368 research outputs found

    Design and provisioning of WDM networks for traffic grooming

    Get PDF
    Wavelength Division Multiplexing (WDM) is the most viable technique for utilizing the enormous amounts of bandwidth inherently available in optical fibers. However, the bandwidth offered by a single wavelength in WDM networks is on the order of tens of Gigabits per second, while most of the applications\u27 bandwidth requirements are still subwavelength. Therefore, cost-effective design and provisioning of WDM networks require that traffic from different sessions share bandwidth of a single wavelength by employing electronic multiplexing at higher layers. This is known as traffic grooming. Optical networks supporting traffic grooming are usually designed in a way such that the cost of the higher layer equipment used to support a given traffic matrix is reduced. In this thesis, we propose a number of optimal and heuristic solutions for the design and provisioning of optical networks for traffic grooming with an objective of network cost reduction. In doing so, we address several practical issues. Specifically, we address the design and provisioning of WDM networks on unidirectional and bidirectional rings for arbitrary unicast traffic grooming, and on mesh topologies for arbitrary multipoint traffic grooming. In multipoint traffic grooming, we address both multicast and many-to-one traffic grooming problems. We provide a unified frame work for optimal and approximate network dimensioning and channel provisioning for the generic multicast traffic grooming problem, as well as some variants of the problem. For many-to-one traffic grooming we propose optimal as well as heuristic solutions. Optimal formulations which are inherently non-linear are mapped to an optimal linear formulation. In the heuristic solutions, we employ different problem specific search strategies to explore the solution space. We provide a number of experimental results to show the efficacy of our proposed techniques for the traffic grooming problem in WDM networks

    Optical network planning for static applications

    Get PDF
    Traffic demands on optical transport networks continue to grow, both in numbers and in size, at an incredible rate. Consequently, the efficient use of network resources has never been as important as today. A possible solution to this problem is to plan, develop and implement efficient algorithms for static and/or dynamic applications in order to minimize the probability of blocking and/or minimizing the number of wavelengths. Static Routing and Wavelength Assignment (RWA) algorithms use a given set of optical path requests and are intended to provide a long-term plan for future traffic. Static RWA algorithms are important for current and future WDM (Wavelength-Division Multiplexing) networks, especially when there is no wavelength conversion, the network is highly connected or the traffic load is moderate to high. In this dissertation, we propose to develop an optical network planning tool capable of choosing the best optical path and assigning as few wavelengths as possible. This tool is structured in five phases: in the first phase, the network physical topology is defined by the adjacency matrix or by the cost matrix and the logical topology is defined by the traffic matrix; in a second phase, the Dijkstra algorithm is used to find the shortest path for each connection; in the third phase, the traffic routing is accomplished considering one traffic unit between the source and destination nodes; in the fourth phase, the paths are ordered using various ordering strategies, such as Shortest Path First, Longest Path First and Random Path Order; finally, in the fifth phase, the heuristic algorithms for wavelength assignment, such as Graph Coloring, First-Fit and Most-Used are used. This tool is first tested on small networks (e.g. ring and mesh topologies), and then applied to real networks (e.g. COST 239, NSFNET and UBN topologies). We have concluded that the number of wavelengths calculated for each network is almost independent of the Wavelength Assignment (WA) heuristics, as well as the ordering strategy, when a full mesh logical topology is considered.Os pedidos de tráfego nas redes de transporte ópticas continuam a crescer, tanto em número como em tamanho, a um ritmo incrível. Consequentemente, a utilização eficiente dos recursos das redes nunca foi tão importante como hoje. Uma solução possível para este problema passa por planear, desenvolver e implementar algoritmos eficientes para aplicações estáticas e/ou dinâmicas de modo a minimizar a probabilidade de bloqueio e/ou minimizar o número de comprimentos de onda. Os algoritmos de encaminhamento e de atribuição de comprimentos de onda (RWA) estáticos utilizam um determinado conjunto de pedidos de caminhos ópticos e visam fornecer um plano de longo prazo para tráfego futuro. Os algoritmos RWA estáticos são importantes para as redes em multiplexagem por divisão de comprimento de onda (WDM) atuais e futuras, especialmente quando não há conversão de comprimento de onda, a rede é altamente ligada ou a carga de tráfego é de moderada a alta. Nesta dissertação, propomos desenvolver uma ferramenta de planeamento de redes ópticas capaz de escolher o melhor caminho óptico e atribuir o mínimo de comprimentos ondas possíveis. Esta ferramenta está estruturada em cinco fases: numa primeira fase é definida a topologia física de rede pela matriz das adjacências ou pela matriz de custo e a topologia lógica é definida pela matriz de tráfego; numa segunda fase é utilizado o algoritmo Dijkstra para encontrar o caminho mais curto para cada ligação; na terceira fase o encaminhamento de tráfego é realizado considerando uma unidade de tráfego entre os nós de origem e destino; na quarta fase os caminhos são ordenados tendo em conta as várias estratégias de ordenação, tais como Shortest Path First, Longest Path First e Random Path Order; finalmente, na quinta fase, os algoritmos heurísticos são utilizados para atribuição de comprimentos de onda, como Graph Coloring, First-Fit e Most-Used. Esta ferramenta é primeiramente testada em redes pequenas (por exemplo, topologias em anel e em malha), e depois é aplicada a redes reais (por exemplo, redes COST 239, NSFNET e UBN). Concluímos que o número de comprimentos de onda calculados para cada rede é quase independente da heurística para atribuição dos cumprimentos de onda, bem como da estratégia de ordenação dos caminhos, quando uma topologia lógica em malha completa é considerada

    Exploring graph coloring heuristics for optical networks planning

    Get PDF
    Optical networks are essential in today’s global communications, and the study of planning tools that efficiently allocate network resources is crucial to network providers. The assignment of wavelengths, alongside routing, are critical functions in all optical network planning tools. This dissertation focuses on the study of wavelength assignment algorithms based on Graph Coloring techniques. In this dissertation, we analyse the performance of the usual Greedy heuristic, a well-known Graph Coloring heuristic applied to optical network planning, as well as the Degree of Saturation (DSATUR) and Recursive Largest First (RLF) heuristics, in several real net- work scenarios. These last two heuristics, to the best of our knowledge, have not yet been applied in the context of optical networks. Extensive simulations have been performed, using real network topologies, such as COST 239, and CONUS networks, considering a full mesh logical topology, and we conclude that DSATUR and RLF heuristics can out-perform Greedy heuristic in network scenarios where there are several network clusters interconnected by only one or two links. In these cases, the RLF and DSATUR heuristics provide less 9 and 5 wavelengths respectively than the Greedy heuristic. Despite generating fewer wavelengths, we have verified that these heuristics need a higher computing time than the Greedy heuristic. Besides these heuristics, the traditional First Fit and Most-Used heuristics were also studied, and lead to performance similar to the Greedy heuristics.As redes óticas são essenciais nas comunicações globais atuais e, o estudo de ferramentas de planeamento que utilizem eficientemente os recursos da rede são cruciais aos operadores de rede. A atribuição de comprimentos de onda, juntamente com o encaminhamento, são funções críticas em todas as ferramentas de planeamento de redes óticas. Esta dissertação foca-se no estudo de algoritmos de atribuição de comprimentos de onda baseados em técnicas de Coloração de Grafos. Na presente dissertação analisamos o desempenho da heuríıstica Greedy, uma heurística de Coloração de Grafos tipicamente aplicada ao planeamento de redes óticas, assim como as heurísticas Degree of Saturation (DSATUR) and Recursive Largest First (RLF), em diversos cenários de redes reais. Estas duas últimas heurísticas, tanto quanto sabemos, ainda não foram aplicadas no contexto de redes óticas. Foram realizadas inúmeras simulações, utilizando topologias de redes reais, como as redes COST 239, e CONUS considerando uma topologia lógica em malha completa e concluímos que as heurísticas DSATUR e RLF podem superar a heurística Greedy em cenários de rede onde existem vários clusters de rede interligados por apenas uma ou duas ligações. Nestas redes, as heurísticas RLF e DSATUR, proporcionam menos 9 e 5 comprimentos de onda, respetivamente, do que a heurística Greedy. Apesar de gerarem menos comprimentos de onda, verificamos que estas heurísticas necessitam de um tempo de computação superior ao da heurística Greedy. Além de terem sido estudadas estas heurísticas, também foram estudadas as heurísticas tradicionais First Fit e Most-Used e concluímos que têm um desempenho semelhante à heurística Greedy

    Design of a fast and resource-efficient fault management system in optical networks to suit real-time multimedia applications

    Get PDF
    Today\u27s telecommunications networks are relying more and more on optical fibers as their physical medium. Currently the Wavelength Division Multiplexing technology enables hundreds of wavelengths to be multiplexed on a single fiber. Using this technology capacity can be dramatically increased, even to the order of Terabits per second. While WDM technology has given a satisfactory answer to the ever-increasing demand for capacity, there is still a problem which needs to be handled efficiently: survivability. Our proposed fault restoration system optimized between restoration cost and speed. We extended the concept of Forward Equivalence Class (FEC) in Multi Protocol Label switching (MPLS) to our proposed fault restoration system. Speed was found to be in the order of 1 to 3 microseconds using predesigned protection, depending on the configuration of the system. Optimization was done between restoration speed and cost by introducing a priority field in the packet header

    Energy-efficient traffic engineering

    Get PDF
    The energy consumption in telecommunication networks is expected to grow considerably, especially in core networks. In this chapter, optimization of energy consumption is approached from two directions. In a first study, multilayer traffic engineering (MLTE) is used to assign energy-efficient paths and logical topology to IP traffic. The relation with traditional capacity optimization is explained, and the MLTE strategy is applied for daily traffic variations. A second study considers the core network below the IP layer, giving a detailed power consumption model. Optical bypass is evaluated as a technique to achieve considerable power savings over per-hop opticalelectronicoptical regeneration. Document type: Part of book or chapter of boo

    Joint dimensioning of server and network infrastructure for resilient optical grids/clouds

    Get PDF
    We address the dimensioning of infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We design the resulting grid/cloud to be resilient against network link or server failures. To this end, we exploit relocation: Under failure conditions, a grid job or cloud virtual machine may be served at an alternate destination (i.e., different from the one under failure-free conditions). We thus consider grid/cloud requests to have a known origin, but assume a degree of freedom as to where they end up being served, which is the case for grid applications of the bag-of-tasks (BoT) type or hosted virtual machines in the cloud case. We present a generic methodology based on integer linear programming (ILP) that: 1) chooses a given number of sites in a given network topology where to install server infrastructure; and 2) determines the amount of both network and server capacity to cater for both the failure-free scenario and failures of links or nodes. For the latter, we consider either failure-independent (FID) or failure-dependent (FD) recovery. Case studies on European-scale networks show that relocation allows considerable reduction of the total amount of network and server resources, especially in sparse topologies and for higher numbers of server sites. Adopting a failure-dependent backup routing strategy does lead to lower resource dimensions, but only when we adopt relocation (especially for a high number of server sites): Without exploiting relocation, potential savings of FD versus FID are not meaningful
    • …
    corecore