53,633 research outputs found

    Log Diameter Rounds Algorithms for 2-Vertex and 2-Edge Connectivity

    Get PDF
    Many modern parallel systems, such as MapReduce, Hadoop and Spark, can be modeled well by the MPC model. The MPC model captures well coarse-grained computation on large data - data is distributed to processors, each of which has a sublinear (in the input data) amount of memory and we alternate between rounds of computation and rounds of communication, where each machine can communicate an amount of data as large as the size of its memory. This model is stronger than the classical PRAM model, and it is an intriguing question to design algorithms whose running time is smaller than in the PRAM model. In this paper, we study two fundamental problems, 2-edge connectivity and 2-vertex connectivity (biconnectivity). PRAM algorithms which run in O(log n) time have been known for many years. We give algorithms using roughly log diameter rounds in the MPC model. Our main results are, for an n-vertex, m-edge graph of diameter D and bi-diameter D\u27, 1) a O(log D log log_{m/n} n) parallel time 2-edge connectivity algorithm, 2) a O(log D log^2 log_{m/n}n+log D\u27log log_{m/n}n) parallel time biconnectivity algorithm, where the bi-diameter D\u27 is the largest cycle length over all the vertex pairs in the same biconnected component. Our results are fully scalable, meaning that the memory per processor can be O(n^{delta}) for arbitrary constant delta>0, and the total memory used is linear in the problem size. Our 2-edge connectivity algorithm achieves the same parallel time as the connectivity algorithm of [Andoni et al., 2018]. We also show an Omega(log D\u27) conditional lower bound for the biconnectivity problem

    Faster Algorithms for Edge Connectivity via Random 22-Out Contractions

    Full text link
    We provide a simple new randomized contraction approach to the global minimum cut problem for simple undirected graphs. The contractions exploit 2-out edge sampling from each vertex rather than the standard uniform edge sampling. We demonstrate the power of our new approach by obtaining better algorithms for sequential, distributed, and parallel models of computation. Our end results include the following randomized algorithms for computing edge connectivity with high probability: -- Two sequential algorithms with complexities O(mlogn)O(m \log n) and O(m+nlog3n)O(m+n \log^3 n). These improve on a long line of developments including a celebrated O(mlog3n)O(m \log^3 n) algorithm of Karger [STOC'96] and the state of the art O(mlog2n(loglogn)2)O(m \log^2 n (\log\log n)^2) algorithm of Henzinger et al. [SODA'17]. Moreover, our O(m+nlog3n)O(m+n \log^3 n) algorithm is optimal whenever m=Ω(nlog3n)m = \Omega(n \log^3 n). Within our new time bounds, whp, we can also construct the cactus representation of all minimal cuts. -- An O˜(n0.8D0.2+n0.9)\~O(n^{0.8} D^{0.2} + n^{0.9}) round distributed algorithm, where D denotes the graph diameter. This improves substantially on a recent breakthrough of Daga et al. [STOC'19], which achieved a round complexity of O˜(n11/353D1/353+n11/706)\~O(n^{1-1/353}D^{1/353} + n^{1-1/706}), hence providing the first sublinear distributed algorithm for exactly computing the edge connectivity. -- The first O(1)O(1) round algorithm for the massively parallel computation setting with linear memory per machine.Comment: algorithms and data structures, graph algorithms, edge connectivity, out-contractions, randomized algorithms, distributed algorithms, massively parallel computatio

    Fully dynamic maintenance of k-connectivity in parallel

    Get PDF
    ©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Given a graph G=(V, E) with n vertices and m edges, the k-connectivity of G denotes either the k-edge connectivity or the k-vertex connectivity of G. In this paper, we deal with the fully dynamic maintenance of k-connectivity of G in the parallel setting for k=2, 3. We study the problem of maintaining k-edge/vertex connected components of a graph undergoing repeatedly dynamic updates, such as edge insertions and deletions, and answering the query of whether two vertices are included in the same k-edge/vertex connected component. Our major results are the following: (1) An NC algorithm for the 2-edge connectivity problem is proposed, which runs in O(log n log(m/n)) time using O(n3/4) processors per update and query. (2) It is shown that the biconnectivity problem can be solved in O(log2 n ) time using O(nα(2n, n)/logn) processors per update and O(1) time with a single processor per query or in O(log n logn/m) time using O(nα(2n, n)/log n) processors per update and O(logn) time using O(nα(2n, n)/logn) processors per query, where α(.,.) is the inverse of Ackermann's function. (3) An NC algorithm for the triconnectivity problem is also derived, which takes O(log n logn/m+logn log log n/α(3n, n)) time using O(nα(3n, n)/log n) processors per update and O(1) time with a single processor per query. (4) An NC algorithm for the 3-edge connectivity problem is obtained, which has the same time and processor complexities as the algorithm for the triconnectivity problem. To the best of our knowledge, the proposed algorithms are the first NC algorithms for the problems using O(n) processors in contrast to Ω(m) processors for solving them from scratch. In particular, the proposed NC algorithm for the 2-edge connectivity problem uses only O(n3/4) processors. All the proposed algorithms run on a CRCW PRAMWeifa Liang, Brent, R.P., Hong She

    Searching Constant Width Mazes Captures the AC0 Hierarchy

    Get PDF
    We show that searching a width k maze is complete for Pi_k, i.e.,for the k'th level of the AC0 hierarchy. Equivalently, st-connectivityfor width k grid graphs is complete for Pi_k. As an application, weshow that there is a data structure solving dynamic st-connectivity for constant width grid graphs with time bound O(log log n) per operation on a random access machine. The dynamic algorithm is derived from the parallel one in an indirect way using algebraic tools

    Realizable paths and the NL vs L problem

    Get PDF
    A celebrated theorem of Savitch [Savitch'70] states that NSPACE(S) is contained in DSPACE(S²). In particular, Savitch gave a deterministic algorithm to solve ST-Connectivity (an NL-complete problem) using O({log}²{n}) space, implying NL (non-deterministic logspace) is contained in DSPACE({log}²{n}). While Savitch's theorem itself has not been improved in the last four decades, several graph connectivity problems are shown to lie between L and NL, providing new insights into the space-bounded complexity classes. All the connectivity problems considered in the literature so far are essentially special cases of ST-Connectivity. In this dissertation, we initiate the study of auxiliary PDAs as graph connectivity problems and define sixteen different "graph realizability problems" and study their relationships. The complexity of these connectivity problems lie between L (logspace) and P (polynomial time). ST-Realizability, the most general graph realizability problem is P-complete. 1DSTREAL(poly), the most specific graph realizability problem is L-complete. As special cases of our graph realizability problems we define two natural problems, Balanced ST-Connectivity and Positive Balanced ST-Connectivity, that lie between L and NL. We study the space complexity of SGSLOGCFL, a graph realizability problem lying between L and LOGCFL. We define generalizations of graph squaring and transitive closure, present efficient parallel algorithms for SGSLOGCFL and use the techniques of Trifonov to show that SGSLOGCFL is contained in DSPACE(lognloglogn). This implies that Balanced ST-Connectivity is contained in DSPACE(lognloglogn). We conclude with several interesting new research directions.PhDCommittee Chair: Richard Lipton; Committee Member: Anna Gal; Committee Member: Maria-Florina Balcan; Committee Member: Merrick Furst; Committee Member: William Coo
    corecore