9,381 research outputs found

    Faster Algorithms for the Maximum Common Subtree Isomorphism Problem

    Get PDF
    The maximum common subtree isomorphism problem asks for the largest possible isomorphism between subtrees of two given input trees. This problem is a natural restriction of the maximum common subgraph problem, which is NP{\sf NP}-hard in general graphs. Confining to trees renders polynomial time algorithms possible and is of fundamental importance for approaches on more general graph classes. Various variants of this problem in trees have been intensively studied. We consider the general case, where trees are neither rooted nor ordered and the isomorphism is maximum w.r.t. a weight function on the mapped vertices and edges. For trees of order nn and maximum degree Δ\Delta our algorithm achieves a running time of O(n2Δ)\mathcal{O}(n^2\Delta) by exploiting the structure of the matching instances arising as subproblems. Thus our algorithm outperforms the best previously known approaches. No faster algorithm is possible for trees of bounded degree and for trees of unbounded degree we show that a further reduction of the running time would directly improve the best known approach to the assignment problem. Combining a polynomial-delay algorithm for the enumeration of all maximum common subtree isomorphisms with central ideas of our new algorithm leads to an improvement of its running time from O(n6+Tn2)\mathcal{O}(n^6+Tn^2) to O(n3+TnΔ)\mathcal{O}(n^3+Tn\Delta), where nn is the order of the larger tree, TT is the number of different solutions, and Δ\Delta is the minimum of the maximum degrees of the input trees. Our theoretical results are supplemented by an experimental evaluation on synthetic and real-world instances

    Enumeration of Hybrid Domino-Lozenge Tilings

    Full text link
    We solve and generalize an open problem posted by James Propp (Problem 16 in New Perspectives in Geometric Combinatorics, Cambridge University Press, 1999) on the number of tilings of quasi-hexagonal regions on the square lattice with every third diagonal drawn in. We also obtain a generalization of Douglas' Theorem on the number of tilings of a family of regions of the square lattice with every second diagonal drawn in.Comment: 35 pages, 31 figure

    Problems on Polytopes, Their Groups, and Realizations

    Full text link
    The paper gives a collection of open problems on abstract polytopes that were either presented at the Polytopes Day in Calgary or motivated by discussions at the preceding Workshop on Convex and Abstract Polytopes at the Banff International Research Station in May 2005.Comment: 25 pages (Periodica Mathematica Hungarica, Special Issue on Discrete Geometry, to appear
    • …
    corecore