1,683 research outputs found

    Sublinear Distance Labeling

    Get PDF
    A distance labeling scheme labels the nn nodes of a graph with binary strings such that, given the labels of any two nodes, one can determine the distance in the graph between the two nodes by looking only at the labels. A DD-preserving distance labeling scheme only returns precise distances between pairs of nodes that are at distance at least DD from each other. In this paper we consider distance labeling schemes for the classical case of unweighted graphs with both directed and undirected edges. We present a O(nDlog2D)O(\frac{n}{D}\log^2 D) bit DD-preserving distance labeling scheme, improving the previous bound by Bollob\'as et. al. [SIAM J. Discrete Math. 2005]. We also give an almost matching lower bound of Ω(nD)\Omega(\frac{n}{D}). With our DD-preserving distance labeling scheme as a building block, we additionally achieve the following results: 1. We present the first distance labeling scheme of size o(n)o(n) for sparse graphs (and hence bounded degree graphs). This addresses an open problem by Gavoille et. al. [J. Algo. 2004], hereby separating the complexity from distance labeling in general graphs which require Ω(n)\Omega(n) bits, Moon [Proc. of Glasgow Math. Association 1965]. 2. For approximate rr-additive labeling schemes, that return distances within an additive error of rr we show a scheme of size O(nrpolylog(rlogn)logn)O\left ( \frac{n}{r} \cdot\frac{\operatorname{polylog} (r\log n)}{\log n} \right ) for r2r \ge 2. This improves on the current best bound of O(nr)O\left(\frac{n}{r}\right) by Alstrup et. al. [SODA 2016] for sub-polynomial rr, and is a generalization of a result by Gawrychowski et al. [arXiv preprint 2015] who showed this for r=2r=2.Comment: A preliminary version of this paper appeared at ESA'1

    Noise Sensitivity of Boolean Functions and Applications to Percolation

    Get PDF
    It is shown that a large class of events in a product probability space are highly sensitive to noise, in the sense that with high probability, the configuration with an arbitrary small percent of random errors gives almost no prediction whether the event occurs. On the other hand, weighted majority functions are shown to be noise-stable. Several necessary and sufficient conditions for noise sensitivity and stability are given. Consider, for example, bond percolation on an n+1n+1 by nn grid. A configuration is a function that assigns to every edge the value 0 or 1. Let ω\omega be a random configuration, selected according to the uniform measure. A crossing is a path that joins the left and right sides of the rectangle, and consists entirely of edges ee with ω(e)=1\omega(e)=1. By duality, the probability for having a crossing is 1/2. Fix an ϵ(0,1)\epsilon\in(0,1). For each edge ee, let ω(e)=ω(e)\omega'(e)=\omega(e) with probability 1ϵ1-\epsilon, and ω(e)=1ω(e)\omega'(e)=1-\omega(e) with probability ϵ\epsilon, independently of the other edges. Let p(τ)p(\tau) be the probability for having a crossing in ω\omega, conditioned on ω=τ\omega'=\tau. Then for all nn sufficiently large, P{τ:p(τ)1/2>ϵ}<ϵP\{\tau : |p(\tau)-1/2|>\epsilon\}<\epsilon.Comment: To appear in Inst. Hautes Etudes Sci. Publ. Mat

    Drawing Arrangement Graphs In Small Grids, Or How To Play Planarity

    Full text link
    We describe a linear-time algorithm that finds a planar drawing of every graph of a simple line or pseudoline arrangement within a grid of area O(n^{7/6}). No known input causes our algorithm to use area \Omega(n^{1+\epsilon}) for any \epsilon>0; finding such an input would represent significant progress on the famous k-set problem from discrete geometry. Drawing line arrangement graphs is the main task in the Planarity puzzle.Comment: 12 pages, 8 figures. To appear at 21st Int. Symp. Graph Drawing, Bordeaux, 201

    Energy Complexity of Distance Computation in Multi-hop Networks

    Full text link
    Energy efficiency is a critical issue for wireless devices operated under stringent power constraint (e.g., battery). Following prior works, we measure the energy cost of a device by its transceiver usage, and define the energy complexity of an algorithm as the maximum number of time slots a device transmits or listens, over all devices. In a recent paper of Chang et al. (PODC 2018), it was shown that broadcasting in a multi-hop network of unknown topology can be done in polylogn\text{poly} \log n energy. In this paper, we continue this line of research, and investigate the energy complexity of other fundamental graph problems in multi-hop networks. Our results are summarized as follows. 1. To avoid spending Ω(D)\Omega(D) energy, the broadcasting protocols of Chang et al. (PODC 2018) do not send the message along a BFS tree, and it is open whether BFS could be computed in o(D)o(D) energy, for sufficiently large DD. In this paper we devise an algorithm that attains O~(n)\tilde{O}(\sqrt{n}) energy cost. 2. We show that the framework of the Ω(n){\Omega}(n) round lower bound proof for computing diameter in CONGEST of Abboud et al. (DISC 2017) can be adapted to give an Ω~(n)\tilde{\Omega}(n) energy lower bound in the wireless network model (with no message size constraint), and this lower bound applies to O(logn)O(\log n)-arboricity graphs. From the upper bound side, we show that the energy complexity of O~(n)\tilde{O}(\sqrt{n}) can be attained for bounded-genus graphs (which includes planar graphs). 3. Our upper bounds for computing diameter can be extended to other graph problems. We show that exact global minimum cut or approximate ss--tt minimum cut can be computed in O~(n)\tilde{O}(\sqrt{n}) energy for bounded-genus graphs

    Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

    Get PDF
    A graph U is an induced universal graph for a family F of graphs if every graph in F is a vertex-induced subgraph of U. We give upper and lower bounds for the size of induced universal graphs for the family of graphs with n vertices of maximum degree D. Our new bounds improve several previous results except for the special cases where D is either near-constant or almost n/2. For constant even D Butler [Graphs and Combinatorics 2009] has shown O(n^(D/2)) and recently Alon and Nenadov [SODA 2017] showed the same bound for constant odd D. For constant D Butler also gave a matching lower bound. For generals graphs, which corresponds to D = n, Alon [Geometric and Functional Analysis, to appear] proved the existence of an induced universal graph with (1+o(1)) cdot 2^((n-1)/2) vertices, leading to a smaller constant than in the previously best known bound of 16 * 2^(n/2) by Alstrup, Kaplan, Thorup, and Zwick [STOC 2015]. In this paper we give the following lower and upper bound of binom(floor(n/2))(floor(D/2)) * n^(-O(1)) and binom(floor(n/2))(floor(D/2)) * 2^(O(sqrt(D log D) * log(n/D))), respectively, where the upper bound is the main contribution. The proof that it is an induced universal graph relies on a randomized argument. We also give a deterministic upper bound of O(n^k / (k-1)!). These upper bounds are the best known when D <= n/2 - tilde-Omega(n^(3/4)) and either D is even and D = omega(1) or D is odd and D = omega(log n/log log n). In this range we improve asymptotically on the previous best known results by Butler [Graphs and Combinatorics 2009], Esperet, Arnaud and Ochem [IPL 2008], Adjiashvili and Rotbart [ICALP 2014], Alon and Nenadov [SODA 2017], and Alon [Geometric and Functional Analysis, to appear]
    corecore