2,049 research outputs found

    An Ontology for Autonomic License Management

    Get PDF
    The license agreement can be seen as the knowledge source for a license management system. As such, it may be referenced by the system each time a new process is initiated. To facilitate access, a machine readable representation of the license agreement is highly desirable, but at the same time we do not want to sacrifice too much readability of such agreements by human beings. Creating an ontology as a formal knowledge representation of licensing not only meets the representation requirements, but also offers improvements to knowledge reusability owing to the inherent sharing nature of such representations. Furthermore, the XML-based ontology languages such as OWL (Web Ontology Language) can be user friendly for the non-developers who are often those responsible for implementing and managing such license agreements. This paper shows our use of ontology to represent the license agreement in a development prototype. The ultimate goal is to build ontology for the license management domain that will facilitate autonomic knowledge management. Knowledge based on such ontology can then be shared and utilized by many types of license management system

    Autonomic care platform for optimizing query performance

    Get PDF
    Background: As the amount of information in electronic health care systems increases, data operations get more complicated and time-consuming. Intensive Care platforms require a timely processing of data retrievals to guarantee the continuous display of recent data of patients. Physicians and nurses rely on this data for their decision making. Manual optimization of query executions has become difficult to handle due to the increased amount of queries across multiple sources. Hence, a more automated management is necessary to increase the performance of database queries. The autonomic computing paradigm promises an approach in which the system adapts itself and acts as self-managing entity, thereby limiting human interventions and taking actions. Despite the usage of autonomic control loops in network and software systems, this approach has not been applied so far for health information systems. Methods: We extend the COSARA architecture, an infection surveillance and antibiotic management service platform for the Intensive Care Unit (ICU), with self-managed components to increase the performance of data retrievals. We used real-life ICU COSARA queries to analyse slow performance and measure the impact of optimizations. Each day more than 2 million COSARA queries are executed. Three control loops, which monitor the executions and take action, have been proposed: reactive, deliberative and reflective control loops. We focus on improvements of the execution time of microbiology queries directly related to the visual displays of patients' data on the bedside screens. Results: The results show that autonomic control loops are beneficial for the optimizations in the data executions in the ICU. The application of reactive control loop results in a reduction of 8.61% of the average execution time of microbiology results. The combined application of the reactive and deliberative control loop results in an average query time reduction of 10.92% and the combination of reactive, deliberative and reflective control loops provides a reduction of 13.04%. Conclusions: We found that by controlled reduction of queries' executions the performance for the end-user can be improved. The implementation of autonomic control loops in an existing health platform, COSARA, has a positive effect on the timely data visualization for the physician and nurse

    An architecture for the autonomic curation of crowdsourced knowledge

    Get PDF
    Human knowledge curators are intrinsically better than their digital counterparts at providing relevant answers to queries. That is mainly due to the fact that an experienced biological brain will account for relevant community expertise as well as exploit the underlying connections between knowledge pieces when offering suggestions pertinent to a specific question, whereas most automated database managers will not. We address this problem by proposing an architecture for the autonomic curation of crowdsourced knowledge, that is underpinned by semantic technologies. The architecture is instantiated in the career data domain, thus yielding Aviator, a collaborative platform capable of producing complete, intuitive and relevant answers to career related queries, in a time effective manner. In addition to providing numeric and use case based evidence to support these research claims, this extended work also contains a detailed architectural analysis of Aviator to outline its suitability for automatically curating knowledge to a high standard of quality

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    An ontology-based approach to relax traffic regulation for autonomous vehicle assistance

    Get PDF
    Traffic regulation must be respected by all vehicles, either human- or computer- driven. However, extreme traffic situations might exhibit practical cases in which a vehicle should safely and reasonably relax traffic regulation, e.g., in order not to be indefinitely blocked and to keep circulating. In this paper, we propose a high-level representation of an automated vehicle, other vehicles and their environment, which can assist drivers in taking such "illegal" but practical relaxation decisions. This high-level representation (an ontology) includes topological knowledge and inference rules, in order to compute the next high-level motion an automated vehicle should take, as assistance to a driver. Results on practical cases are presented

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results
    • …
    corecore