15,204 research outputs found

    Reduced-Rank STAP Schemes for Airborne Radar Based on Switched Joint Interpolation, Decimation and Filtering Algorithm

    Get PDF
    In this paper, we propose a reduced-rank space-time adaptive processing (STAP) technique for airborne phased array radar applications. The proposed STAP method performs dimensionality reduction by using a reduced-rank switched joint interpolation, decimation and filtering algorithm (RR-SJIDF). In this scheme, a multiple-processing-branch (MPB) framework, which contains a set of jointly optimized interpolation, decimation and filtering units, is proposed to adaptively process the observations and suppress jammers and clutter. The output is switched to the branch with the best performance according to the minimum variance criterion. In order to design the decimation unit, we present an optimal decimation scheme and a low-complexity decimation scheme. We also develop two adaptive implementations for the proposed scheme, one based on a recursive least squares (RLS) algorithm and the other on a constrained conjugate gradient (CCG) algorithm. The proposed adaptive algorithms are tested with simulated radar data. The simulation results show that the proposed RR-SJIDF STAP schemes with both the RLS and the CCG algorithms converge at a very fast speed and provide a considerable SINR improvement over the state-of-the-art reduced-rank schemes

    Group Iterative Spectrum Thresholding for Super-Resolution Sparse Spectral Selection

    Full text link
    Recently, sparsity-based algorithms are proposed for super-resolution spectrum estimation. However, to achieve adequately high resolution in real-world signal analysis, the dictionary atoms have to be close to each other in frequency, thereby resulting in a coherent design. The popular convex compressed sensing methods break down in presence of high coherence and large noise. We propose a new regularization approach to handle model collinearity and obtain parsimonious frequency selection simultaneously. It takes advantage of the pairing structure of sine and cosine atoms in the frequency dictionary. A probabilistic spectrum screening is also developed for fast computation in high dimensions. A data-resampling version of high-dimensional Bayesian Information Criterion is used to determine the regularization parameters. Experiments show the efficacy and efficiency of the proposed algorithms in challenging situations with small sample size, high frequency resolution, and low signal-to-noise ratio

    Covariance matrix estimation with heterogeneous samples

    Get PDF
    We consider the problem of estimating the covariance matrix Mp of an observation vector, using heterogeneous training samples, i.e., samples whose covariance matrices are not exactly Mp. More precisely, we assume that the training samples can be clustered into K groups, each one containing Lk, snapshots sharing the same covariance matrix Mk. Furthermore, a Bayesian approach is proposed in which the matrices Mk. are assumed to be random with some prior distribution. We consider two different assumptions for Mp. In a fully Bayesian framework, Mp is assumed to be random with a given prior distribution. Under this assumption, we derive the minimum mean-square error (MMSE) estimator of Mp which is implemented using a Gibbs-sampling strategy. Moreover, a simpler scheme based on a weighted sample covariance matrix (SCM) is also considered. The weights minimizing the mean square error (MSE) of the estimated covariance matrix are derived. Furthermore, we consider estimators based on colored or diagonal loading of the weighted SCM, and we determine theoretically the optimal level of loading. Finally, in order to relax the a priori assumptions about the covariance matrix Mp, the second part of the paper assumes that this matrix is deterministic and derives its maximum-likelihood estimator. Numerical simulations are presented to illustrate the performance of the different estimation schemes

    Concrete resource analysis of the quantum linear system algorithm used to compute the electromagnetic scattering cross section of a 2D target

    Get PDF
    We provide a detailed estimate for the logical resource requirements of the quantum linear system algorithm (QLSA) [Phys. Rev. Lett. 103, 150502 (2009)] including the recently described elaborations [Phys. Rev. Lett. 110, 250504 (2013)]. Our resource estimates are based on the standard quantum-circuit model of quantum computation; they comprise circuit width, circuit depth, the number of qubits and ancilla qubits employed, and the overall number of elementary quantum gate operations as well as more specific gate counts for each elementary fault-tolerant gate from the standard set {X, Y, Z, H, S, T, CNOT}. To perform these estimates, we used an approach that combines manual analysis with automated estimates generated via the Quipper quantum programming language and compiler. Our estimates pertain to the example problem size N=332,020,680 beyond which, according to a crude big-O complexity comparison, QLSA is expected to run faster than the best known classical linear-system solving algorithm. For this problem size, a desired calculation accuracy 0.01 requires an approximate circuit width 340 and circuit depth of order 102510^{25} if oracle costs are excluded, and a circuit width and depth of order 10810^8 and 102910^{29}, respectively, if oracle costs are included, indicating that the commonly ignored oracle resources are considerable. In addition to providing detailed logical resource estimates, it is also the purpose of this paper to demonstrate explicitly how these impressively large numbers arise with an actual circuit implementation of a quantum algorithm. While our estimates may prove to be conservative as more efficient advanced quantum-computation techniques are developed, they nevertheless provide a valid baseline for research targeting a reduction of the resource requirements, implying that a reduction by many orders of magnitude is necessary for the algorithm to become practical.Comment: 37 pages, 40 figure

    Sparsity driven ultrasound imaging

    Get PDF
    An image formation framework for ultrasound imaging from synthetic transducer arrays based on sparsity-driven regularization functionals using single-frequency Fourier domain data is proposed. The framework involves the use of a physics-based forward model of the ultrasound observation process, the formulation of image formation as the solution of an associated optimization problem, and the solution of that problem through efficient numerical algorithms. The sparsity-driven, model-based approach estimates a complex-valued reflectivity field and preserves physical features in the scene while suppressing spurious artifacts. It also provides robust reconstructions in the case of sparse and reduced observation apertures. The effectiveness of the proposed imaging strategy is demonstrated using experimental data
    corecore