
Faster Algorithms for the Maximum Common
Subtree Isomorphism Problem∗

Andre Droschinsky1, Nils M. Kriege2, and Petra Mutzel3

1 Dept. of Computer Science, Technische Universität Dortmund, Germany
andre.droschinsky@tu-dortmund.de

2 Dept. of Computer Science, Technische Universität Dortmund, Germany
nils.kriege@tu-dortmund.de

3 Dept. of Computer Science, Technische Universität Dortmund, Germany
petra.mutzel@tu-dortmund.de

Abstract
The maximum common subtree isomorphism problem asks for the largest possible isomorphism
between subtrees of two given input trees. This problem is a natural restriction of the maximum
common subgraph problem, which is NP-hard in general graphs. Confining to trees renders
polynomial time algorithms possible and is of fundamental importance for approaches on more
general graph classes. Various variants of this problem in trees have been intensively studied.
We consider the general case, where trees are neither rooted nor ordered and the isomorphism
is maximum w.r.t. a weight function on the mapped vertices and edges. For trees of order n
and maximum degree ∆ our algorithm achieves a running time of O(n2∆) by exploiting the
structure of the matching instances arising as subproblems. Thus our algorithm outperforms the
best previously known approaches. No faster algorithm is possible for trees of bounded degree
and for trees of unbounded degree we show that a further reduction of the running time would
directly improve the best known approach to the assignment problem. Combining a polynomial-
delay algorithm for the enumeration of all maximum common subtree isomorphisms with central
ideas of our new algorithm leads to an improvement of its running time from O(n6 + Tn2) to
O(n3 + Tn∆), where n is the order of the larger tree, T is the number of different solutions,
and ∆ is the minimum of the maximum degrees of the input trees. Our theoretical results are
supplemented by an experimental evaluation on synthetic and real-world instances.
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1 Introduction

The maximum common subgraph isomorphism problem (MCS) asks for an isomorphism
between induced subgraphs of two given graphs that is of maximum weight w.r.t. a weight
function on the mapped vertices and edges. The problem is of fundamental importance in
applications like pattern recognition [5] or bio- and cheminformatics [9, 18]. MCS naturally
generalizes the subgraph isomorphism problem (SI), where the task is to decide if one graph
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is isomorphic to a subgraph of another graph. Both problems are known to be NP-hard for
general graphs.

It is not astonishing that these problems have been extensively studied for restricted
graph classes. Polynomial time algorithms for SI and MCS in trees have been pioneered
by Edmonds and Matula in the 1960s. They rely on solving a series of maximum bipartite
matching instances, see [15]. These early results focused on the polynomial time complexity
of the problem; since then considerable progress has been achieved in improving the running
time of SI algorithms (also see [1] and references therein): Reyner [17, 23] and Matula [15]
both showed a running time of O(n2.5) for rooted trees. Chung [4] later obtained the same
bound for unrooted trees. Further improvements were made by Shamir and Tsur [19] who
obtained time O(n2.5/ logn) and O(nω), where ω is the exponent of matrix multiplication.

MCS on trees seems to be harder. For two rooted trees of size n, it is known that the
problem can be solved, roughly speaking, in the same time as the associated maximum weight
matching problem in a bipartite graph on n vertices: Gupta and Nishimura [11] presented an
O(n2.5 logn) algorithm for MCS in rooted trees by assuming weights to be in O(n), which
allows to employ a scaling approach to the matching problem [10]. The running time can be
improved to O(

√
∆n2 log 2n

∆ ), where ∆ denotes the maximum degree [12]. Allowing a real
weight function to determine the similarity of mapped vertices gives rise to bipartite matching
instances with unrestricted weights. Solving these with the Hungarian method leads to
cubic running time, see e.g. [22]. Since the the size of the matching instances is bounded by
the maximum degree ∆, the result can be improved to O(n2∆) time [20]. Various related
concepts for the comparison of rooted trees, either ordered or unordered, have been proposed
and were studied in detail, see [22] and references therein, where the tree edit distance is a
prominent example [3, 6].

In this article we consider the problem of finding a common subtree isomorphism in
unrooted, unordered trees that is maximum w.r.t. a weight function on the mapped vertices
and edges. This problem is directly relevant in various applications, where real-world
objects like molecules or shapes are represented by (attributed) trees [16, 20]. Moreover, it
forms the basis for several recent approaches to solve MCS in more general graph classes,
see [2, 13, 14, 18]. Methods directly based on algorithms for rooted trees result in time
O(n4∆) by considering all pairs of possible roots. An improvement to O(n3∆) has been
reported in [20], which is limited to non-negative weight functions. Schietgat, Ramon and
Bruynooghe [18] suggested an approach for MCS in outerplanar graphs, which solves the
considered problem when applied to trees. The approach is stated to have a running time of
O(n2.5), but in fact leads to a running time of Ω(n4) in the worst case.1

Our contribution. We show that for arbitrary weights a maximum common subtree iso-
morphism between two trees G and H of order n with ∆(G) ≤ ∆(H) can be computed in
time O(n2(∆(G) + log ∆(H)). We obtain the improvement by (i) considering only a specific
subset of subproblems that we show to be sufficient to guarantee an optimal solution; (ii)
exploiting the close relation between the emerging matching instances. We show that for
general trees any further improvement of this time bound would allow to solve the assignment
problem in o(n3), and hence improve over the best known approach to this famous problem
for more than 30 years. For trees of bounded degree the running time bound of O(n2) is

1 The analysis of the algorithm appears to be flawed. An Erratum to [18] has been submitted to the Annals
of Mathematics and Artificial Intelligence, see Appendix of https://arxiv.org/abs/1602.07210. Our
experimental study of their implementation actually suggests a time bound of Ω(n5).

https://arxiv.org/abs/1602.07210
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tight. We apply our new techniques to the problem of enumerating all maximum common
subtree isomorphisms, thus improving the state-of-the-art running times. Finally, we present
an experimental evaluation on synthetic and real-world instances showing that our new
algorithm is faster than existing approaches.

2 Preliminaries

In this paper, G = (V,E) is a simple undirected graph. We call v ∈ V a vertex and
uv = vu ∈ E an edge of G. For a graph G = (V,E) we define V (G) := VG := V ,
E(G) := EG := E and |G| := |V (G)|. For a subset of vertices V ′ ⊆ V the graph G[V ′] :=
(V ′, E′), E′ := {uv ∈ E | u, v ∈ V ′}, is called induced subgraph. A connected graph with
a unique path between any two vertices is a tree. A tree G with an explicit root vertex
r ∈ VG is called rooted tree, denoted by Gr. In a rooted tree Gr we denote the children of a
vertex v by C(v) and its parent by p(v), where p(r) = r. The depth depth(v) of a vertex v
is the number of edges on the path from v to r. The neighbors of a vertex v are defined as
N(v) := {u ∈ VG | vu ∈ EG}. The degree of a vertex v ∈ VG is δ(v) := |N(v)|, the degree
∆(G) of a graph G is the maximum degree of its vertices.

For a graph G = (V,E) a matching M ⊆ E is a set of edges, such that no two edges share
a vertex. A matching M of G is said to be perfect, if 2|M | = |V |. A weighted graph is a graph
endowed with a function w : E → R. The weight of a matching M in a weighted graph is
W (M) :=

∑
e∈M w(e). We call a matching M of a weighted bipartite graph G a maximum

weight matching (MWM) if there is no other matching M ′ of G with W (M ′) > W (M). The
assignment problem asks for a matching with maximum weight among all perfect matchings
and we refer to a solution by MWPM.

An isomorphism between two graphs G and H is a bijective function φ : VG → VH such
that uv ∈ EG ⇔ φ(u)φ(v) ∈ EH ; if such an isomorphism exists, G and H are said to be
isomorphic. We call a graph G subgraph isomorphic to a graph H, if there is an induced
subgraph H ′ ⊆ H isomorphic to G. In this case, we write G �φ H, where φ : VG → VH′

is an isomorphism between G and H ′. A common subgraph of G and H is a graph I, such
that I �φ G and I �φ′ H. The isomorphism ϕ := φ′ ◦ φ−1 is called common subgraph
isomorphism (CSI). For a function f : X → Y let dom(f) := X be the domain of f . If
there is no other CSI ϕ′ with | dom(ϕ′)| > | dom(ϕ)|, we call ϕ maximum common subgraph
isomorphism (MCSI).

We generalize the above definitions to a pair of graphs G,H under a commutative weight-
function ω : (VG × VH) ∪ (EG × EH)→ R ∪ {−∞}. The weight W(φ) of an isomorphism φ

between G and H under ω is the sum of the weights ω(v, φ(v)) and ω(vu, φ(v)φ(u)) of all
vertices and edges mapped by φ. A maximum common subgraph isomorphism φ under a
weight function is one of maximum weight W(φ) instead of maximum size | dom(φ)|. Note,
this is less restrictive than a common approach for isomorphisms on labeled graphs, where
the labels must match. By defining ω such that mapped vertices and mapped edges add 1
and 0, respectively, to the weight, we obtain an isomorphism of maximum size. Therefore, in
the following we consider graphs under a weight function unless stated otherwise and refer
to the corresponding solution as MCSI. For convenience we replace the word graph by tree
in the above definitions when appropriate. The maximum common subtree isomorphism
problem (MCST) is to determine the weight of an MCSI, where the input graphs and the
common subgraph are trees. We further define [1..k] := {1, . . . , k} for k ∈ N.

MFCS 2016
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Figure 1 Two rooted subtrees (a) and (b), the associated weighted matching instance (c), and an
MWM on that instance (d). Light gray vertices and edges are not part of the rooted subtrees, root
vertices are shown in solid black. The maximum weight matching is shown in blue. We assume a
weight function ω with ω(u, v) = 1 for all (u, v) ∈ VG × VH and ω(e, f) = 0 for all (e, f) ∈ EG ×EH .
The edges without label in (c) have weight 1.

3 Problem Decomposition and Fundamental Algorithms

We introduce the basic techniques for solving MCST following the ideas of Edmonds and
Matula [15]. The approach requires to compute MWMs in bipartite graphs as a subroutine.
We discuss the occurring matching instances in detail in Section 4.

By fixing the roots of both trees we can develop an algorithm solving MCST on this
restricted setting. It is easy to generalize this solution by considering all possible pairs of
roots. We then show that it is sufficient to fix the root of one tree while still obtaining a
maximum solution.

Rooted trees. We first consider the problem restricted to rooted trees under the assumption
that the roots of the two trees must be mapped to each other. For a rooted tree Gr we
define the rooted subtree Gru as the subtree induced by u and all its descendants in Gr that
is rooted at u, cf. Figures 1a and b. Note that Grr = Gr and that Gru and Gsu both refer to
the same subtree unless s is contained in Gru. The key to solving MCST for two rooted trees
Gr and Hs is the following recursive formulation:

MCSroot(Gr, Hs) = ω(r, s) +W (M), (1)

where M is an MWM of the complete bipartite graph on the vertex set C(r) ] C(s) with
weights w(uv) = ω(ru, sv) + MCSroot(Gru, Hs

v) for all u ∈ C(r) and v ∈ C(s). Hence, each
edge weight corresponds to the solution of a problem of the same type for a pair of smaller
rooted subtrees and the recursion naturally stops at the leaves. Each subproblem, the initial
one as well as those arising in recursive calls, is uniquely defined by a pair of rooted subtrees
and essentially consists of solving a matching instance.

Figure 1 illustrates the two rooted subtrees Gru and Hs
v and the corresponding matching

problem under the weight function as given in the figure. For rooted trees Gr and Hs this
problem arises on the second level in the recursion of Eq. (1). We obtain MCSroot(Gru, Hs

v) =
ω(u, v) +W (M) = 1 + 5 = 6, where M is an MWM of Figure 1c, depicted in Figure 1d.

In order to compute Eq. (1) the subproblems defined by the pairs of rooted subtrees
Sroot(Gr, Hs) := {(Gru, Hs

v) | depth(u) = depth(v)} have to be solved.

I Proposition 1. A maximum common subtree isomorphism for two rooted trees Gr and Hs

can be computed in time O(n3), where n = |G|+ |H|.

Proof. The bipartite graph for the subproblem (Gru, Hs
v) contains ku + lv vertices, where

ku := |C(u)| and lv := |C(v)|. For the total running time we distinguish the cases ku ≤ lv
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and ku > lv. For the first case we obtain a MWM in time O(kulv(ku + log lv)) according to
Lemma 5. The second case is analog. Since Sroot(Gr, Hs) ⊆ {(Gru, Hs

v) | u ∈ VG, v ∈ VH}
the total running time is bounded by O(n3) as∑

u∈VG

∑
v∈VH ,ku≤lv

kulv(ku + log lv) ≤
∑
u∈VG

ku
∑
v∈VH

lv(lv + log lv) ≤ n · 2n2 ∈ O(n3)

J

Unrooted trees. We now consider the problem for unrooted trees. An immediate solution
is to solve the rooted problem variant for all possible pairs of roots, i.e., by computing

MCS(G,H) := max {MCSroot(Gr, Hs) | r ∈ V (G), s ∈ V (H)} . (2)

Clearly, this yields the optimal solution in time O(n5) with Proposition 1. Note that
several recursive calls involve solving the same subproblem. Repeated computation can
easily be avoided by means of a lookup table. Let Rt(Gr) := {Gru | u ∈ V (G)} and
Rt(G) :=

⋃
r∈V (G) Rt(Gr). Note that we may uniquely associate the subtree Gru with Gpu,

where p is the parent of u in Gr. Hence, each rooted subtree Guv ∈ Rt(G) either is the whole
tree G with root u = v or is the subtree rooted at v of some edge uv ∈ E(G), where u is not
contained in the subtree. Thus, Rt(G) = {Guv | v ∈ V (G) ∧ u ∈ N(v) ∪ {v}} is the set of all
rooted subtrees of G. In total the subproblems defined by S(G,H) := Rt(G)×Rt(H) have
to be solved.

However, ensuring that each subproblem is solved only once does not allow to improve
the bound on the running time, since S(G,H) still may contain a quadratic number of
subproblems of linear size: Let G and H be two star graphs on n vertices, i.e., trees with all
but one vertex of degree one. Each of the (n− 1)2 pairs of leaves can be selected as root pair
and leads to a different subproblem of size n− 1.

We show that it is sufficient to consider only a subset of the subproblems to guarantee
that an optimal solution is found. Let

MCSfast(Gr, H) := max {MCSroot(Gru, Hs) | u ∈ V (G), s ∈ V (H)} , (3)

where r ∈ V (G) is an arbitrary but fixed root of G. To compute Eq. (3), only the subproblems
Sfast(Gr, H) := Rt(Gr)×Rt(H) ⊆ S(G,H) need to be solved.

I Lemma 2. Let MCSfast and MCS be defined as above and r ∈ V (G) arbitrary but fixed,
then MCSfast(Gr, H) = MCS(G,H) for all trees G, H.

Proof. Let φ be an MCSI. If r is in the domain of φ, then ω(φ) = MCSroot(Gr, Hφ(r)) =
MCSfast(Gr, H). Otherwise the domain of φ is contained in the subtree rooted at one
child of r. Let u be the unique vertex that is closest to r and mapped by φ. Then
ω(φ) = MCSroot(Gru, Hφ(u)) = MCSfast(Gr, H). J

Algorithm 1 implements this strategy, where the postorder traversal on Gr (line 2) ensures
that the solutions to smaller subproblems are always available when required (line 9). The
lookup table contains one entry for each subproblem in Sfast(Gr, H) and hence requires
space O(n2). Note that it is also possible to compute a concrete isomorphism from the
MWMs associated with the computed optimal solution. The restriction of the considered
subproblems allows to improve the bound on the running time.

I Proposition 3. Algorithm 1 solves the maximum common subtree isomorphism problem
for two trees G and H in time O(n4), where n = |G|+ |H|.

MFCS 2016
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Algorithm 1: Maximum Common Subtree Isomorphism
Input : Trees G and H under a weight function ω
Output :Weight of an MCSI between G and H.
Data : Table D(u, s, v) storing solutions MCSroot(Gru, Hs

v) of subproblems.
1 Select an arbitrary root vertex r ∈ VG.
2 foreach u ∈ VG in postorder traversal on Gr do . All possible Gru ∈ Rt(Gr)
3 U ← C(u) in Gr
4 foreach v ∈ VH do
5 foreach s ∈ N(v) ∪ {v} do . All possible Hs

v ∈ Rt(H)
6 V ← C(v) in Hs

7 if ω(u, v) 6= −∞ then
8 foreach pair (u′, v′) ∈ U × V do
9 w(u′v′)← ω(uu′, vv′) +D(u′, v, v′)

10 M ← MWM of the complete graph on U ] V with weights w.
11 D(u, s, v)← ω(u, v) +W (M)
12 else D(u, s, v)← −∞

13 return the maximum entry in D

Proof. According to Lemma 2 computing Eq. (3) yields the optimal solution and it suffices
to solve the subproblems Sfast(Gr, H) as realized by Algorithm 1. Let ku be the number of
children of u in Gru, lsv the number of children of v in Hs, s ∈ V (H), and lv = |N(v)|. For all
s we have lsv ≤ lv. Similar to Proposition 1 the subproblems Sfast(G,H) can be solved in a
total time of

O

(∑
u∈VG

∑
s∈VH

∑
v∈VH

(kulsv)(min{ku, lsv}+ log max{ku, lsv})
)
⊆ O

(∑
s∈VH

n3

)
⊆ O

(
n4) .

J

Further improvement of the running time is possible by no longer considering the MWM
subroutine as a black box. We pursue this direction in the next section. Our findings there
yield the following theorem.

I Theorem 4. An MCSI between two unrooted trees G and H can be computed in time
O(|G||H|(min{∆(G),∆(H)}+ log max{∆(G),∆(H)})).

Proof. The MWM computations in Algorithm 1 are dominating, thus we obtain the above
running time directly from Theorem 7 of the following section. J

4 Computing All Maximum Weight Matchings

In this section we improve the total time bound for solving all the matching instances arising
in Algorithm 1. First, we provide a time bound to compute an MWM in a single bipartite
graph (V ] U,E), where possibly |V | 6= |U |. In the following, we exploit the fact that during
the run of our algorithm, we get sets of “similar” bipartite graph instances. After computing
an MWM on one graph in one of the sets, we can derive MWMs for all the other bipartite
graphs in that set very efficiently. Finally, we provide an upper bound to compute an MWM
in all the occurring bipartite graphs.
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Figure 2 Weighted bipartite graph B (a); reduced graph B′ with initial duals in green (vertices
without label have dual value 0) and initial matching M ′′ in blue (b); MWM M ′ of B′ in blue, M

of B in thick blue c; B′
4 with matching M ′

4 in blue (d). - cf. proofs of Lemma 5 and Lemma 6.

Computing an MWM is closely related to finding an MWPM and there is extensive
literature on both problems [8]. Gabow and Tarjan [10] describe a reduction to solve the
MWM problem using any algorithm for MWPM, without altering the algorithm’s asymptotic
time bound, which we will make use of. For computing an MWPM, we use the well known
Hungarian method, which has at most n iterations in its outer loop and a total running time
of O(n3) or O(n(m+ n logn)) using Fibonacci heaps, where n and m denote the number of
vertices and edges of the bipartite graph. We denote this algorithm by APM.

The Hungarian method is a primal-dual algorithm. It starts with an empty matching and
computes a new matching with one more edge in each iteration, maintaining a feasible dual
solution of a primal linear program. The complementary slackness theorem ensures, that
the obtained perfect matching after n iterations is a MWPM. Note, by using the reduction
in [10], we always have at least one perfect matching.

I Lemma 5. Let B = (V ] U,E) be a bipartite graph with edge weights w : E → R. Let
k := |V |, l := |U |, and k ≤ l. An MWM M on B can be computed in time O(kl(k + log l)).

Proof. Let {v1, . . . , vk} = V, {u1, . . . , ul} = U be the two vertex sets of B. First, we remove
all edges from B with negative edge weight, because they never contribute to an MWM. Then,
we add a copy BC of B to the graph. For each vertex v ∈ V ]U we denote its copy vC and for
each edge e ∈ E we denote its copy eC. We then copy the edge weights, i.e., w(eC) := w(e)
for each edge e ∈ E. Next we insert a new edge of weight 0 between each vertex v ∈ V ] U
and its copy vC. This graph is called reduced graph B′. Figures 2a and b show an example
of B and B′. An MWPM M ′ of B′ yields an MWM M of B: vu ∈ M ⇔ vu ∈ M ′ and
v ∈ V, u ∈ U . This follows from the construction of B′.

In the following, we prove an upper time bound to compute M ′. An initial feasible dual
solution d : VB′ → R, i.e., d(v) + d(u) ≥ w(vu) for all edges vu ∈ EB′ , including l matching
edges vu with d(v) + d(u) = w(vu), is computed as follows: We set d(u) = 0 for all u ∈ U
and d(v) := max{w(vu) | u ∈ U} for all v ∈ V . Next, for each v ∈ V ] U the vertex vC

obtains the dual value d(vC) := d(v). We define an initial matching M ′′ := {uuC | u ∈ U}.
Note, d(u) + d(uC) = 0 = w(uuC).

The dual solution d is feasible and can be computed in time O(kl). Let n := |VB′ | =
2(k+l) ∈ Θ(l) andm := |EB′ | ≤ 2kl+k+l ∈ O(kl). Increasing the number of matching edges
by one using a single iteration of APM is possible in time O(m+ n logn) = O(l(k + log l)).
To obtain an MWPM M ′ form M ′′ in B′ we need to increase the number of matching edges
by k, therefore the time to compute M ′ and thus M is O(kl(k + log l)). J

MFCS 2016
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Algorithm 2: Computing MWMs on B and Bj , cf. Lemmas 5, 6
Input : Bipartite graph B = (V ] U,E), |U | ≥ 2, U = {u1, u2, . . .} with edge weights

w : E → R
Output : MWMs M,Mj on B,Bj := G[V ] U \ {uj}] for each j ∈ [1..|U |].

1 if |V | ≤ |U | then . Compute MWM M of B
2 Let B′ := (V ′, E′), where V ′ := V ∪ U ∪ {vC | v ∈ V ∪ U} and

E′ := E ∪ {eC | e ∈ E} ∪ {vvC | v ∈ V ∪ U}.
3 w(eC)← w(e) for all e ∈ E . Weights of additional edges
4 w(vvC)← 0 for all v ∈ V ∪ U
5 d(uC)← d(u)← 0 for all u ∈ U . Dual values
6 d(vC)← d(v)← max{w(vu) | u ∈ U} for all v ∈ V
7 M ′′ ← {uuC | u ∈ U} . Initial matching edges
8 Starting with M ′′ and d, compute an MWPM M ′ on B′ using |V | iterations of APM
9 M ← {vu | vu ∈M ′, v ∈ V, u ∈ U}

10 else
11 Exchange the vertices of V and U .
12 Compute M as in lines 2 to 9 and exchange V and U back.
13 d← The dual values obtained while computing M ′.
14 foreach j ∈ [1..|U |] do . MWMs Mj on Bj
15 if uj is not matched by M then
16 Mj ←M

17 else
18 B′j ← B′ \ {uj , uC

j }
19 M ′j ←M ′ without the matching edges incident to uj , uC

j . Initial matching
20 Compute an MWPM M ′j on B′j using d and a single iteration of APM.
21 Mj ← {vu | vu ∈M ′j , v ∈ V, u ∈ U}

I Lemma 6. Let B = (V ] U,E) be a weighted bipartite graph with k := |V |, U =
{u1, . . . , ul}, l ≥ 2. Let Bj := G[V ] U \ {uj}] for each j ∈ [1..l]. Computing MWMs
for all graphs B,B1, . . . , Bl is possible in total time O(kl(min{k, l}+ log max{k, l})).

Proof. According to Lemma 5 we obtain an MWM M of B in time O(kl(min{k, l} +
log max{k, l})). We compute an MWM on each Bj as follows: Let d be an optimal dual
solution obtained while computing M ′ (on B′, see proof of Lemma 5). If uj is not matched
by M , i.e., uj /∈ e for all e ∈M , then Mj := M is an MWM of Bj . Otherwise let B′j be the
reduced graph as explained in the proof of Lemma 5. We obtain a feasible dual solution
dj on the bipartite graph B′j by taking the dual values from d, i.e., dj(v) := d(v) for all
v ∈ V (B′j). Note, we have 2(k + l) vertices in B′, and exactly two less in B′j , i.e., a perfect
matching in B′j consists of k + l − 1 matching edges.

We can derive an initial matchingM ′j on B′j with k+ l−2 edges fromM ′; M ′j contains the
matching edges that are not incident to the two removed vertices from B′ to B′j . Therefore
only one more iteration of APM is needed, which is possible in time O(max{k, l}(min{k, l}+
log max{k, l})), cf. proof of Lemma 5. We then obtain Mj from M ′j as previously described.
The complementary slackness conditions ensure M ′j and therefore Mj is of maximum weight.
An example of M ′ and B′j (j = 4) is shown in Figures 2c and d.

We need to compute an MWM different from M for at most min{k, l} of the l graphs
B1, . . . , Bl, because at most k vertices of U are matched by M , cf. Figure 2c: only u3
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and u4 of U are matched by M . Therefore the time bound to compute MWMs for all the
graphs B1, . . . , Bl is O(min{k, l}max{k, l}(min{k, l} + log max{k, l})) = O(kl(min{k, l} +
log max{k, l})). J

We call B and the graphs Bj , j ∈ [1..l], a set of “similar” bipartite graph instances.
Algorithm 2 shows how we compute an MWM for each graph in this set. Next, we apply
Lemma 6 to Algorithm 1. For each pair u ∈ VG, v ∈ VH of vertices, selected in line 2 and 4,
respectively, the algorithm computes up to |N(v)|+ 1 MWMs, cf. lines 5, 10. A close look
at Algorithm 1 reveals this as a set of “similar” bipartite graph instances. The first graph B
is obtained by selecting s = v in line 5. The other graphs Bj are obtained by selecting all
the vertices s ∈ N(v). This observation allows to prove the following theorem.

I Theorem 7. All the MWMs in Algorithm 1 can be computed in total time
O(kl(min{∆(G),∆(H)}+ log max{∆(G),∆(H)})), where k = |G| and l = |H|.

Proof. For each pair (v, u) ∈ VG × VH we compute an MWM on each of the “similar”
graphs, where B = (C(v) ] N(u), E) and edge weights as determined by Eq. (1). Let
dmin := min{∆(G),∆(H)} and dmax := max{∆(G),∆(H)}. For all the pairs (v, u) we obtain
a time complexity of

O

(∑
v

∑
u

δ(v)δ(u)(min{δ(v), δ(u)}+ log max{δ(v), δ(u)})
)

⊆ O

(∑
v

δ(v)
∑
u

δ(u)(dmin + log dmax)
)

= O
(

(dmin + log dmax)
∑
v

δ(v)l
)

= O((dmin + log dmax)kl).

J

5 Lower Bounds on the Time Complexity and Optimality

Providing a tight lower bound on the time complexity of a problem is generally a non-trivial
task. We obtain this for trees of bounded degree and reason why the existence of an algorithm
with subcubic running time for unrestricted trees is unlikely. In order to solve MCST with
an arbitrary weight function ω for two trees G and H, all values ω(u, v) for u ∈ V (G) and
v ∈ V (H) must be considered. This directly leads the lower bound of Ω(|G||H|) for the
time complexity of MCST. For trees of bounded degree our approach achieves running time
O(|G||H|) according to Theorem 4 and, thus, has an optimal worst-case running time in the
considered setting.

For unrestricted trees of order n our approach has a running time of O(n3) according to
Theorem 4. In the next paragraph we present a linear time reduction from the assignment
problem to MCST, which preserves the time complexity. Therefore solving MCST in time
o(n3) yields an algorithm to solve the assignment problem in time o(n3). The Hungarian
method solves the assignment problem in O(n3), which is the best known time bound for
bipartite graphs with Θ(n2) edges of unrestricted weight for more than 30 years.

Let B = (U ] V,E,w) be a weighted bipartite graph on which we want to solve the
assignment problem, i.e., to find an MWPM. We assume weights to be non-negative, which
can be achieved by adding a sufficiently large constant to every edge weight to obtain an

MFCS 2016
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assignment problem that is equivalent w.r.t. the MWPMs. We construct a star graph G
with center c and leaves U and another star graph H with center c′ and leaves V . Let
n = |U | = |V | and N = maxe∈E w(e). We define ω such that ω(u, v) = w(uv) + nN for all
uv ∈ E, ω(c, c′) = nN and ω(u, v) = −∞ for all other pairs of vertices. For all pairs of edges
we define ω(e, e′) = 0. Let φ be an MCSI between G and H w.r.t. w and p := | dom(φ)|. It
directly follows from the construction that M := {uv ∈ E | φ(u) = v} is an MWM in B with
W (M) =W(φ)− pnN . Furthermore, the incremented weights ensure that M is perfect, i.e.,
p = n+ 1, whenever B admits a perfect matching. Therefore we obtain:

I Proposition 8. Only if we can solve the assignment problem on a graph with n vertices
and Θ(n2) edges of unrestricted weight in time o(n3), we can solve MCST on two unrooted
trees of order Θ(n) in time o(n3).

6 Output-Sensitive Algorithms for Listing All Solutions

Algorithm 1 can easily be modified to not only output the weight of an MCSI, but also an
associated isomorphism. Let D(u, s, v) be a maximum entry in D. Then φ(u) = v. Further
mappings are defined by the matching edges occurring in Eq. (1). In the example of Figure 1d
we obtain φ(c1) = d1 and φ(c2) = d3. Since in general there is no single unique MCSI, it is
of interest to find and list all of them. In this section we show how our techniques can be
combined with the enumeration algorithm from [7], which lists all the different MCSIs of
two trees exactly once. We obtain the best known time bound for listing all solutions by an
improved analysis.

Since the number of MCSIs is not polynomially bounded in the size of the input trees,
we cannot expect polynomial running time. An algorithm is said to be output-sensitive if its
running time depends on the size of the output in addition to the size of the input.

The basic idea to enumerate all MCSIs is to first compute the weight of an MCSI. Then
for each maximum table entry D(u, v, v), u ∈ VG, v ∈ VH , all the different rooted MCSIs
on the rooted subtrees Gru, Hv

v are listed. Note, we omit maximum table entries D(u, s, v),
where s 6= v. We do this, because every MCSI of Gru, Hs

v is also an MCSI of Gru, Hv
v . As an

example let u be the root of G in Figure 1. Then D(u, v, v) = D(u, s, v) = 7. For both table
entries we obtain the same MCSI φ with φ(u) = v, φ(r) = d1, φ(c1) = d2, φ(c2) = d3, . . ..

We enumerate the MCSIs on a pair of rooted subtrees by enumerating all MWMs of
the associated bipartite graphs of Eq. (1) and then expanding φ recursively along all the
different MWMs of the mapped children. For the problem depicted in Figure 1c there are
two different MWMs: M1 = {c1d1, c2d3} and M2 = {c1d2, c2d3}. Therefore we first expand
along M1 as explained in the first paragraph of this section and then along M2. We do this
recursively for each occurring matching instance. The enumerated isomorphisms of each
maximum entry are pairwise different, based on the different MWMs. They are also pairwise
different between two different maximum entries. The proof of the latter claim is similar
to the proof of Lemma 2. Thus we do not enumerate an MCSI twice. Further we do not
omit an MCSI, because we consider all necessary maximum table entries and their rooted
subtrees, as well as all possible expansions along the MWMs.

Note, the enumeration algorithm of [7] uses a somewhat different table to store maximum
solutions. The basic idea to list all solutions is the same. For trees of sizes k := |G| and
l := |H|, k ≤ l, their enumeration algorithm requires total time O(k2l4 +T l2), where T is the
number of different MCSIs. The O(k2l4) term of the running time is caused by computing
the weight of an MCSI in time O(kl4) and repeated deletions of single edges in one tree
and recalculations of the weight of an MCSI to avoid outputting an MCSI twice. We have
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improved the time bound to compute the weight of an MCSI, cf. Theorem 4. Therefore we
can improve the O(k2l4) term to O(kl(min{∆(G),∆(H)}+ log max{∆(G),∆(H)})).

The O(T l2) term in the original running time is caused by the enumeration of MWMs.
For each MCSI φ several MWMs have to be enumerated, let this number be mφ. The time
to do this can be bounded by O(l2), when using a variant of the enumeration algorithm
for perfect matchings presented in [21]. The running time follows from the fact, that for
each MWM two depth first searches (DFS) in a directed subgraph of B′, cf. Figure 2, are
computed. The running time of DFS is linear in the number of edges and vertices. Let ki, li
be the sizes of the disjoint vertex sets of the i-th bipartite graph, on which we enumerate the
MWMs, i ∈ [1..mφ]. Then

∑
i ki ≤ k and

∑
i li ≤ l, because all the vertices in all the mφ

bipartite graphs are pairwise disjoint. The running time of DFS in the directed subgraphs
of the i-th bipartite graph is O(kili), cf. Figure 2b or d. For all mφ DFS runs we have∑
i kili ≤

∑
i ki∆(H) ≤ k∆(H) as well as

∑
i kili ≤

∑
i ∆(G)li ≤ ∆(G)l. Hence, the time

to enumerate φ is bounded by O(min{k∆(H),∆(G)l}).
Both improvements combined together, the initial computation of the weight of an

MCSI and the MWM enumeration, improve the enumeration time from O(n6 + Tn2) to
O(n3 + Tnmin{∆(G),∆(H)}). More precisely we obtain the following theorem.

I Theorem 9. Enumerating all MCSIs of two unrooted trees G and H is possible in time
O( |G| |H| ( min{∆(G),∆(H)} + log max{∆(G),∆(H)} ) + T ( min{|G|∆(H),∆(G)|H|} ) ),
where T is the number of different MCSIs.

7 Experimental Comparison

In this section we experimentally evaluate the running time of our approach (DKM) on
synthetic and real-world instances. We compare our algorithm to the approach of [18]
which also solves MCST when the input graphs are trees. The corrected analysis of the
approach yields a running time of O(n4), which aligns better with our experimental findings
of Ω(n5). The implementation was provided by the authors as part of the FOG package.2
Both algorithms were implemented in C++ and compiled with GCC v.4.8.4. Running times
were measured on an Intel Core i7-3770 CPU with 16 GB of RAM using a single core only.
We generated random trees by iteratively adding edges to a randomly chosen vertex and
averaged over 40 to 100 pairs of instances depending on their size. The weight function ω
was set to 1 for each pair of vertices and edges, i.e., we compute isomorphisms of maximum
size. This matches the setting in FOG.

Table 1 summarizes our results and we observe that the running time of our approach
aligns with our theoretical analysis. In comparison, FOG’s running time is much higher and
increases to a larger extent with the input size. The running times of both algorithms show
a low standard deviation for random trees, cf. Tables 1a, b. Table 1c shows the running
time in star graphs, which are worst-case examples for some approaches, see Sec. 3. Our
theoretical proven cubic running time matches the experimental results, while FOG’s running
time increases drastically. Table 1d summarizes the computation time under different weight
functions. We defined ω such that different labels are simulated, i.e., vertices and edges
with different labels have weight −∞, which again matches FOG’s setting. Both algorithms
clearly benefit from the fact that less MWMs have to be computed. The results on random
trees are also shown in Figure 3.

2 https://dtai.cs.kuleuven.be/software/PMCSFG
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Table 1 Average running time in ms ± RSD in % and speedup factor q := FOG/DKM.

(a) Random trees of the same order.

Order DKM FOG q

20 0.9± 8% 40± 7% 44.1
40 3.5± 6% 221± 5% 62.7
80 15.2± 4% 1 286± 5% 84.8
160 58.9± 3% 8 342± 5% 141.7
320 237.4± 2% 63 327± 8% 266.9

(b) Random trees with |G| = 80 fixed.

|H| DKM FOG q

20 3.6± 8% 192± 4% 53.6
40 7.3± 7% 504± 4% 68.7
80 15.2± 4% 1 286± 5% 84.8
160 30± 9% 3080± 4% 103.3
320 59.5± 3% 6842± 4% 114.9

(c) Star graphs.

Order DKM FOG q

10 0.1 18 117.6
20 1 489 458.5
40 8.9 18 722 2109.9
80 77.5 929 784 11 992.1

(d) Different ω-functions, order 80

#labels DKM FOG q

1 15.2± 4% 1 286± 5% 84.8
2 5.4± 8% 217± 8% 40
3 3.3± 7% 118± 12% 36.1
4 2.6± 8% 83± 9% 31.9

Order

Time in ms

10 20 30 40 50 60 70 80 90 100

100

200

300

400

Figure 3 Average running time in ms (y-axis) for MCSI computation on random trees of order n

(x-axis). Black = Our implementation (DKM). Blue = FOG implementation.

From a chemical database of thousands of molecules3 we extracted 100 pairs of graphs with
block-cut trees (BC-trees) consisting of more than 40 vertices. BC-trees are a representation
of graphs, where each maximal biconnected component is represented by a B-vertex. If
two such components share a vertex, the corresponding B-vertices are connected through
a C-vertex representing this shared vertex. The running time for MCST on BC-trees is
an important factor for the total running time of MCS algorithms for outerplanar and
series-parallel graphs like [2, 13, 18]. The average running time of our algorithm was 11.2ms,
compared to FOG’s 481.3ms. The speedup factor ranges from 24 to 59, with an average
of 43. This indicates that the above mentioned approaches could greatly benefit from the
techniques presented in this paper.

8 Conclusions

We have presented a novel algorithm for MCST which (i) considers only the subproblems
required to guarantee that an optimal solution is found and (ii) solves groups of related
matching instances efficiently in one pass. Rigorous analysis shows that the approach achieves
cubic time in general trees and quadratic time in trees of bounded degree. Our analysis of the

3 NCI Open Database, GI50, http://cactus.nci.nih.gov

http://cactus.nci.nih.gov
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problem complexity reveals that there is only little room for possible further improvements.
The practical efficiency is documented by an experimental comparison.

If the weight function is restricted to integers of a bounded value, scaling approaches [8] to
the corresponding matching problems become applicable. It remains future work to improve
the running time for this case.
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