1,114 research outputs found

    On Multiple Decoding Attempts for Reed-Solomon Codes: A Rate-Distortion Approach

    Full text link
    One popular approach to soft-decision decoding of Reed-Solomon (RS) codes is based on using multiple trials of a simple RS decoding algorithm in combination with erasing or flipping a set of symbols or bits in each trial. This paper presents a framework based on rate-distortion (RD) theory to analyze these multiple-decoding algorithms. By defining an appropriate distortion measure between an error pattern and an erasure pattern, the successful decoding condition, for a single errors-and-erasures decoding trial, becomes equivalent to distortion being less than a fixed threshold. Finding the best set of erasure patterns also turns into a covering problem which can be solved asymptotically by rate-distortion theory. Thus, the proposed approach can be used to understand the asymptotic performance-versus-complexity trade-off of multiple errors-and-erasures decoding of RS codes. This initial result is also extended a few directions. The rate-distortion exponent (RDE) is computed to give more precise results for moderate blocklengths. Multiple trials of algebraic soft-decision (ASD) decoding are analyzed using this framework. Analytical and numerical computations of the RD and RDE functions are also presented. Finally, simulation results show that sets of erasure patterns designed using the proposed methods outperform other algorithms with the same number of decoding trials.Comment: to appear in the IEEE Transactions on Information Theory (Special Issue on Facets of Coding Theory: from Algorithms to Networks

    How to Achieve the Capacity of Asymmetric Channels

    Full text link
    We survey coding techniques that enable reliable transmission at rates that approach the capacity of an arbitrary discrete memoryless channel. In particular, we take the point of view of modern coding theory and discuss how recent advances in coding for symmetric channels help provide more efficient solutions for the asymmetric case. We consider, in more detail, three basic coding paradigms. The first one is Gallager's scheme that consists of concatenating a linear code with a non-linear mapping so that the input distribution can be appropriately shaped. We explicitly show that both polar codes and spatially coupled codes can be employed in this scenario. Furthermore, we derive a scaling law between the gap to capacity, the cardinality of the input and output alphabets, and the required size of the mapper. The second one is an integrated scheme in which the code is used both for source coding, in order to create codewords distributed according to the capacity-achieving input distribution, and for channel coding, in order to provide error protection. Such a technique has been recently introduced by Honda and Yamamoto in the context of polar codes, and we show how to apply it also to the design of sparse graph codes. The third paradigm is based on an idea of B\"ocherer and Mathar, and separates the two tasks of source coding and channel coding by a chaining construction that binds together several codewords. We present conditions for the source code and the channel code, and we describe how to combine any source code with any channel code that fulfill those conditions, in order to provide capacity-achieving schemes for asymmetric channels. In particular, we show that polar codes, spatially coupled codes, and homophonic codes are suitable as basic building blocks of the proposed coding strategy.Comment: 32 pages, 4 figures, presented in part at Allerton'14 and published in IEEE Trans. Inform. Theor

    Transmission of Spatio-Temporal Correlated Sources Over Fading Multiple Access Channels With DQLC Mappings

    Get PDF
    © 2019 IEEE. This version of the article has been accepted for publication, after peer review. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The Version of Record is available online at: https://doi.org/ 10.1109/TCOMM.2019.2912571.[Abstract]: The design of zero-delay Joint Source-Channel Coding (JSCC) schemes for the transmission of correlated information over fading Multiple Access Channels (MACs) is an interesting problem for many communication scenarios like Wireless Sensor Networks (WSNs). Among the different JSCC schemes so far proposed for this scenario, Distributed Quantizer Linear Coding (DQLC) represents an appealing solution since it is able to outperform uncoded transmissions for any correlation level at high Signal-to-Noise Ratios (SNRs) with a low computational cost. In this paper, we extend the design of DQLC-based schemes for fading MACs considering sphere decoding to make the optimal Minimum Mean Squared Error (MMSE) estimation computationally affordable for an arbitrary number of transmit users. The use of sphere decoding also allows to formulate a practical algorithm for the optimization of DQLC-based systems. Finally, non-linear Kalman Filtering for the DQLC is considered to jointly exploit the temporal and spatial correlation of the source symbols. The results of computer experiments show that the proposed DQLC scheme with the Kalman Filter decoding approach clearly outperforms uncoded transmissions for medium and high SNRs.This work has been funded by Office of Naval Research Global of United States (N62909-15-1-2014), the Xunta de Galicia (ED431C 2016-045, ED341D R2016/012, ED431G/01), the Agencia Estatal de Investigación of Spain (TEC2015-69648-REDC, TEC2016-75067-C4-1-R) and ERDF funds of the EU (AEI/FEDER, UE).United States. Office of Naval Research Global of United States; N62909-15-1-2014Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED341D R2016/012Xunta de Galicia; ED431G/0

    Advanced Coding Techniques with Applications to Storage Systems

    Get PDF
    This dissertation considers several coding techniques based on Reed-Solomon (RS) and low-density parity-check (LDPC) codes. These two prominent families of error-correcting codes have attracted a great amount of interest from both theorists and practitioners and have been applied in many communication scenarios. In particular, data storage systems have greatly benefited from these codes in improving the reliability of the storage media. The first part of this dissertation presents a unified framework based on rate-distortion (RD) theory to analyze and optimize multiple decoding trials of RS codes. Finding the best set of candidate decoding patterns is shown to be equivalent to a covering problem which can be solved asymptotically by RD theory. The proposed approach helps understand the asymptotic performance-versus-complexity trade-off of these multiple-attempt decoding algorithms and can be applied to a wide range of decoders and error models. In the second part, we consider spatially-coupled (SC) codes, or terminated LDPC convolutional codes, over intersymbol-interference (ISI) channels under joint iterative decoding. We empirically observe the phenomenon of threshold saturation whereby the belief-propagation (BP) threshold of the SC ensemble is improved to the maximum a posteriori (MAP) threshold of the underlying ensemble. More specifically, we derive a generalized extrinsic information transfer (GEXIT) curve for the joint decoder that naturally obeys the area theorem and estimate the MAP and BP thresholds. We also conjecture that SC codes due to threshold saturation can universally approach the symmetric information rate of ISI channels. In the third part, a similar analysis is used to analyze the MAP thresholds of LDPC codes for several multiuser systems, namely a noisy Slepian-Wolf problem and a multiple access channel with erasures. We provide rigorous analysis and derive upper bounds on the MAP thresholds which are shown to be tight in some cases. This analysis is a first step towards proving threshold saturation for these systems which would imply SC codes with joint BP decoding can universally approach the entire capacity region of the corresponding systems
    • …
    corecore