2 research outputs found

    DETEKSI DAN PREDIKSI TRAJEKTORI OBJEK BERGERAK DENGAN OMNI-VISION MENGGUNAKAN PSO-NN DAN INTERPOLASI POLYNOMIAL

    Get PDF
    Pada kompetisi robot sepak bola beroda Indonesia dalam satu tim terdiri dari tiga buah robot, dimana satu buah robot adalah penjaga gawang. Pada kompetisi tersebut pergerakan robot dan bola sangat dinamis. Sehingga dibutuhkan sebuah metode untuk memperediksi pergerakan bola sehingga penjaga gawang dapat mengantisipasi pergerakan bola. Pada penelitin ini perancangan omnivision dan pendeteksian bola dilakukan dengan pengolahan citra digital untuk mengenali objek bola dengan background yang kemudian akan dihitung posisi bola dalam pixel. Selanjutnya Neural Network digunakan sebagai model kalibrasi jarak dalam pixel ke jarak nyata (cm) yang bobotnya dilatih menggunakan Particle Swarm Optimization. Selanjutnya untuk memprediksi trajectory pergerakan bola pendekatan interpolasi kurva polynomial digunakan untuk mendapatkan perkiraan model dari data dua dimensi dari posisi bola yang terdeteksi. Hasil penelitian menunjukan bahwa konversi jarak pada pendeteksian objek dengan model PSO-NN didapatkan persentase rata-rata kuadrat error (PMSE) pengukuran 0.13% dan rata rata error prediksi sebesar 20%

    An Omnidirectional Vision Sensor Based on a Spherical Mirror Catadioptric System

    Get PDF
    The combination of mirrors and lenses, which defines a catadioptric sensor, is widely used in the computer vision field. The definition of a catadioptric sensors is based on three main features: hardware setup, projection modelling and calibration process. In this paper, a complete description of these aspects is given for an omnidirectional sensor based on a spherical mirror. The projection model of a catadioptric system can be described by the forward projection task (FP, from 3D scene point to 2D pixel coordinates) and backward projection task (BP, from 2D coordinates to 3D direction of the incident light). The forward projection of non-central catadioptric vision systems, typically obtained by using curved mirrors, is usually modelled by using a central approximation and/or by adopting iterative approaches. In this paper, an analytical closed-form solution to compute both forward and backward projection for a non-central catadioptric system with a spherical mirror is presented. In particular, the forward projection is reduced to a 4th order polynomial by determining the reflection point on the mirror surface through the intersection between a sphere and an ellipse. A matrix format of the implemented models, suitable for fast point clouds handling, is also described. A robust calibration procedure is also proposed and applied to calibrate a catadioptric sensor by determining the mirror radius and center with respect to the camera
    corecore