115,064 research outputs found

    Matching objects without language extension

    Get PDF
    Pattern matching is a powerful programming concept which has proven its merits in declarative programming. The absence of pattern-matching in object-oriented programming languages is felt especially when tackling source code processing problems. But existing proposals for pattern matching in such languages rely on language extension, which makes their adoption overly intrusive. We propose an approach to support pattern matching in mainstream object-oriented languages without language extension. In this approach, a pattern is a first-class entity, which can be created, be passed as argument, and receive method invocations, just like any other object. We demonstrate how our approach can be used in conjunction with existing parser generators to perform pattern matching on various kinds of abstract syntax representation. We elaborate our approach to include concrete syntax patterns, and mixing of patterns and visitors for the construction of sophisticated syntax tree traversals.Thanks to Rob van der Leek of the Software Improvement Group for valuable feedback regarding this paper and the MatchO library. The author is recipient of a research grant from the Fundacao para a Ciencia e a Tecnologia, under grant number SFRH/BPD/11609/2002

    Graceful Language Extensions and Interfaces

    No full text
    Grace is a programming language under development aimed at education. Grace is object-oriented, imperative, and block-structured, and intended for use in first- and second-year object-oriented programming courses. We present a number of language features we have designed for Grace and implemented in our self-hosted compiler. We describe the design of a pattern-matching system with object-oriented structure and minimal extension to the language. We give a design for an object-based module system, which we use to build dialects, a means of extending and restricting the language available to the programmer, and of implementing domain-specific languages. We show a visual programming interface that melds visual editing (Ć  la Scratch) with textual editing, and that uses our dialect system, and we give the results of a user experiment we performed to evaluate the usability of our interface

    RUN, Xtatic, RUN: EFFICIENT IMPLEMENTATION OF AN OBJECT-ORIENTED LANGUAGE WITH REGULAR PATTERN MATCHING

    Get PDF
    Schema languages such as DTD, XML Schema, and Relax NG have been steadily growing in importance in the XML community. A schema language provides a mechanism for defining the type of XML documents; i.e., the set of constraints that specify the structure of XML documents that are acceptable as data for a certain programming task. A number of recent language designsā€”many of them descended from the XDuce language of Hosoya, Pierce, and Vouillonā€”have showed how such schemas can be used statically for type-checking XML processing code and dynamically for evaluation of XML structures. The technical foundation of such languages is the notion of regular types, a mild generalization of nondeterministic top-down tree automata, which correspond to a core of most popular schema notations, and the no-tion of regular patternsā€”regular types decorated with variable bindersā€”a powerful and convenient primitive for dynamic inspection of XML values. This dissertation is concerned with one of XDuceā€™s descendants, Xtatic. The goal of the Xtatic project is to bring the regular type and regular pattern technologies to a wide audience by integrating them with a mainstream object-oriented language. My research focuses on an efficient implementation of Xtatic including a compiler that generates fast and compact target program

    Towards Comparative Web Content Mining using Object Oriented Model

    Get PDF
    Web content data are heterogeneous in nature; usually composed of different types of contents and data structure. Thus, extraction and mining of web content data is a challenging branch of data mining. Traditional web content extraction and mining techniques are classified into three categories: programming language based wrappers, wrapper (data extraction program) induction techniques, and automatic wrapper generation techniques. First category constructs data extraction system by providing some specialized pattern specification languages, second category is a supervised learning, which learns data extraction rules and third category is automatic extraction process. All these data extraction techniques rely on web document presentation structures, which need complicated matching and tree alignment algorithms, routine maintenance, hard to unify for vast variety of websites and fail to catch heterogeneous data together. To catch more diversity of web documents, a feasible implementation of an automatic data extraction technique based on object oriented data model technique, 00Web, had been proposed in Annoni and Ezeife (2009). This thesis implements, materializes and extends the structured automatic data extraction technique. We developed a system (called WebOMiner) for extraction and mining of structured web contents based on object-oriented data model. Thesis extends the extraction algorithms proposed by Annoni and Ezeife (2009) and develops an automata based automatic wrapper generation algorithm for extraction and mining of structured web content data. Our algorithm identifies data blocks from flat array data structure and generates Non-Deterministic Finite Automata (NFA) pattern for different types of content data for extraction. Objective of this thesis is to extract and mine heterogeneous web content and relieve the hard effort of matching, tree alignment and routine maintenance. Experimental results show that our system is highly effective and it performs the mining task with 100% precision and 96.22% recall value

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    AOSD Ontology 1.0 - Public Ontology of Aspect-Orientation

    Get PDF
    This report presents a Common Foundation for Aspect-Oriented Software Development. A Common Foundation is required to enable effective communication and to enable integration of activities within the Network of Excellence. This Common Foundation is realized by developing an ontology, i.e. the shared meaning of terms and concepts in the domain of AOSD. In the first part of this report, we describe the definitions of an initial set of common AOSD terms. There is general agreement on these definitions. In the second part, we describe the Common Foundation task in detail

    An Analysis of Aspect Composition Problems

    Get PDF
    The composition of multiple software units does not always yield the desired results. In particular, aspect-oriented composition mechanisms introduce new kinds of composition problems. These are caused by different characteristics as compared to object-oriented composition, such as inverse dependencies. The aim of this paper is to contribute to the understanding of aspect-oriented composition problems, and eventually composition problems in a more general context. To this extent we propose and illustrate a systematic approach to analyze composition problems in a precise and concrete manner. In this approach we represent aspect-based composition mechanisms as transformation rules on program graphs. We explicitly model and show where composition problems occur, in a way that can easily be fully automated. In this paper we focus on structural superimposition (cf. intertype declarations) to illustrate our approach; this results in the identification of three categories of causes of composition problems. \u

    Open Programming Language Interpreters

    Get PDF
    Context: This paper presents the concept of open programming language interpreters and the implementation of a framework-level metaobject protocol (MOP) to support them. Inquiry: We address the problem of dynamic interpreter adaptation to tailor the interpreter's behavior on the task to be solved and to introduce new features to fulfill unforeseen requirements. Many languages provide a MOP that to some degree supports reflection. However, MOPs are typically language-specific, their reflective functionality is often restricted, and the adaptation and application logic are often mixed which hardens the understanding and maintenance of the source code. Our system overcomes these limitations. Approach: We designed and implemented a system to support open programming language interpreters. The prototype implementation is integrated in the Neverlang framework. The system exposes the structure, behavior and the runtime state of any Neverlang-based interpreter with the ability to modify it. Knowledge: Our system provides a complete control over interpreter's structure, behavior and its runtime state. The approach is applicable to every Neverlang-based interpreter. Adaptation code can potentially be reused across different language implementations. Grounding: Having a prototype implementation we focused on feasibility evaluation. The paper shows that our approach well addresses problems commonly found in the research literature. We have a demonstrative video and examples that illustrate our approach on dynamic software adaptation, aspect-oriented programming, debugging and context-aware interpreters. Importance: To our knowledge, our paper presents the first reflective approach targeting a general framework for language development. Our system provides full reflective support for free to any Neverlang-based interpreter. We are not aware of any prior application of open implementations to programming language interpreters in the sense defined in this paper. Rather than substituting other approaches, we believe our system can be used as a complementary technique in situations where other approaches present serious limitations
    • ā€¦
    corecore