNR)

F
irs

t O
rd

er
 S

uc
ce

ss
 R

at
e

Challenging
Scenario

NLCA
CPA
UMIA
MMIA

(e)

−8 −6 −4 −2 0 2 4
0

50

100

150

200

log
2
(SNR)

G
ue

ss
in

g
E

nt
ro

py

Challenging
Scenario

NLCA
CPA
UMIA
MMIA

(f)

Figure 5.6: Robustness Tests for NLCA, CPA, UMIA and MMIA against Modeling
Error.

CHAPTER 5. LEAKAGE EXPLOITATION 105

should consider that firstly the MMIA requires 10 folds of simulated traces than

the NLCA because of the need of pdf estimation. Secondly, the behavior of MMIA

at optimistic and challenging situations are much more similar, while at the real-

istic scenario it actually becomes worse. Such observation shows that the leakage

modeling error still have some impact on its performance, just not in the same way

as one could expected. On the contrary, the NLCA remains an unchanged pattern

in all the three cases. Therefore, NLCA is robust with respect to different leakage

functions and is immune to leakage modeling errors.

Impact of the Inhomogeneity of Leakages

As mentioned in Section 5.2.4, processing Y with a move instruction and Z with

a load instruction results similar but not homogeneous leakage behavior even if

the values of the two states collide. Abstractly, it can be viewed as the leakage

functions over the state Y domain and state Z domain are different. The impact of

the inhomogeneity of the bivariate leakage needs to be investigated. The last group

of experiments shows the robustness of non-linear collision attacks against different

levels of inhomogeneity in the leakage. We first define the homogeneity coefficient

τ as the number of bits that both states Y and Z are leaking in the same manner.

It induces the following leakage functions.

φτ (Y) = φ (YL‖YR) = φ (U) + φ (YR) (5.3)

The YR represents, for example, the rightmost τ bits of state Y , which are assumed

to be leaking normally (i.e. with the same constant weight). The YL is respectively

the remaining bits of Y that are assumed to be leaking in a different way. More

CHAPTER 5. LEAKAGE EXPLOITATION 106

precisely, in Equation (5.3), the YL is independent4 of the leakage function, and it

is replaced by an independently generated random 8 − τ bit value U , which then

generates leakage. A corresponding leakage function is defined for state Z such

that φτ (Z) = φ (V) + φ (ZR) with a different random V . It is easy to see that

when Y ′ collides with Z in the NLCA, the part Y ′R is the same as ZR leading to

φ (Y ′R) = φ (ZR) while φ (U) 6= φ (V). In other words, the collisions are detected

only from the common τ bits that are leaking in the same way. The remaining bits

contribute only as noise. The lower the homogeneous coefficient τ , the more the

leakages between the two leaking states will deviate from one another.

In our experiments the leakage function φ is instantiated with the Hamming

weight function. In the τ homogeneous setting, this means that the leakage function

φτ (Y) = HW (U) + HW (YR) generates Hamming weight of τ bits YR as signal,

and the remaining random 8 − τ bits U give binomially distributed noise. The

equivalent is true for Z. A total of 400 independent experiments are performed.

Each experiment uses 256 simulated traces generated from the above defined leakage

functions. The result in Table 5.1 shows that for homogeneity coefficient τ ≥ 3, the

NLCA gives 100% success rate even for a single subkey trial. When τ = 1, 2 which

are the fairly low level of homogeneity, the adversary can still achieve success rates

more than 40% and more than 95% respectively by making 4 trials. The last line

of the table uses the security description Guessing Entropy defined in [66] that

quantifies the expected number of subkey guesses until finding the correct subkey.

It is not surprising to see that 2 trials can guarantee the adversary finding the

correct subkey when τ ≥ 2. Even at the lowest homogeneity level, it can still be
4It can also be considered that YL is mapped non-linearly to U before generating leakages. This

is similar to the challenging scenario discussed in Section 5.2.5.

CHAPTER 5. LEAKAGE EXPLOITATION 107

achieved with 20 trials. To sum up, the NLCA shows very strong robustness against

inhomogeneity of leakages for the two states. This result is not restricted to NLCA

and applies in the same way to inhomogeneity of leakages in LCCA.

Table 5.1: The Robustness of NLCA under Inhomogeneous Leakage Behavior
Homo. Coef.

τ = 0
Homo. Coef.

τ = 1
Homo. Coef.

τ = 2
Homo. Coef.
τ = 3 to 8

1st order SR 0.3% 23.0% 89.3% 100.0%
4th order SR 1.5% 43.0% 97.8% 100.0%

GE 126.13 19.18 1.35 1.00

5.3 Vulnerabilities of Low Entropy Masking Schemes

In this section, we show that the O2O comparison approach can also be used to

exploit the leakage in the presence of side channel countermeasure. In particular, we

study the low entropy masking schemes (LEMS) and propose a series of univariate

attacks against them.

5.3.1 Low Entropy Masking Schemes

Like other masking schemes, the LEMS try to randomize the observed leakage by

applying random values to intermediate states. With the notation introduced in

Section 3.1.1, the algorithmic values Y are no longer processed and hence not pro-

duce leakage directly. The leaking states become the masked output YM . That is,

the leakage generation function is changed to

L = φ(YM) = φ(fk (X) ∗M) (5.4)

CHAPTER 5. LEAKAGE EXPLOITATION 108

However, the LEMS reduces the size of the mask alphabet, resulting in a limited

extent of randomization of leaking states. For example, for a LEMS protected

implementation of AES, the mask set M is a strict subset of {0, 1}8 such that the

number of applicable mask values is much smaller than 256. The Rotating SBoxes

Masking (RSM) scheme proposed in [47] is a realization of LEMS. It is a Boolean

masking scheme that uses 16 mask values uniformly at random to protect AES

internal states. In general, we denote the set of masks M = {m1,m2, ...,ms} ⊂ Fn2 .

We say a LEMS has masking entropy of log s if mask values are chosen uniformly

at random from this set. The RSM is therefore said to have 4 bits of mask entropy.

Furthermore, authors in [46] proposed a selection criterion of optimal mask values

for LEMS. According to this guideline the following 16 byte values (written in hex

format) are used as the mask set in the DPA contest V4.

M = {00,0F,36,39,53,5C,65,6A,95,9A,A3,AC,C6,C9,F0,FF} (5.5)

The 16 chosen values form an [8, 4, 4] linear code (c.f. Section 2.1.1). It is there-

fore not surprising that they satisfies the self-complementary property: M = M.

Namely, m ∈M if and only if m̄ ∈M, where m̄ is the bitwise inversion of m.

The benefit of applying LEMS lies in the fact that it saves lots of computation

when compared to a full entropy masking scheme (FEMS) where s = 2n. The latter

usually suffers from the huge amount of additional computation as a consequence

of repeated masking/de-masking for the non-linear operation of a block cipher (e.g.

Sbox in AES). One example is the Generalized Look-Up Table countermeasure pro-

posed in [54]. It increases the size of a single Sbox sufficiently to make parallelized

implementation of AES on FPGAs infeasible. However, with fewer masks, the total

CHAPTER 5. LEAKAGE EXPLOITATION 109

number of necessary extra-computations can be kept at an acceptable level or even

completed from pre-computations (e.g. defining masked sbox as look up tables). In

short, LEMS enables more efficient implementation of a masking countermeasure.

Unavoidably, applying LEMS causes some loss of protection when compared to

FEMS. The natural question is how much security has been sacrificed and whether

an attacker can construct an efficient attack to break the LEMS. Experiments in [47]

show that RSM can resist univariate attacks including first and second-order DPA

and CPA. The work uses MIA as the metric to get a quantification of 0.015 bit of

information leakage in the described experimental setup, motivating a claim that

such a low amount should be hard to exploit.

LEMS are designed to resist low statistical order DPA/CPA attacks while main-

taining small computational overhead. The low level of leakage indicated by the

mutual information I(HW (YM);Y), as quantified in [47, 46], however, does not

exclude the possibility of a univariate attack. In this section we analyze the com-

position of the leakage distribution under the protection of LEMS. We propose a

univariate attack that can correctly decompose the observed one-dimensional dis-

tribution of leakage into several sub-distributions.

5.3.2 Leakage Distribution Composition

With the masking countermeasure, one algorithmic internal state Y can produce

side channel leakage L through multiple leaking values Ym1 , ..., Yms . Consequently,

the conditional entropy of leakage H(L | Y) increases, making the classical attacks

harder to succeed. According to equation (5.4) the leakage L depends on the known-

text X and the mask M , which are the main sources of entropy. If the knowntext

CHAPTER 5. LEAKAGE EXPLOITATION 110

is fixed to one value X = x at a time, the leakage entropy is lowered because only

mask values are changed and LEMS only contains a small number of masks.

We use DX=x
M∈M[L] (or simply DxM[L]) to denote the leakage distribution under the

condition that the knowntext X is fixed to x and the mask M is chosen uniformly

at random from the mask setM. In this situation, X = x implies only one sensitive

value y = fk(x) is to be protected by the masks, which results in the leaking set

(y)M. Processing each leaking value ymi
produces leakage φ(ymi

). The respective

leakage observations form a leakage sub-distribution denoted by DX=x
M=mi

[L] (or sim-

ply Dxmi
[L]) 5. Since the leaking set (y)M contains s leaking values, the observed

leakage distribution DxM[L] is a composition of s sub-distributions, namely,

DxM[L] = 1
s

s∑
i=1
Dxmi

[L] = 1
s

s∑
i=1
D[φ(ymi

)] (5.6)

This equality actually comes from the law of total probability, i.e.

p[L = l | X = x] =
s∑
i=1

p[L = l |M = mi, X = x] · Pr[M = mi]

= 1
s

s∑
i=1

p[L = l |M = mi]

simply because DxM[L] has the same meaning as the pmf/pdf p[L = l | X = x] and

Dxmi
[L] the same as p[L = l |M = mi, X = x].

It is important to see that in LEMS the distribution DxM[L] with fixed input x is

different from the overall leakage distribution D[L] where the knowntext is not fixed.

The former is a mixture of only s sub-distributions, while the latter is composed
5The notation DX=x

M=mi
[L] is of the same meaning of leakage distribution as D[φ(ymi

)]. Both
describe the leakage for processing ymi

. The former emphasizes leakage decomposition and the
latter focuses on connecting with estimated sub-distributions.

CHAPTER 5. LEAKAGE EXPLOITATION 111

of all 2n sub-distributions caused by all 2n leaking values. In fact, the proposed

leakage distribution decomposition attack (LDDA) makes use of this difference to

explore the weakness of LEMS. It also indicates that the univariate LDDA cannot

be extended to attack FEMS where both DxM[L] and D[L] are composed of 2n sub-

distributions and hence not distinguishable from each other.

5.3.3 Leakage Distribution Decomposition Attack

Prior to the attack, the adversary needs to estimate the sub-distributions D[φ(v)] of

leakage for each leaking value v. We discuss this issue in more detail in Section 5.3.3

and 5.3.3. Here the attacker is assumed to have already obtained a precise estimation

of sub-distributions. We show how this idea of decomposition in leakage distribution

converts to a side channel attack. For each subkey hypothesis g and each prefixed

knowntext X = x, the adversary follows a three-step procedure.

1. Find the hypothetical leaking set (ŷ)M;

2. Compute the hypothetical mixture D̂xM[L̂];

3. Evaluate the distance dist(D̂xM[L̂],DxM[L]) between the mixture and the ob-

served distribution.

More specifically, with the subkey hypothesis g for a subkey k, the adversary

computes ŷ = fg(x) and its respective masked states ŷmi
= ŷ ∗mi for all mi ∈ M.

Since each hypothetical leaking value ymi
contributes as one component D̂[φ(ŷmi

)]

of the leakage distribution, the adversary rebuilds the hypothetical mixture of all

the s sub-distributions as

CHAPTER 5. LEAKAGE EXPLOITATION 112

D̂xM[L̂] = 1
s

s∑
i=1
D̂[φ(ŷmi

)] (5.7)

Next, the adversary measures the similarity of the hypothetical mixture D̂xM[L̂]

and the observed distribution DxM[L]. A distance metric dist(D̂xM[L̂],DxM[L]) is

evaluated for this purpose. In general, a small value of the computed distance metric

indicates the two distributions are close to each other. A typical instantiation of the

distance metric is the Kolmogorov-Smirnov distance suggested by [74, 76], which is

later used in our experiments.

The adversary repeats the three-step procedure for all subkey hypotheses and

all prefixed x. Her final decision for the correct subkey k is the hypothesis k∗ that

results in the lowest averaged distance as in equation (5.8). The attack is successful

if k∗ = k.

k∗ = argmin
g

{
1
|X |

∑
x∈X

dist(D̂xM[L̂],DxM[L])
}

(5.8)

Please note that the LDDA does not predict each individual leaking state. In-

stead, it analyzes the entire predicted leaking set. Figures 5.7(a) and 5.7(b) give

an intuitive idea of how the decomposition of the observed distribution works for

correct and incorrect subkey guesses.

Validity If the subkey guess g is correct, i.e. g = k, then ŷ = fg(x) = fk(x) = y

and the prediction of leaking set is correct (ŷ)M = (y)M. Given precise estimations

of sub-distributions, the rebuilt mixture D̂xM[L̂] from equation (5.7) will be close to

the observed distribution DxM[L] because

D̂xM[L̂] = 1
s

s∑
i=1
D̂[φ(ŷmi

)] = 1
s

s∑
i=1
D[φ(ymi

)] = DxM[L]

CHAPTER 5. LEAKAGE EXPLOITATION 113

30 35 40 45 50 55 60 65 70
0

5

10

15

20

Leakage

F
re

qu
en

cy

(a)

30 35 40 45 50 55 60 65 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Leakage

P
ro

ba
bi

lit
y

D
en

si
ty

rebuild from wrong guess
rebuild from correct guess

(b)

Figure 5.7: The observed leakage distribution (a) VS the hypothetical mixtures
(b). The rebuilt mixture from the correct guess has a similar shape to the observed
distribution while the mixture from the wrong guess is quite different from the
observed distribution.

However if the hypothesis is wrong, i.e. g 6= k, then ŷ = fg (x) 6= fk (x) = y for

most of the inputs x, hence the hypothetical leaking set (ŷ)M has a low probability6

to be the same as the actual leaking set (y)M. It follows that with high probability

the rebuilt mixture D̂xM[L̂] differs significantly from the observed DxM[L] and hence

their distance metric output should be large.

LDDA With Profiling

We have mentioned that the adversary should estimate the sub-distributions before

mounting the LDDA attack. This has a straightforward solution by combining a

profiling phase. More specifically, the profiling adversary is also assumed to have

full control of the masks during the profiling stage – she knows each mask that is

applied in each invocation. This assumption is frequently used in previous work [48,
6An exception is when (ŷ)M is a permutation of (y)M for some particular g and x. Such

exception occurs with small probability because the predicted leaking states take the range of
entire {0, 1}n rather than M

CHAPTER 5. LEAKAGE EXPLOITATION 114

34, 63]. The described attacks require at least bi-variate leakages consisting of the

sample for processing the mask and the sample for the masked state. Hence, these

approaches are not applicable for univariate attacks. Nevertheless, the profiling

capability allows the adversary to build univariate leakage templates for each leaking

value v = fk′(x) ∗m on another device that runs the same crypto algorithm with

a different but known key k′. In other words, although the low entropy masking

protection mingles different sub-distributions D[φ(v)] together to achieve confusion,

the assumed profiling adversary can still isolate each from the mixture. The isolated

D[φ(v)] can then serve as a sub-distribution look up table, enabling the adversary

to rebuild the hypothetical mixture (the second step of LDDA) easily.

LDDA Without Profiling

Allowing the adversary having profiling capability is sometimes demanding. We

show that sub-distribution estimation is also feasible for adversaries who are not

granted with such privilege. This is achieved by assuming a leakage model and

estimating the expression of leakage function explicitly. For a clear illustration,

we assume the commonly accepted Hamming weight leakage model for a LEMS

protected AES. It should be mentioned that advanced techniques of non-profiling

leakage modeling such as linear regression model [18] may play a similar role if

adjusted properly. With the Hamming weight model, the leakage L is expressed as

a linear function of the Hamming weight of the leaking states with additive white

Gaussian noise ε. I.e.

L = aHW (YM) + b+ ε

CHAPTER 5. LEAKAGE EXPLOITATION 115

where the coefficients a, b are unknown constants, and the noise ε ∼ N (0, σ2) is

mean zero and the noise level σ is also unknown. Since the sub-distributions D[φ(v)]

for processing leaking value v can now be represented as N (L; aHW (v) + b, σ2),

estimating sub-distributions is simplified to estimating the unknown parameters

a, b, σ. Meanwhile, it is easy to see that the overall leakage distribution D[L] is a

weighted composition of nine Gaussian curves. I.e.

D[L] ≈
8∑

h=0
whN (L; ah+ b, σ2) (5.9)

where 0 ≤ wh ≤ 1 is the proportion of the normal curve N (L; ah + b, σ2) and∑8
h=0wh = 1. It follows that the Hamming weight h of leaking values YM forms a

Binomial distribution and the weight parameters wh =
(

8
h

)
/28, provided that the

knowntext X is uniformly distributed. It is because xoring and SBoxing are one-

to-one mappings. They deliver the uniform distribution from X to the sensitive Y

and its masked output YM .

Finally, we solve the parameter estimation as an optimization problem. Optimal

choices of a, b, σ should minimize the difference between the two sides of equa-

tion (5.9), namely, the observed overall leakage distribution and the composition of

the parameterized sub-distributions. We set it as the objective function in equa-

tion (5.10). Furthermore, the optimization should be associated with the restriction

that the statistical characteristics of the two sides should be approximately equal as

in (5.11). Examples of the restriction functions are the statistical moments includ-

ing Mean(D[L]) ≈ 4a+ b, Var(D[L]) ≈ σ2 + 2a2 (derived from analysis of variance)

and etc. The optimally parameterized N (L; aHW (v) + b, σ2) can then serve as a

CHAPTER 5. LEAKAGE EXPLOITATION 116

sub-distribution look up table, enabling the adversary to carry out the LDDA.

Minimize dist(D[L],
8∑

h=0
whN (L; ah+ b, σ2)) (5.10)

StatChar(D[L]) ≈ StatChar(
8∑

h=0
whN (L; ah+ b, σ2)) (5.11)

It should be mentioned that the non-profiling LDDA is heavily influenced by the

accuracy of leakage modeling. Large bias results in the derived sub-distributions

being significantly different from the actual leakage function and hence reduces the

efficiency or even disables the LDDA.

5.3.4 Leaking Set/Group Collision Attack

The previously discussed LDDA follows a ‘decompose’-then-‘rebuild’ approach to

compare the distributions of leakage. We now propose a second attack named

leaking set collision attack (LSCA). It circumvents the ‘rebuild’ step and allows

adversary directly comparing related distributions and therefore gains the benefit of

avoiding the sub-distribution estimation.

Existence of Leaking Set Collisions

The approach extends side channel collision attacks [64, 45] by defining collisions

between two leaking sets. Two distinct knowntexts x 6= x′ are said to induce a

leaking set collision if the respective leaking sets are the same, i.e.

(y)M = {ym1 , ..., yms} = {y′m1 , ..., y
′
ms
} = (y′)M

CHAPTER 5. LEAKAGE EXPLOITATION 117

For Boolean masking schemes, the existence of leaking set collisions is a consequence

of the self-complementary property for the choice of the mask values suggested in [46,

47]. It indicates that if m is chosen as a possible mask value, so should its bitwise

inverse m̄ = m ⊕ 1n as explained in Section 5.3.1 (1n denotes the all-1 bit string,

e.g. 0xff for a byte). One simple choice is y′ = ȳ. Because for any m ∈M,

(ȳ)m = ȳ ⊕m = y ⊕ 1n ⊕m

= y ⊕ m̄ = ym̄ ∈ (y)M

This proves (ȳ)M ⊂ (y)M. Similarly the other direction (ȳ)M ⊃ (y)M also holds

and hence (y)M = (ȳ)M. On the other hand, this choice y′ = ȳ identifies a relation

between the respective knowntexts x, x′ by setting fk (x′) = fk (x). It is equivalent

to

x′ = f−1
k (1n ⊕ fk (x)) (5.12)

It implies that the knowntext pair 〈x, x′〉 derived from equation (5.12) results in a

leaking set collision between (y)M and (y′)M.

Building a Leaking Set Collision Attack

An importance consequence of the leaking set collision is that the respective un-

derlying leakage distributions are identical. In fact, the set collision (y)M = (y′)M

implies the both DxM[L] and Dx′M[L] have the same composition of sub-distributions.

DxM[L] = 1
s

s∑
i=1
D[φ (ymi

)] = 1
s

s∑
i=1
D[φ

(
y′mi

)
] = Dx′M[L]

CHAPTER 5. LEAKAGE EXPLOITATION 118

Therefore, the empirically observed leakage distributions DxM[L] and Dx′M[L] should

be very close to each other. We now show how to convert this into a side channel

attack against LEMS protected AES. The Sbox of the first round is chosen as the

target function. Hence, the sensitive states y, y′ are the s-box outputs and the

knowntexts x, x′ are the corresponding plaintext byte values7. The paired relation

in equation (5.12) is then instantiated as in the following pairing equality in (5.13).

x′ = Pairing(x, k) = k ⊕ S−1 (0xff⊕ S (x⊕ k)) (5.13)

It indicates that the plaintext pair 〈x, x′〉 which satisfies the paring equality forms

a leaking set collision at their respective masked outputs.

The adversary, however, does not know the subkey k and cannot directly plug

in the pairing equality to derive a collision. Nevertheless, she can make subkey

hypothesis g and check for collisions just like a standard side channel attacker. A

detailed attacking procedure is shown in Algorithm 5.2. It firstly sorts all leakages

according to their respective plaintext x so that the empirical distributions DxM[L]

are obtained for all possible x. The adversary then starts testing subkey hypotheses.

With each hypothesis g, she computes the hypothetical pairing x′ = Pairing(x, g)

defined in equation (5.13). The two sets of related leakage distributions DxM[L]

and Dx′M[L] are fetched and their similarity is measured using the distance metric

dist(·, ·). In practice, the adversary can add up the computed distances derived

from all possible collisions (line 8 of the algorithm). The decision strategy is similar

to LDDA: the adversary determines as the correct subkey the hypothesis k∗ that
7The same approach can be applied to arbitrary intermediate states, as long as they are a

non-linear function of x and k: For states y that are linear functions of x and k, e.g. the s-box
input, the key cancels out so that the knowntext pair become independent from the key, making
the conversion into an attack infeasible.

CHAPTER 5. LEAKAGE EXPLOITATION 119

results in the smallest overall distance. The attack is successful if k∗ = k.

Algorithm 5.2 Leaking Set Collision Attack on RSM-AES
Input: Number of traces q; Knowntexts x1, ..., xq; leakages l1, ..., lq
Output: Subkey Decision k∗

Precomputation:
1: for x = 0 to 255 do
2: DxM[L] = {li | xi = x} . collect leakage whose knowntext is x
3: end for

Key recovery:
4: for g = 0 to 255 do
5: δg = 0
6: for x = 0 to 255 do
7: x′ = Pairing(x, g) . compute hypothetical pairing x′
8: δg = δg + dist(DxM[L],Dx′M[L]) . sums the distances from all pairings
9: end for

10: end for
11: k∗ = argming{δg}
12: return k∗

Validity If the key hypothesis is correct, i.e. g = k, then the derived pairing

x′ = Pairing(x, g) = Pairing(x, k) is exactly the same as the true pairing equality

in equation (5.13). It follows that a leaking set collision (y)M = (y′)M is generated.

Hence the compared distributions should feature a low distance metric quantity

dist(DxM[L],Dx′M[L]). However if the subkey hypothesis is wrong, the computation

yields

y′ = S(x′ ⊕ k) = S(g ⊕ S−1(0xff⊕ S(x⊕ g))⊕ k)

It is different from ȳ = 0xff ⊕ S(x ⊕ k) for most x. Hence the resulting leaking

set (y)M has low probability to completely overlap (y′)M and the two distributions

have high probability to differ significantly.

CHAPTER 5. LEAKAGE EXPLOITATION 120

Complexity It should be mentioned that the roles of x and x′ of a hypothetical

pairing are symmetric for any hypothesis. That is, if x′ is a hypothetical pairing

of x satisfying x′ = Pairing(x, g), then reversely x is also a pairing of x′ satisfying

x = Pairing(x′, g). Here is a simple proof.

x′′ = Pairing(x′, g) = g ⊕ S−1(0xff⊕ S(x′ ⊕ g))

= g ⊕ S−1(0xff⊕ S(S−1(0xff⊕ S(x⊕ g))))

= g ⊕ (x⊕ g) = x

This symmetry implies there are a total of 128 possible leaking set collisions for all

256 knowntexts x. It suffices to make only 128 distance comparisons for testing one

hypothesis. Therefore the total complexity is 256 × 128 distance computations to

recover one key byte.

Comparing LSCA with LDDA One common feature of LDDA and LSCA is

that both attacks are achieved by comparing leakage distributions. More precisely,

the compared leakage distributions refer to the leakages DxM[L] with some prefixed

knowntext x. It results in a lowered leakage entropy which become exploitable by

the two attacks.

There are also many differences between the two attacks. Firstly, the LDDA

compares empirically observed leakage distribution with the rebuilt hypothetical

mixtures, while the LSCA compares two sets of distributions that are both obtained

empirically. Therefore, the correct subkey hypothesis in the LDDA measures the

closeness of the empirical distribution to its underlying distribution. In the LSCA it

measures the closeness between two empirical distributions that are sampled from

CHAPTER 5. LEAKAGE EXPLOITATION 121

the same underlying distribution. Secondly, the LDDA requires sub-distribution

estimations to complete the “rebuild” step, while the LSCA avoids this. We have

seen that estimating sub-distributions not only adds some complexity or even re-

quires profiling privilege, but is also influenced by the accuracy of leakage modeling.

Thus the LSCA does not suffer from the modeling bias. Last but not the least,

the LDDA requires the mask set M to be known but the LSCA only requires the

self-complementary property for the masking set M. To sum up, the LDDA shows

the explicit composition of leakages and the LSCA makes use of leakage composition

implicitly and is more efficient in practice.

Leaking Group Collision Attacks

The DPA contest V4 actually advocates using the linear code or even its cosets as

the set of mask. The algebraic structure is assumed to provide leakage resistance

up to the fourth order statistical moments. We now present an even more powerful

SCA to exploit the univariate leakage. We need two properties about linear code

and cosets which are discussed in Section 2.1.1: the sum of two codewords remains

as a codeword, the sum of two strings that belong to the same coset remains as a

codeword.

First we consider using the linear code as the set of reduced masks M. Given

knowntext x, the state to be protected is y = fk(x) and the resulting leaking values

are yM = {y ⊕m1, ..., y ⊕ms}. Let another knowntext be

x′ = f−1
k (m⊕ fk(x)) (5.14)

for some m ∈ M. Clearly, it results in an algorithmic internal value y′ = y ⊕ m

CHAPTER 5. LEAKAGE EXPLOITATION 122

which yields the leaking set being

y′M = {y′ ⊕m1, ..., y
′ ⊕ms} = {y ⊕m⊕m1, ..., y ⊕m⊕ms} = yM

the same as the leaking set induced from the input x. Here the last equality just

come from the linear code property of the masking set M that m ⊕ mi ∈ M.

It means that for any mask value m from the mask set, the input evaluated at

equation (5.14) generates the same leaking set collision. The total s mask values

give s inputs x′ that produces a permutation on the leaking set yM. For example,

all the 16 masks in the set (5.5) induce the same leaking set collisions for any fixed

x. We call it a leaking group collision. It creates a partition on the input set X into

|X |/|M| groups, each (denoted as Ux
M) of which contains |M| many knowntexts,

i.e.

Ux
M := {f−1

k (m⊕ fk(x)) : m ∈M}

It follows that ∀x, x′ ∈ Ux
M, the leakage distribution are the same Dx′M (L) = DxM (L)

and hence the empirically obtained sample distribution should be close to each other.

Next, we consider using the same linear coset as the set of reduced masks, i.e.

M = m ⊕ C, where C = {c1, ..., cs} represents the linear code. To induce the same

leaking set yM, we choose x′ as

x′ = f−1
k (c⊕ fk(x)) (5.15)

for some c ∈ C. The chosen x′ gives rise to the internal state being y′ = c ⊕ fk(x),

CHAPTER 5. LEAKAGE EXPLOITATION 123

which further yields the leaking set as

y′M = c⊕ fk(x)⊕m⊕ C = y ⊕m⊕ C = yM

being same as the leaking set induced from x. Similar argument provides an partition

of the input set into |X |/|M| groups, each (denoted as Ux
C) of which contains |M|

many knowntexts, i.e.

Ux
C := {f−1

k (c⊕ fk(x)) : c ∈ C}

Again, whenever x, x′ ∈ Ux
C , the induced leakage distributions are the same respec-

tively. Dx′M (L) = DxM (L) and hence the empirically obtained sample distribution

should be close to each other. The attack works in the same way as the LSCA. That

is, subkey hypothesis yields knowntext partition. Only the correct subkey provides

correct partition and resulting in homogeneous leakage distributions.

Different from the LSCA where only homogeneous distribution comes in pairwise

manner, the knowntext partition here brings the benefits that the homogeneous

distributions Dx′M (L) are uniquely determined by the leaking group Ux
M (or Ux

C).

It implies applying distribution distance testers such as the Kolmogorov-Smirnov

distance can provide good performance while using fewer number of observations.

For example, in the LEMS defined in equation (5.5), each leaking group Ux
M contains

16 knowntexts {x1, ..., x16}. We can firstly randomly mix 8 from the 16 distributions.

CHAPTER 5. LEAKAGE EXPLOITATION 124

Without loss of generality, say

DA =
8∑
i=1
Dxi
M[L] (5.16)

DB =
16∑
i=9
Dxi
M[L] (5.17)

We then apply dist(DA,DB) to measure their difference. If the subkey guess is

correct, then the distributions to be mixed are homogeneous and the grouping does

not change the distribution. If the subkey guess is wrong, then the distributions to be

mixed are NOT homogeneous and the random grouping offer great chance such that

the two mixture distributions differ significantly. Since mixing distributions provides

more sample points for each mixture, the tests can have better performance.

5.3.5 Experiments

In this section, we carry out the LDDA and LSCA described in Section 5.3.3 and

Section 5.3.4. Our experiments are performed on the measurements from DPA

contest V4 [69]. It is a software implementation of AES-256 protected by the RSM

countermeasure (cf. Section 5.3.1) and a total of 100,000 leakage measurements are

provided. All attacks are performed on a univariate leakage sample representing the

leakage of the first round AES output of SBox. Before showing our result we want

to mention as reference that [47] shows 0 success rate for DPA,CPA and VPA based

on 150,000 observations of a hardware implementation of RSM. It also reports 0.001

to 0.012 bit of information being leaked from mutual information analysis.

CHAPTER 5. LEAKAGE EXPLOITATION 125

LDDA With Profiling

We firstly implemented LDDA using the template attack approach and we assume

full knowledge of the mask application during the profiling stage as detailed in

Section 5.3.3. A total of 50,000 measurements are used to build the templates, i.e.

the 256 sub-distributions D[φ(v)] of leakages for processing each possible leaking

state v. The obtained sub-distributions are represented as 256 Gaussian curves

N (L;µv, σ2
v). Upon the completion of sub-distribution estimation, another 2,000

to 16,000 measurements are used to test all 256 subkey hypotheses using the 3-

step LDDA. In particular, the rebuilt distribution from each hypothesis is now

instantiated as a Gaussian mixture,

D̂xM[L̂] = 1
s

∑
v∈(ŷ)M

N (L̂;µv, σ2
v)

resulting in a model similar to [35]. The Gaussian mixture is compared with the

observed distribution DxM[L] using Kolmogorov-Smirnov (KS) distance metric.

Figure 5.8 shows the profiling LDDA hypothesis testing for the first subkey byte.

We can see that LDDA succeed – the correct subkey k = 108 always gives the small-

est KS distance among the 256 subkey hypotheses– whenever more than 2000 traces

are used for testing. It verifies the correctness of the LDDA that only the correct

hypothesis yields a correct decomposition of the leakage distribution. The four plots

also show that the KS-distance drops when increasing the number of testing traces.

In particular, the averaged KS distance for the correct subkey hypothesis drops

from 0.273 all the way to 0.097. While for the wrong hypotheses, the average drops

from 0.279 to around 0.112. The reason is that the computed distance depends

CHAPTER 5. LEAKAGE EXPLOITATION 126

0 50 100 150 200 250
0.27

0.272

0.274

0.276

0.278

0.28

X: 108
Y: 0.2726

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(a)

0 50 100 150 200 250

0.196

0.198

0.2

0.202

0.204

0.206

X: 108
Y: 0.196

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(b)

0 50 100 150 200 250

0.134

0.136

0.138

0.14

0.142

0.144

0.146

0.148

0.15

0.152

0.154

X: 108
Y: 0.1386

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(c)

0 50 100 150 200 250
0.096

0.098

0.1

0.102

0.104

0.106

0.108

0.11

0.112

0.114

0.116

X: 108
Y: 0.09722

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(d)

Figure 5.8: Profiling LDDA hypothesis testing: Kolmogrov - Smirnov distance (y-
axis) between observed leakage distribution and rebuilt Gaussian mixture from all
subkey hypotheses (x-axis) with the profiled sub-distributions. Experiments use
2,000 traces (a); 4,000 traces (b); 8,000 traces (c); and 16,000 traces (d).

on two main factors: (1) the correctness of the prediction of the leaking set YM

(the effect exploited by LDDA); and (2) the sampling errors: viewing the observed

leakage (the empirical one) as the samples from its underlying distribution (the true

one approximated during the profiling). The law of large numbers implies that the

empirical distribution of the leakage converges to its underlying distribution when

increasing the number of leakages. Therefore, using more testing traces reduces the

CHAPTER 5. LEAKAGE EXPLOITATION 127

influence of the sampling error and hence decreases the overall KS distance metric.

As a consequence, the correct hypothesis becomes better distinguishable from the

wrong guesses.

LDDA Without Profiling

Our second group of experiments carries out the LDDA without a profiling stage

as described in Section 5.3.3. Each experiment estimate different combinations of

the required parameters in the presented optimization problem in equations (5.10)

and (5.11). The guessing entropy from [66] is used for the evaluation of the attack.

That is, the subkey k is said to have guessing entropy t if the KS distance for k is on

average the t-th smallest value among all KS distances for all hypotheses. Results

are summarized in Table 5.2.

Table 5.2: Performance Evaluation for Non-Profiling LDDA
Number of Traces 20,000 40,000 60,000 80,000 100,000
GE (average case) 19.74 16.65 4.02 2.93 1.31
GE (worst case) 30 33 11 9 5
GE (best case) 9 2 2 1 1

Best case is evaluated with optimal estimation of parameters; Worst case is with

non-optimal estimation.

It can be seen from the table that the correct subkey k has very low guessing

entropy of 1 or 2 if more than 40,000 traces are used in the optimal estimation cases.

Even for the worst estimation case shown in the table, the guessing entropy is still

33. The average estimation cases indicate that the non-profiling LDDA enables a

reasonable attack – the guessing entropy is kept at an acceptable level– whenever

CHAPTER 5. LEAKAGE EXPLOITATION 128

more than 60,000 measurements are used.

It can be seen that the non-profiling LDDA needs much more traces to succeed

comparing to the profiling LDDA. Notice that the latter serves as the closest ap-

proximation to the real leakage function and the non-profiling LDDA here is merely

derived from a coarse modeling of the leakage function – a noised linear transforma-

tion of the Hamming weight. The performance difference between the two methods

indicates that a more precise estimation of sub-distributions yields better attacking

performance for the non-profiling LDDA.

Leaking Set Collision Attack

The third group of experiments mounts the LSCA described in Section 5.3.4. Fig-

ure 5.9 shows the hypothesis testing of one LSCA attack using 10,000 to 40,000

traces. The correct subkey hypothesis k = 108 gives clear lowest KS distance metric

when more than 15,000 traces are used. The distinguishability of the correct subkey

increases with the number of traces that are used. Similar to the situation of profil-

ing LDDA, we can observe a drop in the magnitude of the KS distance for the same

hypothesis when the number of traces increases. The reason is still the reduction of

sampling errors by using more traces.

In addition, we use the provided 100,000 traces to run as many independent

experiments as possible for evaluating the LSCA attack. Table 5.3 summarizes the

attacking performance using guessing entropy and t-th order success rate. It can

be seen that the LSCA starts a stable success (GE = 1 and 1st order success rate

is 100%) with more than 12288 traces, namely, 48 traces per plaintext byte. It is

interesting to see that even with a total of 8192 traces (32 traces per plaintext),

CHAPTER 5. LEAKAGE EXPLOITATION 129

0 50 100 150 200 250
0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

X: 108
Y: 0.1652

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(a)

0 50 100 150 200 250
0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

X: 108
Y: 0.1504

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(b)

0 50 100 150 200 250
0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

X: 108
Y: 0.1236

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(c)

0 50 100 150 200 250
0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

X: 108
Y: 0.08983

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(d)

Figure 5.9: LSCA hypothesis testing: Kolmogrov-Smirnov distance (y-axis) between
observed leakage distributions for the pairings induced from subkey hypothesis (x-
axis). Experiments use 10,000 traces (a); 15,000 traces (b); 20,000 traces (c); and
40,000 traces (d).

making 4 guesses still ensures 2/3 success rate. The overall performance is much

better than the non-profiling LDDA. However, the comparison with the profiling

LDDA shows that the LSCA loses some success rate and requires more traces. The

possible reason is that LSCA expands the sampling error. Since the two observed

distributions DxM[L] and Dx′M[L] are two sampling distributions from the same un-

derlying distribution because of the set collision, the distance dist(DxM[L],Dx′M[L])

CHAPTER 5. LEAKAGE EXPLOITATION 130

is composed of two components: the distance from DxM[L] to the underlying distri-

bution and the distance from the underlying distribution to Dx′M[L]. Although the

compositional effect is not necessarily as strong as doubling the distance, it is very

likely that the sampling error is expanded in the LSCA. While the profiling LDDA

only measures one sampling error: the difference between the observed DxM[L] and

its underlying distribution. No expansion of sampling error occurs in the profil-

ing LDDA. Nevertheless, with the slight sacrifice of success rate, the LSCA makes

the full use of leakage similarity from the generated the leaking set collisions and

therefore does not need assuming profiling capability nor the full control of masks.

Table 5.3: Performance Evaluation for LSCA
Number of Traces 4096 8192 12288 16384
Guessing Entropy 34.17 5.33 1.00 1.00

1st order Success Rate 0 33.3% 100.0% 100.0%
4th order Success Rate 33.3% 66.7% 100.0% 100.0%

5.4 Conclusion

In this chapter we have proposed a novel SCA approach, the observation-to-observation

comparison. The main advantage is to bypass the complicated procedure of precise

leakage modeling and make a successful SCA invariant with respect to modeling

errors.

Two instantiations of the O2O approach have been proposed. The first one is

the non-linear collision analysis. It is a technique of bivariate leakage exploitation

targeting on unprotected crypto implementations. It generates internal collisions for

different micro-operations in unprotected implementation and results in exploitable

CHAPTER 5. LEAKAGE EXPLOITATION 131

bi-variate leakages. Experimental results from simulation have shown that the per-

formance of the NLCA is immune to leakage modeling errors. It is also shown that

inhomogeneous leakages generated from different operations have only low impact

on the performance of the proposed attack.

The second instantiation includes several algebraic collision generation attacks.

They belong to univariate leakage exploitation but targeting on protected implemen-

tation such as low entropy masking schemes. We have shown that the leakage that is

reduced by the LEMS can still be exploited from analyzing the leakage distribution

composition. Furthermore, the proposed leaking set and group collision generation

attacks succeed even without the complicated leakage distribution estimation.

These attacks have shown that studying a countermeasure with resistance of

the first, second or even higher order CPA/DPA is not sufficient to guarantee the

resistance to other univariate attacks. Experimental results confirm the limited

advantage from the profiling LDDA while the cost of modeling error is heavy as

seen from the non-profiling LDDA. It is indicated that the O2O approach can be

used to reveal improperly implemented masking countermeasure.

Chapter 6

Leakage Quantification

Earlier chapters have shown methods to detect and exploit information from side

channel leakage. From the adversaries’ perspective, those efforts are all made to-

wards the ultimate goal of revealing the entire key. Therefore, side channel threat

evaluation should be always orienting to the full key security. The basic task for

a security evaluation is to address questions like how many observations ensure a

successful full key recovery. A more important problem is to quantify the advantage

that a probabilistic polynomial time (PPT) adversary can obtain from the maximum

exploitable information. In this chapter we focuses on the problem of leakage quan-

tification. We start with motivations and related works. Then we propose a novel

constructive method and show how it can be used to determine whether bounded

leakage enables full key recoveries.

132

CHAPTER 6. LEAKAGE QUANTIFICATION 133

6.1 Motivations and Related Works

Recently, there has been a growing interest in studying and quantifying the amount

of information that can be extracted from a limited number of side channel obser-

vations. Knowing how much leakage actually suffices for a full key recovery is of

high practical relevance. This question is closely tied to the computational capabil-

ities of the side channel adversary, since SCA often includes an extensive key search

component. A good comparison of algorithms using tradeoffs between side channel

information and computation are the submissions to the DPA contest [68], where

the success metric is solely based on the number of needed observations, without a

clear limitation of computation. Another emerging trend in SCA are new attacks

that are made feasible only by tapping into the massive parallel computing power

as provided by GPUs, such as [44]. This indicates that computational power of the

adversary needs to be considered as part of side channel security metrics. Finally,

leakage resilient cryptography usually assumes limited leakage of a given key or se-

cret state (c.f. [33, 22, 40, 67]) before it is updated. The schemes provide security if

an adversary cannot successfully exploit more than the bounded leakage. In all of

these cases, it is of high interest to know how much leakage the adversary can get

from the observed measurements. Closely related is the question of the remaining

attack complexity—given the limited side channel information—and the resulting

search strategy.

So far only little effort has been put into the quantification of the remaining

computational complexity when limited leakage is available but insufficient to nar-

row the key space down to a simply searchable size. While systematic metrics to

quantify side channel leakage exist [38, 71, 61, 66], many of them perform rela-

CHAPTER 6. LEAKAGE QUANTIFICATION 134

tive comparisons of implementations or attacks [27, 36, 58]. The most promising

approach has been presented in [72, 73]. The authors present a full key enumera-

tion algorithm [72] as well as a key ranking algorithm [73] in the case where only

limited side channel leakage can be extracted. These algorithms enable estimating

the remaining full key recovery complexity even if the experimental verification is

infeasible. However, their algorithms assume the correct key to be known. In other

words, their results can be used by evaluation labs, but not by the key recovering

adversary.

6.1.1 Full Key Ranking Algorithm

The aforementioned metrics have mostly been applied for subkey recovery experi-

ments. This changed with the algorithms by Veyrat-Charvillon et al. in [72, 73].

The authors present algorithms to enumerate full keys [72] and to estimate the rank

of the correct full key among all full key candidates [73]. With the latter algorithm

they manage, for the first time, to approximate the computational complexity of

successful side channel adversaries for cases where experimental verification is no

longer possible or just too expensive. This means, the work pioneers in actually

getting meaningful metrics for the expected guesswork of an adversary achieving

full key recovery. Furthermore, they apply statistical bootstrapping to achieve cost

evaluation and approximate a ML approach adversary for full key recovery.

The rank estimation algorithm [73], referred to as VGS algorithm, works as fol-

lows: As input it receives probabilities for all subkeys from a single side channel

experiment, as well as the knowledge of the correct key (and consequently its prob-

ability). After sorting each of these subkey probabilities decreasingly, the different

CHAPTER 6. LEAKAGE QUANTIFICATION 135

dimensions are combined to create the key space. Next, volumes where keys have

higher (or lower) probabilities than the correct key are removed from the space and

their size is added to the lower (or upper) bound for the rank of the correct key. The

VGS algorithm stops either after a set time or once the bounds are close enough, i.e.

once the key rank has been narrowed down sufficiently. Finally, it outputs (upper

and lower bounds for) the key rank of the correct key.

By itself, the key rank only provides the placement of the probability of the cor-

rect key. It cannot specify, in each individual side channel experiment, how much

probability of success one can achieve by guessing full key candidates up to the

correct key. Instead, the probability of success is derived by statistical bootstrap-

ping: the side channel experiment is repeated e.g. n = 100 times, and the success

probability is derived as the percentiles of the key ranks in different experiments are

turned into success probabilities. The VGS algorithm is used for comparison and as

a benchmark for our algorithm that we introduce next.

6.1.2 Security Metrics

For evaluating side channel security on subkey recovery, the framework in [66] pro-

poses the (t-th order) Success Rate (SR) and the Guessing Entropy (GE). The t-th

order SR is defined as

SRki(t) = Pr[ki ∈ {gi,[1], ..., gi,[t]}]

It describes the probability that the correct subkey ki is compromised in the first

t prioritized guesses, namely, ki ∈ {gi,[1], ..., gi,[t]}. The GE describes the expected

CHAPTER 6. LEAKAGE QUANTIFICATION 136

ranking of the correct subkey. It is formulated as

GE :=
2n∑
t=1

t · Pr[ki = gi,[t]]

Clearly, GE can be expressed as a function from the t-th order SR. The two metrics

can be applied either to subkeys (as done in the above definitions) or to full keys.

However, the latter is of little help in side channel analysis, since it sacrifices the

divide-and-conquer technique and makes key spaces too large to derive meaningful

results.

In addition, Pliam introduces marginal guesswork1 in [52] as a metric to bench-

mark password recovery attacks, or more generically, smart exhaustive key searches.

‘Smart’ refers to adversaries that have and utilize prior information about the key

distribution. Thus, marginal guesswork is well suited to describe adversaries that

can assign probabilities to subkey candidates. In fact, it relates the success probabil-

ity to its minimum computational complexity. More specifically, let σ ∈ [0, 1] be the

probability of success the adversary expects to achieve, the σ-marginal guesswork is

defined to be the minimum number t of guesses to ensure finding the correct subkey

ki with at least σ success rate.

wσ(ki) = min{t :
t∑

j=1
pi,[j] ≥ σ}

Here pi,[j] = Pr[ki = gi,[j]] are the probabilities of the ordered subkey guesses. The

candidates are ordered decreasingly in terms of likelihood, the same as before.

pi,[j] ≥ pi,[j+1] ≥ . . . (6.1)
1referred to as work-factor in [51]

CHAPTER 6. LEAKAGE QUANTIFICATION 137

This approach is also known as Maximum Likelihood (ML) attack. Based on side

channel information, namely the inputs xq and leakages lq, it first assigns posterior

probability pi,j = Pr[gi,j | xq, lq] to subkey candidates gi,j. Next, it enumerates them

in a descending order gi,[j] according to the posterior likelihood pi,[j]. Since pi,j is

interpreted by definition as the likelihood of the true subkey ki being the candidate

gi,j, the guess gi,j ensures subkey success rate pi,j. Therefore the t-th order success

rate using ML approach is

SRki(t) =
t∑

j=1
pi,[j] (6.2)

It also establishes a connection between the t-th order SR and the σ-marginal guess

work as : wσ(ki) = min{t : SRki(t) ≥ σ}. To sum up, the adversary using maximum

likelihood approach is expected to have the minimum complexity to find the correct

subkey.

6.2 Evaluating Full Key Security

Side channel leakage enables assigning scores or posterior probabilities to subkey

candidates. However, to verify the correctness of a guess, different subkey parts must

be combined and checked. That is to say, as long as the leakage is not strong enough

to reveal each subkey part with a negligible error probability, the remaining full key

security is not trivially evaluated and is worthy of investigation. Conceptually, the

ML approach can be extended to cover full key recovery attacks so that all the

metrics described in Section 6.1.2 can also be applied to evaluate full key security.

However, the size of the key space is 2bn, e.g. in AES-128 it is 2128, and it makes it

infeasible to calculate the posterior probabilities to all full key candidates and then

CHAPTER 6. LEAKAGE QUANTIFICATION 138

to enumerate them strictly following the ML principle. In this section, we introduce

a weaker but computationally efficient approach to evaluate full key security. We

call this approach the weak Maximum Likelihood (wML) approach. We describe its

basic idea, followed by a Key Space Finding (KSF) algorithm as its realization and

explain how it differs from a true ML approach.

6.2.1 Weak Maximum Likelihood Approach

Since computing and enumerating probabilities for all full key candidates is infea-

sible, the adversary can, nevertheless, adopt the following straightforward strategy.

For each subkey part ki, the adversary only considers the top ei subkey candidates.

When making full key guesses, she checks the Cartesian product of such selected

candidates from all subkey parts. More specifically, the adversary considers the pri-

oritized guesses {gi,[1], ..., gi,[ei]} for the true subkey part ki and verifies all possible

combinations {g1,[j1]‖...‖gb,[jb] where 1 ≤ ji ≤ ei, 1 ≤ i ≤ b} as full key candidates.

It is clear that this approach ensures a subkey success rate of SRki(ei) with ei guesses

for the subkey part ki. Therefore, a full key success rate of ∏b
i=1 SRki(ei) is achieved,

implying a full key verification cost of ∏b
i=1 ei. The vector e = (e1, ..., eb) is called an

effort distributor or simply a node. The node defines how the adversary distributes

her verification complexity (or guesswork) over different subkey parts. It is easy

to see from the definition above that an effort distributor not only determines the

full key success rate Prob(e) that is achieved through guessing all candidates in

the Cartesian product, but also determines the full key verification cost Cost(e), or

guesswork. They are expressed as

CHAPTER 6. LEAKAGE QUANTIFICATION 139

Prob (e) =
b∏
i=1

SRki(ei) =
b∏
i=1

ei∑
j=1

pi,[j] (6.3)

Cost (e) =
b∏
i=1

ei (6.4)

In general, the adversary is interested in finding the minimal necessary guesswork

to achieve a σ success rate for a full key recovery attack. The procedure of find-

ing minimal full key recovery guesswork through finding optimal effort distributors

is referred to as the weak Maximum Likelihood (wML) approach. Intuitively and

informally, the observed leakage lq reveals different amounts of secret information

for different subkey parts. The more information is leaked of a certain key part,

the more confidence the adversary gets for prioritized subkey guesses. Therefore,

she can include more subkey candidates for the subkey positions where she has less

confidence in the correctness of the output hypothesis (cf. e.g. [70]).

Formally, the wML approach can be stated as an optimization problem with the

objective function and restriction condition defined as below.

Objective: Minimize Cost(e) (6.5)

Restriction Condition: Prob(e) ≥ σ (6.6)

We will show how to solve this optimization problem in Section 6.2.3.

There are differences between the wML and the true ML approaches. In ML, all

full key candidates are ordered according to their posterior probability. In wML, this

is not necessarily the case. In fact, full key candidates that are inside the Cartesian

CHAPTER 6. LEAKAGE QUANTIFICATION 140

product of selected subkey guesses are prior to combinations that are not defined by

the effort distributor. For example, given an effort distributor e = (e1, ..., eb), the

full key candidate gx = g1,[e1]‖g2,[e2]‖g3,[e3]‖...‖gb,[eb] is inside the Cartesian product,

while the candidate gy = g1,[e1−1]‖g2,[e2+1]‖g3,[e3]‖...‖gb,[eb] is not. The former is to

be considered by the wML approach while the latter is not. Therefore, wML sets

priority of the former over the latter. However, it is not always the case that gx

is more probable than gy. This means using wML will unavoidably cause some

ordering violation. The impact of such violation is discussed in Section 6.3.4 and

it turns out that the penalty is rather low, which confirms the usability of wML

approach.

6.2.2 The Search Domain and its Calculus Model

An optimization problem in the continuous domain can usually be turned into a

searching problem. Tools from differential calculus such as the gradient vector can

help providing efficient search directions. Here we adjust it to our search space which

is a discretized domain and build the model for the problem of searching optimal

effort distributors. All concepts introduced here will be used in the KSF algorithm

in Section 6.2.3. For a clear illustration we use AES-128 as an example. It can be

easily applied in other block cipher scenarios.

Structure of the Search Domain

We first define the search space. Each effort distributor e is treated as a node in the

b-dimensional discrete space. For AES-128, the key has 16 subkey parts (bytes) and

each effort entry—the number of guesses for each subkey part—can be any integer

CHAPTER 6. LEAKAGE QUANTIFICATION 141

between 1 and 256 inclusively. Therefore, the entire search space is 16 dimensional

with each dimension taking integers in [1 : 256], namely E = [1 : 256]16. The

optimization problem is now equivalent to finding the optimum node e∗ ∈ E that

minimizes the full cost or guesswork while achieving the required full key success

probability. To better understand the structure of the search space and enable an

efficient search, we introduce the following concepts.

Definition 1: a node e′ = (e′1, ..., e′b) is called the j-th decremental neighbor of the

node e = (e1, ..., eb) if e′j = ej − 1 and e′i = ei for all i 6= j. It is also denoted as

e−j = (e1, ..., ej − 1, ..., eb).

Similarly, the j-th incremental neighbor of node e is denoted as

e+
j = (e1, ..., ej + 1, ..., eb).

Definition 2: a node e ∈ E is said to be σ-feasible if it satisfies the restriction

condition (6.6). The set of all σ-feasible nodes is denoted as

Eσ := {e | Prob (e) ≥ σ}.

Definition 3: a σ-feasible node e ∈ Eσ is said to be on the boundary if none of its

decremental neighbors is σ-feasible, i.e. e−j /∈ Eσ,∀j. The set of all nodes on the

boundary is called the σ-feasible boundary and denoted as

∂ (Eσ) :=
{
e ∈ Eσ | e−j /∈ Eσ,∀j

}

CHAPTER 6. LEAKAGE QUANTIFICATION 142

Definition 4: a node e∗ is called σ-optimal if it is a σ-feasible node and has minimal

complexity among all σ-feasible nodes, i.e. Cost(e∗) ≤ Cost(e), ∀e ∈ Eσ

An immediate but important result can now be summarized as follows.

Boundary Property: the σ-optimal nodes are inside the σ-feasible boundary, i.e.

e∗ ∈ ∂ (Eσ) ⊂ Eσ.

The proof is straightforward. If e∗−j ∈ Eσ, then

Cost
(
e∗−j

)
= Cost (e∗) ·

e∗j − 1
e∗j

< Cost (e∗)

contradicting the definition of node e∗ being σ-optimal.

This property explains the fact that if making one less subkey guess at any

subkey part from an optimal effort distributor, the achieved success rate does not

reach the desired level σ. It indicates that the wML approach is to find an σ-optimal

effort distributor from the σ-feasible boundary.

A Calculus Model for the Search Problem

Now we define some calculus tools for enabling an efficient search algorithm for

finding the optimum node in the discrete search domain. For a function in continuous

space, the partial derivative ∂f
∂xj

indicates the instantaneous change of the output

of the function f caused by the change at the j-th coordinate xj of the input. We

define similar concepts for the objective function Cost(e) and restriction condition

Prob(e).

The discrete nature of our search domain [1 : 256]16 gives two situations: the

change caused by unit incrementing or decrementing on each effort coordinate ej.

CHAPTER 6. LEAKAGE QUANTIFICATION 143

More specifically, we define the incremental partial derivative of Prob(e) with respect

to ej as

∇P+
j = Prob(e+

j)− Prob(e) = [SRkj (ej + 1)− SRkj (ej)
SRkj (ej)

]Prob(e) (6.7)

Each ∇P+
j is a non-negative value2 and it indicates the amount of additional success

rate that could be achieved by incrementing effort by 1 at the j-th coordinate.

Similarly, the decremental partial derivative of Prob(e) is defined as

∇P−j = Prob(e)− Prob(e−j) = [SRkj (ej)− SRkj (ej − 1)
SRkj (ej − 1)

]Prob(e) (6.8)

This is also a non-negative value and it tells the loss of full key success rate caused

by decreasing effort by 1 at the j-th coordinate.

With the above defined partial derivatives, we can now obtain the incremental

gradient ∇P+ = (∇P+
1 , ...∇P+

16) and the decremental gradient ∇P− = (∇P−1 , ...∇P−16)

of the restriction condition Prob(e). It is important to see that the coordinate for

the largest partial derivative in the incremental (or decremental respectively) gra-

dient vector tells the full key success rate is increased (or decreased resp.) mostly

due to a unit effort increment (or decrement resp.).

The same concept is defined for the objective function Cost(e). The gradient

vectors in both incrementing and decrementing cases result in the same expression

because
2The cases are considered separately if incrementing or decrementing is impossible, i.e. ej = 1

or ej = 256 for equations (6.7), (6.8) and (6.9).

CHAPTER 6. LEAKAGE QUANTIFICATION 144

∇C+
j = Cost(e+

j)− Cost(e) =
∏
i 6=j

ei = Cost(e)− Cost(e−j) = ∇C−j (6.9)

For notational convenience, both ∇C+
j and ∇C−j are replaced by ∇Cj and the gra-

dient of the full key complexity Cost(e) becomes ∇C = (∇C1, ...∇C16). Again, each

coordinate is a non-negative value and it indicates the change in full key recovery

complexity which is caused by incrementing/decrementing effort by 1 at the j-th

entry of effort node e.

Lastly, we consider the direction vector u which is the negation of the gradient

−∇C projected onto the hyper-surface that is perpendicular to the gradient ∇P .

u = −∇C projected onto (∇P)⊥ = ∇P · ∇C
‖∇P‖2 ∇P −∇C (6.10)

where ∇P = (∇P1, ...,∇P16) is the averaged gradient, i.e. ∇Pj = (∇P+
j +∇P−j)/2.

This direction vector u satisfies the intuition to keep the restriction condition

Prob(e) unchanged (seen from the vanishing of the inner product u ·∇P = 0) while

decreasing the objective function Cost(e) as much as possible. A visualization can

be seen in Figure 6.2.3.

6.2.3 An Optimized Key Space Finding Algorithm

We now show how to realize the weak maximum likelihood approach to find the

optimum effort distributor by using the KSF algorithm.

The inputs of the algorithm include the desired full key success probability

σ and the sorted posterior probabilities pi,[j] (and hence the subkey success rates

CHAPTER 6. LEAKAGE QUANTIFICATION 145

SRki(t) according to equation (6.2)) for all subkey candidates gi,[j]. The inputs

of the algorithm include the desired full key success probability σ and the sorted

posterior probabilities pi,[j] (and hence the subkey success rates SRki(t) according to

equation (6.2)) for all subkey candidates gi,[j]. Note that this algorithm, unlike the

VGS algorithm, does not require knowledge of the correct key, i.e. can also be used

by a key recovering adversary. The applicability of this algorithm is not restricted

to the profiling adversary. In [72], it is suggested that a non-profiling adversary can

also assign likelihoods to subkey candidates to achieve a justified full key ranking,

which could also be applied in our case.

There are two outputs returned by the algorithm: one is the minimum verifica-

tion complexity min {Cost (e) | e ∈ Eσ} that ensures the desired full key success rate

σ ; the other one is an optimal effort distributor e∗ = argmin {Cost (e) | e ∈ Eσ}

that achieves this complexity lower bound.

Figure 6.1: Flow Chart of the KSF algorithm.

The flow chart of the KSF algorithm is shown in Fig. 6.1. It uses several sub-

routines. The algorithm begins by generating a random node e ← [1 : 256]16 using

RandomGen(). This node serves as the starting point in the searching space. The ini-

tial node is then passed sequentially into two subroutines: SearchTowardsBoundary()

and SearchAlongBoundary(). The former moves a node onto the feasible bound-

CHAPTER 6. LEAKAGE QUANTIFICATION 146

Algorithm 6.1 SearchUp()
1: while Prob(e) < σ do
2: i← argmaxj{∇P+

j }
3: ei ← ei + 1
4: end while
5: return e

ary ∂(Eσ) by calling SearchUp() and SearchDown(). The latter searches for nodes

within the boundary, which feature an even lower value of the objective Cost(e).

It uses the Swap() family of subfunctions. Note that the algorithm is a proba-

bilistic algorithm to finding the point on the surface that has the minimal cost. It

finds local minima. In practice, it is executed several times to ensure that the local

optimization also yields the global minimum.

The SearchTowardsBoundary() Function

The task of this function is to move a node onto the feasible boundary ∂(Eσ). If the

input node e does not satisfy the restriction condition, i.e. Prob(e) < σ, it calls the

function SearchUp() (as shown in Alg. 6.1) to search for a node that is σ-feasible.

More specifically, SearchUp() iteratively increases the number of subkey guesses

for some part of the subkey and updates the node. In each iteration, the search

direction, i.e. the coordinate of the subkey part that needs to be incremented, is

determined by the incremental gradient ∇P+ as defined in Section 6.2.2. The effort

coordinate that maximizes the gain in success rate through a unit effort increase is

chosen, i.e. i = argmaxj{∇P+
j }. The node is updated by a unit increment on the

chosen effort coordinate. The process continues until a σ-feasible node is reached,

namely, the restriction condition is satisfied as Prob(e) ≥ σ.

CHAPTER 6. LEAKAGE QUANTIFICATION 147

Algorithm 6.2 SearchDown()
1: while e /∈ ∂(Eσ) do
2: i← argmaxj{∇Cj s.t. Prob(e)−∇P−j ≥ σ}
3: ei ← ei − 1
4: end while
5: return e

Now we have a σ-feasible node—either it is an initially generated node that

already satisfies the restriction condition or it is a node returned from SearchUp().

The remaining task is to search for a node on the feasible boundary ∂ (Eσ), since

the optimal effort distributors can be found only on the boundary. The function

SearchDown() is called to complete this task. In each iteration, the gradient vector

∇C of the objective function Cost(e) is used to determine the search direction, i.e.

the effort coordinate that needs to be decremented as shown in line 2 of Alg. 6.2. It

reflects the direction where the objective function Cost(e) has the biggest complexity

drop through a unit effort decrementing while not violating the restriction condition.

This means that the updated node is still σ-feasible. The process continues until

the Boundary Property (as defined in Section 6.2.2) is satisfied. In other words, it

returns a node e ∈ ∂ (Eσ).

The SearchAlongBoundary() Function

So far the search algorithm has found a node on the σ-feasible boundary. The

next step is to search for nodes within the boundary, which achieve σ-feasibility at a

lower cost Cost(e). The subroutine SearchAlongBoundary() is called to accomplish

this task. We have seen from the Boundary Property in Section 6.2.2 that any

decremental neighbor of a node on the boundary is not σ-feasible. It implies that

CHAPTER 6. LEAKAGE QUANTIFICATION 148

the only way to find a node with lower full key cost is through trading-off (or

swapping) efforts between different coordinates, which is realized in the Swap()

family of subroutines.

More specifically, the coordinates for swapping are determined from the direc-

tion vector u defined in equation (6.10) as it follows the intuition that the search

should decrease the overall guesswork while not compromising the full key success

probability. The direction vector u suggests to increase effort on coordinate j if

uj is positive, and decrease if negative. The order of the effort coordinates being

incremented or decremented is determined by the order of the absolute values of the

entries uj. The higher the absolute value, the higher the priority that is assigned to

the coordinates for incrementing and decrementing.

Similar to search problems defined in continuous domain, the algorithm also

handles the problem of local minima that prevents effective searching. In particular,

we implement three different swapping modes –HorizontalSwap(), VerticalSwap()

and BlockSwap() – to “escape” from many local minima and therefore mitigate

the risk of being terminated in advance. The HorizontalSwap() allows trading-off

multiple efforts between the positive most and negative most coordinates, i.e. u+
i and

u−j . The VerticalSwap() in each iteration enables trading-off one effort between

multiple coordinates where ujs are of different signs. Finally, the BlockSwap() mode

enables trading-off multiple efforts on multiple coordinates. All three modes ensure

that the swap does not compromise the required full key success probability, i.e.

e ∈ Eσ always hold. The updated node (after efforts being swapped) is again passed

through SearchDown() to ensure that the search is still performed on the boundary.

The three modes prevent infinite loops because the swap action occurs only if the

CHAPTER 6. LEAKAGE QUANTIFICATION 149

cost of the updated node is lower than the cost for the session node.

As shown in Alg. 6.3, a temporary node e′ is returned from the Swap() family

of functions in each iteration. If the cost for the temporary node is lower than the

current session node, then the session node e is replaced by before being passed into

the next iteration. Otherwise, the search is terminated and the algorithm outputs

the current node e and its full key verification costs Cost(e).

Algorithm 6.3 SearchAlongBoundary()
1: e′ ← Swap()
2: while Cost(e) > Cost(e′) do
3: e← e′
4: end while
5: return [e, Cost(e)]

Figure 6.2: The direction vector u is the projection of cost gradient −∇C onto
(∇P)⊥

CHAPTER 6. LEAKAGE QUANTIFICATION 150

6.2.4 Usage of the KSF algorithm

Full key security evaluation used to stay as an analysis that is beyond computing

power. The KSF algorithm provides practical meaning to the security evaluation.

Firstly, the adversary can use it to determine if the leakage is strong enough to

enable full key recovery at her accessible computing power. More specifically, upon

a particular set of observations (xq, lq), the returned global minimum of Cost(e)

serves as an individual lower bound of the optimum guesswork wσ. If the guesswork

is acceptable, the associated optimal effort distributor e provides a winning strategy:

checking all the full key candidates defined by the Cartesian product of this optimal

node. This strategy ensures the adversary with success rate being at least σ. Even

if in one session the observed leakages are not strong enough, namely requires high

wσ, she can just wait for the next session until a ”good” observation appears. This

can be the case if the guesswork is impacted a lot from different observations, which

is in fact verified in our experiments in the next section.

Secondly, it can be used by a security evaluation lab. By feeding the algorithm

with independently generated observations (xq, lq), an evaluator can bootstrap the

individual lower bounds and obtain the distribution of the guesswork wσ at any fixed

σ. This informs the evaluator the resistance of some DUT against a probabilistic

SCA. In other words, if the adversary intends σ success rate, how much chance does

she have by waiting until a strong enough leakage occurs. A simple example would

be computing the expected lower bound of guesswork—the average of all individual

lower bounds—and using it as a metric. The metric indicates the averaged level of

security of the full key as the expectation is with respect to various experiments,

i.e. not only different choices of input xq, but also leakages observations lq.

CHAPTER 6. LEAKAGE QUANTIFICATION 151

6.3 Experiment Results and Comparison

In this section we apply the proposed wML approach to practical side channel

leakage evaluation. We first explain the experimental setup. Next, we verify the

validity of the KSF algorithm and discuss its possible influencing factors. Finally,

we compare our approach and VGS algorithm. .

6.3.1 Experiment Setup

We conduct the leakage evaluation experiments in two settings: real measurements

and simulations. For the former, we target on an unprotected AES software im-

plementation, the RjindaelFurious [53] running on an 8-bit AVR ATXMega A3B

processor. A total of 200,000 measurements were taken using a Tektronix DPO

5104 oscilloscope at a sampling rate of 200MS/s. Among all the collected traces,

20,000 are used for building Gaussian templates. The remaining traces are used

as needed for the evaluation step. In the other setting, we simulate side channel

leakage using the widely accepted Hamming weight leakage model with additive

Gaussian noise. In both cases the targeted leakage is that of the s-box output of

the first round for each of the 16 state bytes.

6.3.2 Posterior Probabilities Derivation

As a preparation step of leakage evaluation, posterior probabilities for all subkey

candidates need to be estimated from side channel observations. The probably most

popular method is through Templates [11, 38] where the adversary creates a precise

model of the leakage in the profiling phase and derives posterior probabilities in the

CHAPTER 6. LEAKAGE QUANTIFICATION 152

attack phase. An in-depth discussion of modeling errors for Gaussian templates can

be found in [20]. For our experiments, we build Gaussian templates N (L;µv,Σ2
v)

regarding the output v of Sboxes at each of the 16 bytes. In the attack phase,

the adversary obtains the observations (xq, lq). Since the predicted internal state

for the j-th query is yi,j,g = f(xi,j, g) under the subkey hypothesis g at the i-th

subkey part, the observed leakage li,j has conditional probability density P[li,j |

g] = N (li,j;µv,Σ2
v), where v = yi,j,g. Since side channel leakages in different queries

are independent, the conditional probability density P[lqi | g] of observing the q

leakages lqi = (li,1, ..., li,q) on the i-th subkey part is the product of each P[li,j | g].

Namely,

P[li,1, ..., li,q | g] =
q∏
j=1

P[li,j | g] =
q∏
j=1
N (li,j;µv,Σ2

v). (6.11)

Further, the Bayesian formula returns posterior probabilities pi,g := Pr[g | lqi] of

subkey hypothesis g given the q observations lqi as

pi,g := Pr[g | lqi] = P[lqi | g] · Pr[g]∑
g∗ P[lqi | g∗] · Pr[g∗] = P[lqi | g]∑

g∗ P[lqi | g∗]
(6.12)

Finally, the posterior probabilities pi,g are sorted into a descending sequence pi,[g] as

detailed in Section 6.1.2. They determine the subkey success rates in equation (6.2)

which are the inputs for the KSF algorithm and the VGS algorithm.

6.3.3 Correctness and Influencing Factors

Verifying the correctness of the KSF algorithm is rather simple: if the returned

optimal effort distributor e∗ covers the ranks of the posterior probability of every

subkey ki, then the search space defined by the Cartesian product includes the

CHAPTER 6. LEAKAGE QUANTIFICATION 153

correct full key as explained in Section 6.2.1. In the following, we check if the

algorithm in fact achieves the promised success rate for various experiments. We

provide a set of observations for a range of q from 1 to 40: higher value for q indicates

more leaked information. We furthermore set 19 different levels of desired success

rate from 0.05 to 0.95 incrementing at 0.05. For each possible (q, σ), 200 experiments

are performed for the scenario using real measurements, and 100 experiments for

the scenario using simulated leakage.

Figure 6.3(a) compares the promised full key success rate of the KSF algorithm

with the actually achieved success rate for real measurements. One can see that

when the leakage is strong (high value of q), the achieved success rate is far beyond

what is promised. However, when the leakage is weak, the two rates only differ

slightly. A probable reason for the achieved success rate being lower than the desired

success rate for small values of q lies in the assumption that the Gaussian templates

fully capture the underlying leakage distribution. In fact, the empirically obtained

Gaussian templates only serve as approximation to the true leakage distribution,

and hence the derived posterior probabilities are unavoidably biased. This claim is

also supported by the results for simulated leakage, as given in Figure 6.3(b), where

the underachieving never happens. Nevertheless, for almost all cases, especially

when q ≥ 8, the KSF algorithm fulfills the promised full key success rate.

Other influencing factors of the KSF algorithm are the leakage observations and

the number of independent initial nodes used for finding local minima, as discussed

in Section 6.2. To investigate their impact, we run 50 experiments associated with

independent sets of observations (xq, lq). In each experiment, we compare the per-

formance of KSF algorithm at the fixed σ = 50% using 100 and 10000 initial nodes.

CHAPTER 6. LEAKAGE QUANTIFICATION 154

(a) (b)

Figure 6.3: Correctness verification for real measurements (a) and simulation (b);
The success rate that KSF achieves (y-axis) is more than what it promised (x-axis).

The global minimum guessworks in each experiment are returned and compared in

Figure 6.4(a). The x-axis is the index of experiments indicating a different set of

observation (xq, lq) and the y-axis is the guesswork in bits. As we can see, differ-

ent leakage observations cause more than 40 bits guesswork differences while the

influence from the number of initial nodes (the distance between the two curves) is

rather small. In fact, the biggest difference between the two curves is less than 2.5

bits and most of the times the difference is smaller than one bit.

6.3.4 Comparing KSF algorithm with VGS algorithm

As mentioned in Section 6.1.1, the VGS algorithm estimates the rank of the correct

key among all full key candidates. By bootstrapping this rank statistic, or namely,

by repeating the rank estimation from different side channel observations, one can

get a security evaluation based on the success percentiles to see the rank distributions

given random side channel inputs.

CHAPTER 6. LEAKAGE QUANTIFICATION 155

0 10 20 30 40 50
20

25

30

35

40

45

50

55

60

65

Index of Experiment

G
ue

ss
w

or
k

in
 b

its

100 Init Nodes
10000 Init Nodes

(a)

 1 4 8 12 16 20 24 28 32 36 40

20

40

60

80

100

120

q

G
ue

ss
w

or
k

or
 R

an
k

Our Alg. σ = 0.5
VGS Alg.

(b)

 1 4 8 12 16 20 25 30 35 40

0

20

40

60

80

100

120

q

G
ue

ss
w

or
k

or
 R

an
k

Our Alg. σ = 0.5
VGS Alg.

(c)

 1 4 8 12 16 20 25 30 35 40

0

20

40

60

80

100

120

q

G
ue

ss
w

or
k

or
 R

an
k

Our Alg. σ = 0.25
VGS Alg.

(d)

Figure 6.4: Figure (a) shows the impact on guesswork (y-axis) from the number of
starting nodes for KSF algorithm is far less than the impact from the set of observa-
tions (xq, lq) in each experiment (X-axis); Figure (b,c,d) compares the size of the key
space from the KSF algorithm to the key rank from the VGS algorithmĖxperiments
are performed over real measurement with success rate σ = 50% (b); over simulation
with σ = 50% (c); and over simulation with σ = 25% (d)

We first provide several comparisons between the bootstrapping of the rank

statistic from repeating VGS algorithm and the bootstrapping of guesswork wσ

KSF algorithm. Figure 6.4(b) compares the two over the real measurement. We

fix the full key success rate in KSF algorithm to σ = 50%. For each q (x-axis),

we perform 200 experiments using the algorithms on the same sets of observations.

The box plot indicates quartiles and outliers of the guesswork and rank statistics.

CHAPTER 6. LEAKAGE QUANTIFICATION 156

We see that the results from the two algorithms are relatively close to each other.

Further, the impact of different leakages on the rank statistic using VGS algorithm

is heavier than that on the guesswork returned from our algorithm. This can be seen

from the difference of the height of boxes for the two algorithms. More importantly,

we see that the medians of the two analyzed cases do not align exactly. In fact, ours

are always slightly higher than the VGS algorithm. The reason is two folds. On

one side, the KSF algorithm is following wML approach, which introduces ordering

violation comparing to the true ML approach, as explained in Section 6.2. On

the other, since in each individual experiment the VGS algorithm does not return

a fixed success probability ∑rank
t=1 p[t] (the ML adversary should guesses all the top

rank full key candidates), the 50th percentile of the rank does not necessarily ensure

the adversary achieves 50% success rate in an averaged experiment either. This is

even more clearly seen from the simulated leakage scenario as shown in Figure 6.4(c)

(rank compared to w0.5) and 6.4(d) (rank compared to w0.25). In the simulated case,

the ML approach is closer to the w0.25 bootstrapping with the weak ML approach.

It indicates that the guessing the top rank most likely full key candidates in the

ML approach roughly returns winning probability of 25%. In general, it might

suggest the evaluator to find the appropriate σ level such that the bootstrapping

of the guesswork wσ matches the bootstrapping of the key rank. By doing so, the

evaluator can estimate the success rate ∑rank
t=1 p[t] in an average experiment that the

top rank full key candidates contain.

The next comparison of the two leakage evaluation algorithms is between the

expected guesswork lower bound (Figure 6.5(a)) and the bootstrapping of the rank

(Figure 6.5(b)). Experiments use the data from the microcontroller measurements.

CHAPTER 6. LEAKAGE QUANTIFICATION 157

q

F
ul

l K
ey

 S
uc

ce
ss

 R
at

e

5 10 15 20 25 30 35 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20

40

60

80

100

120

(a)
q

F
ul

l K
ey

 S
uc

ce
ss

 R
at

e

5 10 15 20 25 30 35 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20

40

60

80

100

120

(b)

Figure 6.5: Security evaluation using KSF algorithm showing the remaining guess-
work (color in (a)) and using VGS algorithm showing the key rank (color in (b))
over the number of observations q (x-axis) and success rate/percentile (y-axis).

The x-axis for both represents the number q of accessible leakages in each experi-

ment. In Figure 6.5(a), the y-axis is the desired full key success probability σ. The

color or gray-scale for the pixel at coordinate (x, y) = (q, σ) represents the expected

lower bound (as explained in Section 6.2.4) of the guesswork in log scale. The darker

a pixel is, the more guesswork is needed to achieve the specified success rate σ. In

particular, the expected lower bound at each (q, σ) is derived from 200 independent

experiments. Each experiment uses an independent set of observations (xq, lq) which

yields different posterior probabilities pi,[g] computed as described in Section 6.3.2.

The number of initial node is set to 100 (Figure 6.4(a) already shows this number is

sufficient). The global minimum guesswork from the 100 searches is returned as the

individual lower bound of the guesswork for this single experiment. Upon comple-

tion of the 200 experiments, the average of the 200 individual lower bounds yields

the expected lower bound as reflected in the color of pixel in Figure 6.5(a). In short,

the color at pixel (q, σ) indicates the expected minimum guesswork that a q-limited

adversary should spend in order to achieve full key recovery with probability σ. In

CHAPTER 6. LEAKAGE QUANTIFICATION 158

Figure 6.5(b), VGS algorithm is executed with the same sets of observations (xq, lq).

The returned 200 ranks (represented in the color of each pixel) derive the statisti-

cal bootstrapping of the success percentile (the same as in bootstrapping) which is

represented on the y-axis. Two contour plots are fairly close to each other.

6.4 Conclusion

The presented algorithm finds the optimal key search space that allows the adver-

sary to achieve a predefined probability of success. Unlike prior work, the algo-

rithm provides a connection between the remaining full key security and the success

probability even for a single set of side channel observations. It furthermore is a

constructive algorithm, since it not only bounds the remaining key search space,

but also provides an optimized yet simple strategy to search that space. As a con-

sequence, the algorithm can be used by embedded security evaluators to quantify

the resistance of a device to SCA. It can also be used by an adversary to determine

whether the leakage suffices for a successful key recovery attack.

Chapter 7

Conclusion & Future Directions

As unsolved issues for embedded cryptographic solutions, side channel attacks have

been challenging the physical security of embedded crypto-systems. They mitigate

or even invalidate the protection from cryptographic algorithms used in a system.

Consequently, the desired security objectives such as confidentiality, integrity and

authenticity risk to be compromised. To address the physical threats, a comprehen-

sive side channel security evaluation is demanded. It requires a deep understanding

of the mechanism that a side channel adversary detects and exploits the leaked in-

formation. It also needs investigation on the maximum capability that the adversary

converts the leaked information to the targeted secrets.

In this dissertation, we show that SCA has not reached its maximum potential

and hence the threat is unfortunately underestimated. By analyzing side channel

leakages from the perspectives of leakage detection, exploitation and quantification,

we show that SCAs can be more powerful in the following three aspects.

1. SCA can be mounted more reliably using the wide collision detection methods

and more efficiently with the leakage bundling technique. They can detect

159

CHAPTER 7. CONCLUSION & FUTURE DIRECTIONS 160

both univariate and multivariate leakage. Therefore, they are applicable for

both protected and unprotected crypto implementations.

2. SCA can succeed without relying on leakage modeling. This is achieved from

the approach of observation-to-observation comparison, which is instantiated

with collision generation techniques. It advances classical SCAs as it no longer

suffers from biased or wrong leakage models. It also advances side channel

collision attacks by mitigating the risk of false positives in collision detection.

3. Probabilistic success can be achieved with even very limited number of side

channel information. The constructive strategy is provided by the weak maxi-

mum likelihood approach. It allows the adversary, even prior to a real attack,

to determine whether the smart key search is at an acceptable computational

complexities and can provide desirable success rate.

All these data analytic techniques produce more powerful SCAs. Preventing

these attacks calls for better countermeasures, more advanced testing methods as

well as more comprehensive security evaluations. We consider the following areas

to be further investigated.

1. Side channel testing is to examine the existence of side channel leakage. Cur-

rent techniques perform well for testing univariate leakage. For instance, the

Welch t test performs pointwisely; mutual information based tests can handle

the estimation of univariate leakage distribution relatively easily. However, if

the leakage is in multivariate nature, then joint distribution of leakage needs

to be considered. The Welch t test is no longer a qualified candidate. Applying

mutual information based tests will confront significant decrease of the pre-

CHAPTER 7. CONCLUSION & FUTURE DIRECTIONS 161

cision in the joint distribution estimation. Therefore, advanced side channel

testing methods need to be studied to be capable of examining multivariate

side channel leakage.

2. The unified framework in [66] presents an information theoretic metric and

a security metric for evaluating side channel security. The entropy analysis

has been widely employed in the theoretical leakage resilience cryptography.

The guesswork analysis in this work provides a tool for practical quantification

of the security loss in terms of full key recovery. The gap between the two

evaluation metrics is narrowed but not completely bridged. One interesting

question is whether the two metrics are equivalent in terms of preventing SCAs.

In other words, a joint study needs to exam whether low entropy loss implies

low level of security loss or vice versa. The question is important because if

the causal relation does not hold, (for instance if there is leakage distribution

that results in low key-entropy loss but high security loss), then it implies the

current leakage resilient designs may not guarantee resisting SCAs.

Bibliography

[1] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM Side Channel
(s). In Cryptographic Hardware and Embedded Systems-CHES 2002, pages 29–
45. Springer, 2003. 28

[2] D. Agrawal, J. R. Rao, and P. Rohatgi. Multi-Channel Attacks. In Crypto-
graphic Hardware and Embedded Systems-CHES 2003, pages 2–16. Springer,
2003. 28

[3] J. Alwen, Y. Dodis, and D. Wichs. Leakage-Resilient Public-Key Cryptography
in the Bounded-Retrieval Model. Advances in Cryptology – CRYPTO 2009,
pages 36–54, 2009. 40

[4] C. Archambeau, E. Peeters, F.-X. Standaert, and J.-J. Quisquater. Template
Attacks in Principal Subspaces. In Cryptographic Hardware and Embedded Sys-
tems CHES 2006,LNCS volume4249, pages 1–14. Springer, 2006. 56

[5] A. Bogdanov. Improved Side-Channel Collision Attacks on AES. In Proceedings
of the 14th international conference on Selected areas in cryptography, SAC’07,
pages 84–95, Berlin, Heidelberg, 2007. Springer-Verlag. 43, 44, 94

[6] A. Bogdanov. Multiple-Differential Side-Channel Collision Attacks on AES. In
Cryptographic Hardware and Embedded Systems CHES 2008. Springer Berlin /
Heidelberg, 2008. 94

[7] A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke. Differential Cache-
Collision Timing Attacks on AES with Applications to Embedded CPUs. In
J. Pieprzyk, editor, Topics in Cryptology - CT-RSA 2010, volume 5985 of Lec-
ture Notes in Computer Science, pages 235–251. Springer Berlin / Heidelberg,
2010. 42, 45, 47

[8] A. Bogdanov and I. Kizhvatov. Beyond the Limits of DPA: Combined Side-
Channel Collision Attacks. Computers, IEEE Transactions on, PP(99):1, 2011.
54, 94

162

BIBLIOGRAPHY 163

[9] A. Bogdanov, I. Kizhvatov, and A. Pyshkin. Algebraic Methods in Side-Channel
Collision Attacks and Practical Collision Detection. In D. Chowdhury, V. Rij-
men, and A. Das, editors, Progress in Cryptology - INDOCRYPT 2008, volume
5365 of Lecture Notes in Computer Science, pages 251–265. Springer Berlin /
Heidelberg, 2008. 54

[10] E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and
Embedded Systems - CHES 2004, volume 3156 of Lecture Notes in Computer
Science, pages 135–152. Springer Berlin / Heidelberg, 2004. 33

[11] S. Chari, J. Rao, and P. Rohatgi. Template Attacks. In Cryptographic Hardware
and Embedded Systems - CHES 2002. Springer Berlin / Heidelberg, 2003. 34,
151

[12] K. Chatzikokolakis, T. Chothia, and A. Guha. Statistical Measurement of In-
formation Leakage. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 390–404. Springer, 2010. 36

[13] T. Chothia and A. Guha. A Statistical Test for Information Leaks using Con-
tinuous Mutual Information. In Computer Security Foundations Symposium
(CSF), 2011 IEEE 24th, pages 177–190. IEEE, 2011. 36, 75

[14] J.-S. Coron and L. Goubin. On Boolean and Arithmetic Masking against Dif-
ferential Power Analysis. In Cryptographic Hardware and Embedded Systems
CHES 2000, volume 1965 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2000. 38

[15] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley
& Sons, 2012. 22

[16] M. H. DeGroot, M. J. Schervish, X. Fang, L. Lu, and D. Li. Probability and
Statistics, volume 2. Addison-Wesley Reading, MA, 1986. 19

[17] A. A. Ding, L. Zhang, Y. Fei, and P. Luo. A statistical model for higher order
dpa on masked devices. In Cryptographic Hardware and Embedded Systems–
CHES 2014, pages 147–169. Springer, 2014. 67

[18] J. Doget, E. Prouff, M. Rivain, and F.-X. Standaert. Univariate Side Channel
Attacks and Leakage Modeling. Journal of Cryptographic Engineering, 1:123–
144, 2011. 114

BIBLIOGRAPHY 164

[19] F. Durvaux, F.-X. Standaert, and N. Veyrat-Charvillon. How to Certify the
Leakage of a Chip? In Advances in Cryptology–EUROCRYPT 2014, pages
459–476. Springer, 2014. 85

[20] F. Durvaux, F.-X. Standaert, and N. Veyrat-Charvillon. How to certify the
leakage of a chip? In to appear in the proceedings of Eurocrypt 2014. Springer
LNCS, 2014. 152

[21] S. Dziembowski and K. Pietrzak. Leakage-Resilient Cryptography. In IEEE
49th Annual IEEE Symposium on Foundations of Computer Science, 2008.
FOCS’08, pages 293–302, 2008. 40

[22] S. Faust, K. Pietrzak, and J. Schipper. Practical Leakage-Resilient Symmetric
Cryptography. In E. Prouff and P. Schaumont, editors, Cryptographic Hardware
and Embedded Systems CHES 2012, volume 7428 of Lecture Notes in Computer
Science, pages 213–232. Springer Berlin Heidelberg, 2012. 40, 133

[23] C. Flynn and Z. Chen. Power Analysis Using Low- Power Analysis Using Low-
Cost Hardware: Lab Setup & Simple Targets. CHES 2013 Tutorial, 2013. 29

[24] G. Fumaroli, A. Martinelli, E. Prouff, and M. Rivain. Affine Masking Against
Higher-Order Side Channel Analysis. In Selected Areas in Cryptography, pages
262–280. Springer, 2011. 38

[25] B. Gierlichs, L. Batina, B. Preneel, and I. Verbauwhede. Revisiting Higher-
Order DPA Attacks. In Topics in Cryptology-CT-RSA 2010, pages 221–234.
Springer, 2010. 67, 68

[26] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual Information Analysis.
Cryptographic Hardware and Embedded Systems–CHES 2008, pages 426–442,
2008. 35

[27] B. Gierlichs, K. Lemke-Rust, and C. Paar. Templates vs. stochastic methods.
In L. Goubin and M. Matsui, editors, Cryptographic Hardware and Embedded
Systems - CHES 2006, volume 4249 of Lecture Notes in Computer Science,
pages 15–29. Springer Berlin Heidelberg, 2006. 134

[28] B. J. Gilbert Goodwill, J. Jaffe, P. Rohatgi, et al. A Testing Methodology
for Side-Channel Resistance Validation. In NIST Non-invasive attack testing
workshop, 2011. 66, 67, 75

[29] J. Golic and C. Tymen. Multiplicative Masking and Power Analysis of AES.
In Cryptographic Hardware and Embedded Systems - CHES 2002, volume 2523
of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003. 38

BIBLIOGRAPHY 165

[30] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman &
Hall/CRC, 2007. 27

[31] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener,
editor, Advances in Cryptology CRYPTO 99, volume 1666 of Lecture Notes in
Computer Science, pages 789–789. Springer Berlin / Heidelberg, 1999. 28, 32

[32] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In N. I. Koblitz, editor, Advances in Cryptology —
CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages 104–
113. Springer Verlag, 1996. 28, 31

[33] P. C. Kocher. Leak-resistant cryptographic indexed key update (US patent
6539092), 2003. 133

[34] K. Lemke-Rust and C. Paar. Analyzing Side Channel Leakage of Masked Im-
plementations with Stochastic Methods. In J. Biskup and J. Lopez, editors,
Computer Security ESORICS 2007, volume 4734 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2007. 114

[35] K. Lemke-Rust and C. Paar. Gaussian Mixture Models for Higher-Order Side
Channel Analysis. In P. Paillier and I. Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, volume 4727 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2007. 125

[36] F. Mace, F.-X. Standaert, and J.-J. Quisquater. Information theoretic evalua-
tion of side-channel resistant logic styles. Springer, 2007. 134

[37] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes,
volume 16. Elsevier, 1977. 11

[38] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smartcards. Springer-Verlag, 2007. 56, 133, 151

[39] L. Mather, E. Oswald, J. Bandenburg, and M. Wójcik. Does my device leak
information? an a priori statistical power analysis of leakage detection tests.
In Advances in Cryptology-ASIACRYPT 2013, pages 486–505. Springer, 2013.
75, 85

[40] M. Medwed, F.-X. Standaert, and A. Joux. Towards super-exponential side-
channel security with efficient leakage-resilient prfs. In E. Prouff and P. Schau-
mont, editors, Cryptographic Hardware and Embedded Systems — CHES 2012,
volume 7428 of Lecture Notes in Computer Science, pages 193–212. Springer
Berlin Heidelberg, 2012. 133

BIBLIOGRAPHY 166

[41] T. S. Messerges. Using Second-Order Power Analysis to Attack DPA Resistant
Software. In Cryptographic Hardware and Embedded Systems CHES 2000, pages
238–251. Springer, 2000. 67

[42] S. Micali and L. Reyzin. Physically Observable Cryptography. Theory of Cryp-
tography, pages 278–296, 2004. 39

[43] A. Moradi. Statistical Tools Flavor Side-Channel Collision Attacks. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of
Lecture Notes in Computer Science, pages 428–445. Springer Berlin / Heidel-
berg, 2012. 93

[44] A. Moradi, M. Kasper, and C. Paar. Black-Box Side-Channel Attacks Highlight
the Importance of Countermeasures. In O. Dunkelman, editor, Topics in Cryp-
tology – CT-RSA 2012, volume 7178 of Lecture Notes in Computer Science,
pages 1–18. Springer Berlin Heidelberg, 2012. 133

[45] A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-Enhanced Power Anal-
ysis Collision Attack. In S. Mangard and F.-X. Standaert, editors, Crypto-
graphic Hardware and Embedded Systems, CHES 2010, volume 6225 of Lecture
Notes in Computer Science, pages 125–139. Springer Berlin / Heidelberg, 2010.
10.1007/978-3-642-15031-9 9. 87, 96, 116

[46] M. Nassar, S. Guilley, and J.-L. Danger. Formal Analysis of the Entropy / Se-
curity Trade-off in First-Order Masking Countermeasures against Side-Channel
Attacks. In Progress in Cryptology INDOCRYPT 2011, Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2011. 108, 109, 117

[47] M. Nassar, Y. Souissi, S. Guilley, and J.-L. Danger. RSM: A small and fast
Countermeasure for AES, secure against 1st and 2nd-order zero-offset SCAs.
In Design, Automation Test in Europe Conference Exhibition (DATE), 2012,
2012. 108, 109, 117, 124

[48] E. Oswald and S. Mangard. Template Attacks on Masking – Resistance Is
Futile. In M. Abe, editor, Topics in Cryptology CT-RSA 2007, volume 4377 of
Lecture Notes in Computer Science, pages 243–256. Springer Berlin Heidelberg,
2006. 114

[49] C. Paar and J. Pelzl. Understanding Cryptography: a textbook for students and
practitioners. Springer, 2009. 27

[50] K. Pietrzak. Provable Security for Physical Cryptography. the proceedings of
WEWORC, 2009. 40

BIBLIOGRAPHY 167

[51] J. Pliam. The disparity between work and entropy in cryptology. Cryptology
ePrint Archive, Report 1998/024, 1998. http://eprint.iacr.org/. 136

[52] J. Pliam. On the Incomparability of Entropy and Marginal Guesswork in Brute-
Force Attacks. In B. Roy and E. Okamoto, editors, Progress in Cryptology —
INDOCRYPT 2000, volume 1977 of Lecture Notes in Computer Science, pages
67–79. Springer Berlin Heidelberg, 2000. 136

[53] B. Poettering. Rijndael Furious. Implementation. http://
point-at-infinity.org/avraes/. 77, 97, 151

[54] E. Prouff and M. Rivain. A Generic Method for Secure SBox Implementation.
In S. Kim, M. Yung, and H.-W. Lee, editors, Information Security Applications,
volume 4867 of Lecture Notes in Computer Science, pages 227–244. Springer
Berlin Heidelberg, 2007. 108

[55] E. Prouff and M. Rivain. Theoretical and Practical Aspects of Mutual
Information-based Side Channel Analysis. International Journal of Applied
Cryptography, 2(2):121–138, 2010. 36

[56] E. Prouff, M. Rivain, and R. Bévan. Statistical analysis of second order differ-
ential power analysis. Computers, IEEE Transactions on, 58(6):799–811, 2009.
67

[57] Pub, NIST FIPS. 197: Advanced Encryption Standard (AES). Federal Infor-
mation Processing Standards Publication, 197:441–0311, 2001. 14

[58] F. Regazzoni, S. Badel, T. Eisenbarth, J. Großschädl, A. Poschmann, Z. T.
Deniz, M. Macchetti, L. Pozzi, C. Paar, Y. Leblebici, and P. Ienne. A
simulation-based methodology for evaluating the DPA-resistance of crypto-
graphic functional units with application to CMOS and MCML technologies. In
International Symposium on Systems, Architectures, Modeling and Simulation
(SAMOS VII), 2007. 134

[59] M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, D. Kamel, and D. Flan-
dre. A Formal Study of Power Variability Issues and Side-Channel Attacks
for Nanoscale Devices. In K. Paterson, editor, Advances in Cryptology EU-
ROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages
109–128. Springer Berlin Heidelberg, 2011. 85

[60] O. Reparaz, B. Gierlichs, and I. Verbauwhede. Selecting Time Samples for
Multivariate DPA Attacks. In Cryptographic Hardware and Embedded Systems–
CHES 2012, pages 155–174. Springer, 2012. 42, 68, 76

http://eprint.iacr.org/
http://point-at-infinity.org/avraes/
http://point-at-infinity.org/avraes/

BIBLIOGRAPHY 168

[61] M. Rivain. On the exact success rate of side channel analysis in the gaussian
model. In R. Avanzi, L. Keliher, and F. Sica, editors, Selected Areas in Cryp-
tography, volume 5381 of Lecture Notes in Computer Science, pages 165–183.
Springer Berlin Heidelberg, 2009. 133

[62] J. J. Rotman. Advanced Modern Algebra. American Mathematical Soc., 2002.
8

[63] W. Schindler, K. Lemke, and C. Paar. A Stochastic Model for Differential
Side Channel Cryptanalysis. In J. Rao and B. Sunar, editors, Cryptographic
Hardware and Embedded Systems CHES 2005, volume 3659 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2005. 35, 86, 114

[64] K. Schramm, G. Leander, P. Felke, and C. Paar. A Collision-Attack on AES. In
Cryptographic Hardware and Embedded Systems - CHES 2004. Springer Berlin
/ Heidelberg, 2004. 43, 44, 94, 116

[65] K. Schramm, T. Wollinger, and C. Paar. A New Class of Collision Attacks and
Its Application to DES. In T. Johansson, editor, Fast Software Encryption,
volume 2887 of Lecture Notes in Computer Science, pages 206–222. Springer
Berlin Heidelberg, 2003. 94

[66] F.-X. Standaert, T. G. Malkin, and M. Yung. A Unified Framework for the
Analysis of Side-Channel Key Recovery Attacks. Advances in Cryptology —
EUROCRYPT 2009, pages 443–461, 2009. 103, 106, 127, 133, 135, 161

[67] F.-X. Standaert, O. Pereira, Y. Yu, J.-J. Quisquater, M. Yung, and E. Oswald.
Leakage Resilient Cryptography in Practice. In A.-R. Sadeghi and D. Nac-
cache, editors, Towards Hardware-Intrinsic Security, Information Security and
Cryptography, pages 99–134. Springer Berlin Heidelberg, 2010. 40, 133

[68] TELECOM ParisTech SEN research group. Dpa contest (versions 1 and 2).
http://www.dpacontest.org/home/. 133

[69] TELECOM ParisTech SEN research group. The DPA Contest V4, 2013-2014.
http://www.dpacontest.org/v4. 77, 124

[70] A. Thillard, E. Prouff, and T. Roche. Success through confidence: Evaluating
the effectiveness of a side-channel attack. In G. Bertoni and J.-S. Coron, editors,
Cryptographic Hardware and Embedded Systems - CHES 2013, volume 8086 of
Lecture Notes in Computer Science, pages 21–36. Springer Berlin Heidelberg,
2013. 139

http://www.dpacontest.org/home/
http://www.dpacontest.org/v4

BIBLIOGRAPHY 169

[71] K. Tiri, M. Akmal, and I. Verbauwhede. A dynamic and differential cmos logic
with signal independent power consumption to withstand differential power
analysis on smart cards. In Solid-State Circuits Conference, 2002. ESSCIRC
2002. Proceedings of the 28th European, pages 403 –406, sept. 2002. 133

[72] N. Veyrat-Charvillon, B. Gérard, M. Renauld, and F.-X. Standaert. An Opti-
mal Key Enumeration Algorithm and Its Application to Side-Channel Attacks.
In L. R. Knudsen and H. Wu, editors, Selected Areas in Cryptography, volume
7707 of Lecture Notes in Computer Science, pages 390–406. Springer Berlin
Heidelberg, 2013. 134, 145

[73] N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert. Security Evaluations
beyond Computing Power. In T. Johansson and P. Q. Nguyen, editors, Ad-
vances in Cryptology — EUROCRYPT 2013, volume 7881 of Lecture Notes in
Computer Science, pages 126–141. Springer Berlin Heidelberg, 2013. 96, 134

[74] N. Veyrat-Charvillon and F.-X. Standaert. Mutual Information Analysis: How,
When and Why? In C. Clavier and K. Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009, volume 5747 of Lecture Notes in Com-
puter Science, pages 429–443. Springer Berlin Heidelberg, 2009. 36, 112

[75] C. Whitnall and E. Oswald. A Fair Evaluation Framework for Comparing Side-
Channel Distinguishers. Journal of Cryptographic Engineering, 1(2):145–160,
2011. 102

[76] C. Whitnall, E. Oswald, and L. Mather. An Exploration of the Kolmogorov-
Smirnov Test as a Competitor to Mutual Information Analysis. In E. Prouff,
editor, Smart Card Research and Advanced Applications, volume 7079 of Lecture
Notes in Computer Science, pages 234–251. Springer Berlin Heidelberg, 2011.
112

[77] C. Whitnall, E. Oswald, and F.-X. Standaert. The Myth of Generic DPA and
the Magic of Learning. In Topics in Cryptology–CT-RSA 2014, pages 183–205.
Springer, 2014. 85

[78] X. Ye, C. Chen, and T. Eisenbarth. Non-Linear Collision Analysis. In RFID
Security. Springer Berlin Heidelberg, 2014. 5

[79] X. Ye and T. Eisenbarth. Wide Collisions in Practice. In F. Bao, P. Sama-
rati, and J. Zhou, editors, Applied Cryptography and Network Security, volume
7341 of Lecture Notes in Computer Science, pages 329–343. Springer Berlin
Heidelberg, 2012. 5, 94

BIBLIOGRAPHY 170

[80] X. Ye and T. Eisenbarth. On the Vulnerability of Low Entropy Masking
Schemes. In CARDIS 2013. CARDIS, 2013. 5

[81] X. Ye, T. Eisenbarth, and W. Martin. Bounded, yet Sufficient? How to Deter-
mine Whether Limited Side Channel Information Enables Key Recovery. In to
appear in CARDIS 2014, 2014. 5

	Worcester Polytechnic Institute
	Digital WPI
	2015-01-27

	Side Channel Leakage Analysis - Detection, Exploitation and Quantification
	Xin Ye
	Repository Citation

	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Our Contribution
	Outline of the work

	Preliminaries
	Algebra Preliminaries
	Group
	Polynomial Ring and Finite Field Extension
	Advanced Encryption Standard

	Statistics Preliminaries
	Probabilities of Events
	Random Variables and Probability Distributions
	Relation between Random Variables or Distributions

	Information Theoretic Basics
	Entropy and Conditional Entropy
	Mutual Information

	Overview of Side Channel Analysis
	Side Channel Attack
	Adversarial Model
	Simple Power Analysis
	Differential Power Analysis
	Correlation Power Analysis
	Template Attack
	Mutual Information Analysis

	Side Channel Countermeasures
	Hiding
	Masking
	Leakage Resilience

	Leakage Detection
	Current Challenges
	Wide Collision Detection
	Collision Attack
	Wide Collisions
	Outlier Method
	Template Based Collision Detection
	Experimental Results

	Faster Leakage Detection
	Related Works
	Bundling Leakage Observation
	Experiments

	Conclusion

	Leakage Exploitation
	Challenges and Motivation
	Non-Linear Collision Attack
	Related Work: Linear Correlation Collision Attack
	Existence of Non-Linear Collisions
	Building a Non-linear Collision Attack
	Comparison with other SCA
	NLCA-Experiments

	Vulnerabilities of Low Entropy Masking Schemes
	Low Entropy Masking Schemes
	Leakage Distribution Composition
	Leakage Distribution Decomposition Attack
	Leaking Set/Group Collision Attack
	Experiments

	Conclusion

	Leakage Quantification
	Motivations and Related Works
	Full Key Ranking Algorithm
	Security Metrics

	Evaluating Full Key Security
	Weak Maximum Likelihood Approach
	The Search Domain and its Calculus Model
	An Optimized Key Space Finding Algorithm
	Usage of the KSF algorithm

	Experiment Results and Comparison
	Experiment Setup
	Posterior Probabilities Derivation
	Correctness and Influencing Factors
	Comparing KSF algorithm with VGS algorithm

	Conclusion

	Conclusion & Future Directions
	Bibliography

