
ADVANCED CODING TECHNIQUES

WITH APPLICATIONS TO STORAGE SYSTEMS

A Dissertation

by

PHONG SY NGUYEN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2012

Major Subject: Electrical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/9069167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ADVANCED CODING TECHNIQUES

WITH APPLICATIONS TO STORAGE SYSTEMS

A Dissertation

by

PHONG SY NGUYEN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Henry D. Pfister
Krishna R. Narayanan

Committee Members, A. L. Narasimha Reddy
Frank Sottile

Head of Department, Costas N. Georghiades

May 2012

Major Subject: Electrical Engineering



iii

ABSTRACT

Advanced Coding Techniques with Applications to Storage Systems. (May 2012)

Phong S. Nguyen, B. Eng., Hanoi University of Technology

Co–Chairs of Advisory Committee: Dr. Henry D. Pfister
Dr. Krishna R. Narayanan

This dissertation considers several coding techniques based on Reed-Solomon (RS)

and low-density parity-check (LDPC) codes. These two prominent families of error-

correcting codes have attracted a great amount of interest from both theorists and

practitioners and have been applied in many communication scenarios. In particu-

lar, data storage systems have greatly benefited from these codes in improving the

reliability of the storage media.

The first part of this dissertation presents a unified framework based on rate-

distortion (RD) theory to analyze and optimize multiple decoding trials of RS codes.

Finding the best set of candidate decoding patterns is shown to be equivalent to a

covering problem which can be solved asymptotically by RD theory. The proposed

approach helps understand the asymptotic performance-versus-complexity trade-off

of these multiple-attempt decoding algorithms and can be applied to a wide range of

decoders and error models.

In the second part, we consider spatially-coupled (SC) codes, or terminated

LDPC convolutional codes, over intersymbol-interference (ISI) channels under joint

iterative decoding. We empirically observe the phenomenon of threshold saturation

whereby the belief-propagation (BP) threshold of the SC ensemble is improved to the

maximum a posteriori (MAP) threshold of the underlying ensemble. More specifi-

cally, we derive a generalized extrinsic information transfer (GEXIT) curve for the
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joint decoder that naturally obeys the area theorem and estimate the MAP and BP

thresholds. We also conjecture that SC codes due to threshold saturation can univer-

sally approach the symmetric information rate of ISI channels.

In the third part, a similar analysis is used to analyze the MAP thresholds of

LDPC codes for several multiuser systems, namely a noisy Slepian-Wolf problem and

a multiple access channel with erasures. We provide rigorous analysis and derive

upper bounds on the MAP thresholds which are shown to be tight in some cases.

This analysis is a first step towards proving threshold saturation for these systems

which would imply SC codes with joint BP decoding can universally approach the

entire capacity region of the corresponding systems.
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CHAPTER I

INTRODUCTION

Due to unavoidable noise in many communication channels, it is important to use

channel coding, a mechanism introduced by Shannon in his seminal paper in 1948

[1] to correct errors that may be introduced when the receiver tries to recover the

transmitted data. This is done by carefully adding controlled redundancy to the

original data that allows one to trade-off data rate for reliability. The sets of symbol

vectors, over some input alphabet, that are to be transmitted are referred to as

channel codes.

In his famous paper, Shannon also stated a channel coding theorem by showing

that there exists a maximum rate, called the capacity of the channel, below which the

fraction of errors can be made arbitrarily small and therefore reliable communication

is possible. However, the original proof, based on random coding arguments, is elegant

but only shows that good codes exist and does provide practical constructions for such

codes.

Since then, many coding theorists have searched for practical coding schemes that

approach the Shannon capacity with affordable encoding and decoding complexity.

Often, structure is introduced into the codes to facilitate the encoding and decoding

processes. Linear codes are one example of this and they have been shown to achieve

the capacity of symmetric channels under maximum-likelihood (ML) decoding (see

[2, 3]). However, the complexity of ML decoding is still prohibitively large due to

an enormous number of codewords. Over the years, researchers have been borrowing

tools from diverse branches of mathematics to construct powerful codes based on a

This dissertation follows the style of IEEE Trans. on Information Theory.
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variety of structures. For example, there are algebraic structure in algebraic codes

such as Bose-Chaudhuri-Hocquenghem (BCH) codes and Reed-Solomon (RS) codes

(see [4]), trellis structure in convolutional codes and turbo codes (see [5]), graph

structure in low-density parity-check (LDPC) codes (see [6]) and the nested structure

in polar codes [7]. In fact, turbo codes, LDPC codes, and polar codes can all be

carefully designed to perform very close to or even achieve the capacity of binary-

input memoryless symmetric channels.

In this dissertation, the main focus is on RS and LDPC codes. They are, perhaps,

two of the most popular families of channel codes and have been widely used in various

communications systems.

Magnetic recording systems for data storage are among the most critical applica-

tions of RS and LDPC codes. This is because, in this information age, there is an ever

increasing demand for vast amounts of data. The data storage industry has reacted

to this by pushing the limits on the density of recording on the physical medium.

Extremely high areal densities require symbols to be physically recorded very close

to each other, which causes significant inter-symbol interference (ISI) in the read-

channel. In addition, there are many other important considerations that are specific

to the recording application. For example, the redundancy from the channel coding

must be kept very low to keep data density high and the frame error rates required are

often around 10−12 or smaller. These constraints make coding and signal processing

for the read-channel a very challenging task. On the coding front, RS codes have

been the answer to this problem for many years. However, recently, LDPC started to

attract a lot of attention and have now appeared in many hard-disk drives [8].

The next two sections provide some background on RS and LDPC codes.
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A. Background on Reed-Solomon Codes

Many advances in coding theory during its first few decades of development involved

algebraic codes. The structure of these codes can be exploited to yield practical

encoding and decoding algorithms. The major design goal during this time was to

maximize the minimum Hamming distance. One reason for this is that bounded

distance decoding is guaranteed to correct any number of errors smaller than half the

minimum distance.

RS codes are perhaps the most popular algebraic codes. They were introduced

in 1960 by Irving Reed and Gustave Solomon [9] as reflected in the name. Because of

their beautiful algebraic structure, RS codes possess many nice properties. An (n, k)
RS code of length n and dimension k is a maximum distance separable (MDS) linear

code with minimum distance dmin = n − k + 1. With respect to minimum distance,

RS codes are optimal because they achieve the Singleton bound [10], i.e., RS codes

achieve the maximum dmin given blocklength n and dimension k. RS codes also have

efficient hard-decision decoding (HDD) algorithms, such as the Berlekamp-Massey

(BM) algorithm, which guarantee to correct up to ⌊dmin−1
2

⌋ errors. They tend to

perform very well in channels with mixture of both burst and random errors and can

achieve very low error rates. However, a major drawback of RS codes is the lack

of decoding algorithms that make good use of the soft information available at the

output of the channel detector and simultaneously have an affordable complexity.

More on RS codes and their decoding algorithms can be found in Chapter II.

B. Background on LDPC Codes

Generally speaking, LDPC codes, aptly described by their names, are linear block

codes with a very small fraction of non-zero entries in the parity-check matrices.
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An LDPC code is called (dl, dr)-regular if there are dl (and dr) non-zero entries per

column (and row) in the parity-check matrix. Often, dl and dr are small compared

to the blocklength of the code.

LDPC were introduced by Gallager in his doctoral dissertation [11] in the same

year that RS codes was proposed. However, their value went unrecognized for decades

until being rediscovered by MacKay [12], with Tanner’s new way of graphically de-

picting LDPC codes [13] being a significant exception. Using Tanner’s method, LDPC

codes can be represented by bipartite graphs by using a set of variable nodes, cor-

responding to the codeword symbols, and a set of check nodes, corresponding to

the parity-check constraints of the codes. For example, in the Tanner graph of the

(dl, dr)-regular LDPC ensemble, all the bit nodes have degree dl and all the check

nodes have degree dr. The sparse bipartite graph structure of LDPC codes turns out

to work very well with belief propagation (BP), a low-complexity message-passing

decoding, and in fact can achieve the capacity of several channels.

Since their renaissance, LDPC codes and related topics have attracted an enor-

mous amount of research from the information theory society. As a result, researchers

have developed many tools and analyses to improve understanding and the perfor-

mance of these codes. A notable example is the work by Luby et al. [14, 15] where

the idea of irregular LDPC codes was introduced. Another example is the work by

Richardson, Shokrollahi, and Urbanke [16] where an important analysis termed den-

sity evolution was proposed to track the performance of the iterative BP decoder.

Much of the history and progress associated with LDPC codes is captured well by

the book of Richardson and Urbanke [6].

Throughout this dissertation, the standard degree distribution (d.d.) is used

to characterize irregular LDPC ensembles. From the edge perspective, the d.d. pair

consists of two polynomials λ(z) = ∑i≥1 λiz
i−1 and ρ(z) = ∑i≥1 ρiz

i−1 whose coefficients
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λi (or ρi) give the fraction of edges that connect to bit (or check) nodes of degree i.

Equivalently, the LDPC ensemble can also be viewed from the node perspective where

its d.d. pair L(z) = ∑i≥1Liz
i and R(z) = ∑i≥1Rizi have coefficients Li (or Ri) equal

to the fraction of bit (or check) nodes of degree i. An LDPC ensemble of length n

with d.d. (λ, ρ), or equivalently (L,R), is denoted as LDPC(n,λ, ρ), or equivalently

LDPC(n,L,R). The design rate of an LDPC ensemble is given by

r = 1 − L′(1)
R′(1) = 1 − ∫ 1

0 ρ(z)dz∫ 1

0 λ(z)dz .
In the following subsection, we will briefly discuss a special class of LDPC codes,

namely terminated LDPC convolutional codes which are also known as spatially-

coupled (SC) codes. These SC codes will be the main subject of Chapters III and

IV.

1. Spatially-Coupled Codes

The notion of LDPC convolutional codes were introduced by Feldstrom and Zigan-

girov in 1999 [17]. Later, it was shown that terminated LDPC convolutional codes

have excellent BP thresholds which can get quite close to the capacity of many memo-

ryless channels [18, 19]. Recently, the mechanism behind this impressive performance

was explained by Kudekar, Richardson and Urbanke [20]. They describe a phe-

nomenon, termed threshold saturation via spatial coupling, whereby the BP threshold

of SC codes saturates to the MAP threshold of the underlying uncoupled ensemble.

The class of SC ensembles in general can be defined quite broadly. In this dis-

sertation, we mainly consider two basic variants (see details in [20]) as discussed

below.
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111111000 . . . 000000000
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000000000 . . . 000001111
000000000 . . . 000000011




L

Fig. 1. (Left) The protograph for the (dl, dr, L) ensemble where dl = 3 and dr = 6.

(Right) The parity-check matrix associated with the protograph on the left

before lifting.

a. The (dl, dr, L) Ensemble

The (dl, dr, L) SC ensemble (with dl odd so that d̂l = dl−1
2 ∈ N) can be constructed

from the underlying (dl, dr)-regular LDPC ensemble. At each position from [1, L] one

has M bit nodes and dl
dr
M check nodes just like in the (dl, dr)-regular case. However,

each bit node at position i is connected to one check node at each position from i− d̂l
to i + d̂l. In doing this, one also needs to add dl

dr
M extra check nodes at each of d̂l

extra positions on each side.

SC ensembles may be best viewed using protographs (see [21] for the definition of

protographs for LDPC codes). For example, in Fig. 1, the protograph for the (3,6, L)
ensemble appears on the left while the associated protograph parity-check matrix H

before lifting is located on the right. The final Tanner graph for the SC ensembles can

be obtained by lifting the protograph with some lifting factor M , which corresponds

to replacing each one in the parity-check matrix with an M ×M permutation matrix

and each zero with an M ×M zero matrix.
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According to [20], the design rate of the (dl, dr, L) ensemble is given by

r(dl, dr, L) = (1 − dl
dr

) − dl
dr

⋅ dl − 1

L
.

b. The (dl, dr, L,w) Ensemble

The (dl, dr, L,w) can be obtained with the introduction of a “smoothing” parameter

w. One still places M variable nodes at each position in [1, L] but places dl
dr
M check

nodes at each position in [1, L + w − 1]. Each bit node at position i is connected

uniformly and independently to a total of dl check nodes at positions from the range

[i, i+w−1]. By adding this randomization to the edge connections, the system behaves

like a continuous one for large enough w and a proof of the threshold saturation effect

becomes feasible [20]. The design rate of the (dl, dr, L,w) ensemble is given in [20] by

r(dl, dr, L,w) = (1 − dl
dr

) − dl
dr

⋅ w + 1 − 2∑w
i=0 ( i

w
)dr

L
.

C. Dissertation Outline

This dissertation is organized as follows. In Chapter II, we propose a rate-distortion

(RD) framework to analyze and design multiple decoding attempts of RS codes. In

Chapter III, SC codes are considered over ISI channels and threshold saturation is

also observed based on the construction of a generalized extrinsic information transfer

(GEXIT) curve. In Chapter IV, a similar technique is extended to two multiuser

channels where the MAP thresholds of LDPC codes over these channels are rigorously

investigated. As a consequence, SC codes with threshold saturation are conjectured

to universally achieve the entire capacity region of these three models in Chapters III

and IV. Finally, conclusions and future directions of work are pointed out in Chapter

V.
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D. Notation

Throughout this dissertation, n is used to denote the blocklength of the codes. The

subvector (Xi,Xi+1, . . . ,Xj) of the vector (X1,X2, . . . ,Xn) is denoted by Xj
i for con-

venience. In Chapter IV, vectors of length n are also be denoted by bold faced letters

such as X. For simplicity of notation, we write Y∼i to denote the vector Y n
1 ∖Yi. The

standard symbols R, N, and Z are used to denote the set of real numbers, natural

numbers, and integers, respectively. The set of non-negative real numbers is denoted

by R≥0 meanwhile E is used to denote expectation. Finally, H2(x) is used to denote

the binary entropy function, which is defined by H2(x) ≜ −x log2(x)−(1−x) log2(1−x).
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CHAPTER II

A RATE-DISTORTION APPROACH TO MULTIPLE DECODING ATTEMPTS

OF REED-SOLOMON CODES*

A. Introduction

Since the discovery of RS codes [9], researchers have spent a considerable effort

on improving the decoding performance at the expense of complexity. A break-

through result of Guruswami and Sudan (GS) introduced an algebraic hard-decision

list-decoding algorithm, based on bivariate interpolation and factorization, that can

correct errors well beyond half the minimum distance of the code [22]. Nevertheless,

hard-decision decoding (HDD) algorithms do not fully exploit the information pro-

vided by the channel output. Koetter and Vardy (KV) later extended the GS decoder

to an algebraic soft-decision (ASD) decoding algorithm by converting the probabili-

ties observed at the channel output into algebraic interpolation conditions in terms

of a multiplicity matrix [23].

The GS and KV algorithms, however, have significant computational complexity.

Therefore, multiple runs of errors-and-erasures and errors-only decoding with some

low-complexity algorithm, such as the BM algorithm, has renewed the interest of

researchers. These algorithms use the soft-information available at the channel output

to construct a set of either erasure patterns [24, 25], test patterns [26], or patterns

combining both [27, 28] and then attempt to decode using each pattern. Techniques

have also been introduced to lower the complexity per decoding trial in [29, 30, 31].

*Copyright 2011 IEEE. Reprinted, with permission, from P. S. Nguyen, H. D.
Pfister, and K. R. Narayanan, “On multiple decoding attempts for Reed-Solomon
codes: A rate-distortion approach,” IEEE Transactions on Information Theory, vol.
57, no. 2, pp. 668-691, Feb. 2011. For more information, go to http://thesis.
tamu.edu/forms/IEEE\%20permission\%20note.pdf/view.
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Other soft-decision decoding algorithms for RS codes include [32, 33] that use the

binary expansion of RS codes to work on the bit-level. In [32], belief propagation is

run while the parity-check matrix is iteratively adapted on the least reliable basis.

Meanwhile, [33] adapts the generator matrix on the most reliable basis and uses

reprocessing techniques based on ordered statistics.

In the scope of multiple errors-and-erasures decoding, there have been several

algorithms proposed that use different erasure codebooks (i.e., different sets of era-

sure patterns). After running the errors-and-erasures decoding algorithm multiple

times, each time using one erasure pattern in the set, these algorithms produce a list

of candidate codewords, whose size is usually small, and then pick the best codeword

on this list. The common idea of constructing the set of erasure patterns in these

multiple errors-and-erasures decoding algorithms is to erase some of the least reliable

symbols since those symbols are more prone to be erroneous. The first algorithm of

this type is called Generalized Minimum Distance (GMD) [24] and it repeats errors-

and-erasures decoding while successively erasing an even number of the least reliable

positions (LRPs) (assuming that dmin is odd). More recent work by Lee and Ku-

mar [25] proposes a soft-information successive (multiple) error-and-erasure decoding

(SED) that achieves better performance but also increases the number of decoding

attempts. Literally, the Lee-Kumar’s SED(l, f) algorithm runs multiple errors-and-

erasures decoding trials with every combination of an even number ≤ f of erasures

within the l LRPs.

A natural question that arises is how to construct the “best” set of erasure pat-

terns for multiple errors-and-erasures decoding. Inspired by this, we first develop a

rate-distortion (RD) framework to analyze the asymptotic trade-off between perfor-

mance and complexity of multiple errors-and-erasures decoding of RS codes. The

main idea is to choose an appropriate distortion measure so that the decoding is suc-
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cessful if and only if the distortion between the error pattern and erasure pattern is

smaller than a fixed threshold. After that, a set of erasure patterns is generated ran-

domly (similar to a random codebook generation) in order to minimize the expected

minimum distortion.

One of the drawbacks in the RD approach is that the mathematical framework is

only valid as the block-length goes to infinity. Therefore, we also consider the natural

extension to a rate-distortion exponent (RDE) approach that studies the behavior of

the probability, pe, that the transmitted codeword is not on the list as a function of

the block-length n. The overall error probability can be approximated by pe because

the probability that the transmitted codeword is on the list but not chosen is very

small compared to pe. Hence, our RDE approach essentially focuses on maximizing

the exponent at which the error probability decays as n goes to infinity. The RDE

approach can also be considered as the generalization of the RD approach since the

latter is a special case of the former when the rate-distortion exponent tends to zero.

Using the RDE analysis, this approach also helps answer the following two questions:

(i) What is the minimum error probability achievable for a given number of decoding

attempts (or a given size of the set of erasure patterns)? (ii) What is the minimum

number of decoding attempts required to achieve a certain error probability?

The RD and RDE approaches are also extended beyond conventional errors-

and-erasures decoding to analyze multiple-decoding for decoding schemes such as

ASD decoding. It is interesting to note that the RDE approach for ASD decoding

schemes contains the special case where the codebook has exactly one entry (i.e.,

ASD decoding is run only once). In this case, the distribution of the codebook that

maximizes the exponent implicitly generates the optimal multiplicity matrix. This

is similar to the line of work [34, 35, 36, 37] where various researchers solve for a

multiplicity matrix that minimizes the error probability obtained by either using a
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Gaussian approximation [34], applying a Chernoff bound [35, 36], or using Sanov’s

theorem [37].

Finally, we propose a family of multiple-decoding algorithms based on these two

approaches that achieve better performance-versus-complexity trade-off than other

algorithms.

The chapter is organized as follows. In Section B, we design an appropriate

distortion measure and present a rate-distortion framework, for both the RD and RDE

approaches, to analyze the performance-versus-complexity trade-off of multiple errors-

and-erasures decoding of RS codes. Also in this section, we propose a general multiple-

decoding algorithm that can be applied to errors-and-erasures decoding. Then, in

Section C, we discuss numerical computations of RD and RDE functions together

with their complexity analyses which are needed for the proposed algorithm. In

Section D, we analyze both bit-level and symbol-level ASD decoding and design

distortion measures compatible with the general algorithm. A closed-form analysis of

some RD and RDE functions is presented in Section E. Next, in Section F, we offer

some extensions that combine covering codes with random codes and also consider

the case of a single decoding attempt. Finally, simulation results are presented in

Section G. Part of the results in this chapter have appeared in [38, 39, 40].

B. A RD Framework for Multiple Errors-and-Erasures Decoding

In this section, we first set up a rate-distortion framework to analyze multiple at-

tempts of conventional hard decision errors-and-erasures decoding.

Let Fm with m = 2η be the Galois field with m elements denoted as α1, α2, . . . , αm.

We consider an (n, k) RS code of length n, dimension k over Fm. Assume that

we transmit a codeword c = (c1, c2, . . . , cn) ∈ Fnm over some channel and receive a
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vector r = (r1, r2, . . . , rn) ∈ Yn where Y is the received alphabet for a single RS

symbol. While our approach can be applied to much more general channels, our

simulations focus on the Additive White Gaussian Noise (AWGN) channel and two

common modulation formats, namely BPSK and m-QAM. Correspondingly, we use

Y = Rη for BPSK and Y = R2 for m-QAM. For each codeword index i, let ϕi ∶
{1,2, . . . ,m} → {1,2, . . . ,m} be the permutation given by sorting πi,j = Pr(ci = αj ∣ri)
in decreasing order so that πi,ϕi(1) ≥ πi,ϕi(2) ≥ . . . ≥ πi,ϕi(m). Then, we can specify

yi,j = αϕi(j) as the j-th most reliable symbol for j = 1, . . . ,m at codeword index

i. To obtain the reliability of the codeword positions (indices), we construct the

permutation σ ∶ {1,2, . . . , n} → {1,2, . . . , n} given by sorting the probabilities πi,ϕi(1)

of the most likely symbols in increasing order.1 Thus, codeword position σ(i) is the

i-th LRP. These above notations will be used throughout this chapter.

Example 1. Consider n = 3 and m = 4. Assume that we have the probability πi,j

written in a matrix form as follows:

Π =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.01 0.01 0.93

0.94 0.03 0.04

0.03 0.49 0.01

0.02 0.47 0.02

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where πi,j = [Π]j,i.

then ϕ1(1,2,3,4) = (2,3,4,1), ϕ2(1,2,3,4) = (3,4,2,1), ϕ3(1,2,3,4) = (1,2,4,3) and

σ(1,2,3) = (2,3,1).

Condition 1. (Classical decoding threshold, see [4, 5]): If e symbols are erased, a

conventional hard-decision errors-and-erasures decoder such as the BM algorithm is

1Other measures such as entropy or the average number of guesses might improve
Algorithm B in Section 3.
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able to correct ν errors in unerased positions if and only if

2ν + e < n − k + 1. (2.1)

1. Conventional Error Patterns and Erasure Patterns.

Definition 1. (Conventional error patterns and erasure patterns) We define xn1 ∈
Zn2 ≜ {0,1}n and x̂n1 ∈ Zn2 as an error pattern and an erasure pattern respectively,

where xi = 0 means that an error occurs (i.e., the most likely symbol is incorrect)

and x̂i = 0 means that the symbol at index i is erased (i.e., an erasure is applied at

index i). Xn
1 and X̂n

1 will be used to denote the random vectors which generate the

realizations xn1 and x̂n1 , respectively.

Example 2. If dmin is odd then the GMD algorithm corresponds to the set

{111111 . . . ,001111 . . . ,000011 . . . , . . . ,00 . . .0´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
dmin−1

11 . . .1}
of erasure patterns. Meanwhile, the SED(3,2) uses the following set

{111111 . . . ,001111 . . . ,010111 . . . ,100111 . . .}.
Here, in each erasure pattern, the letters are written in increasing reliability order of

the codeword positions.

Let us revisit the question of how to construct the best set of erasure patterns

for multiple errors-and-erasures decoding. First, it can be seen that a multiple errors-

and-erasures decoding succeeds if the condition (2.1) is satisfied during at least one

round of decoding. Thus, our approach is to design a distortion measure that converts

the condition (2.1) into a form where the distortion between an error pattern xn1 and

an erasure pattern x̂n1 , denoted as d(xn1 , x̂n1), is less than a fixed threshold.
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Definition 2. Given a letter-by-letter distortion measure δ, the distortion between

an error pattern xn1 and an erasure pattern x̂n1 is defined by

d(xn1 , x̂n1) = n∑
i=1

δ(xi, x̂i).
Proposition 1. If we choose the letter-by-letter distortion measure δ ∶ X × X̂ → R≥0,

where in this case X = X̂ = Z2, as follows:

δ(0,0) = 1, δ(0,1) = 2,

δ(1,0) = 1, δ(1,1) = 0,
(2.2)

then the condition (2.1) for a successful errors-and-erasures decoding is equivalent to

d(xn1 , x̂n1) < n − k + 1 (2.3)

where the distortion is less than a fixed threshold.

Proof. First, we define

χj,ĵ ≜ ∣{i ∈ {1,2, . . . , n} ∶ xi = j, x̂i = ĵ}∣
to count the number of (xi, x̂i) pairs equal to (j, ĵ) for every j ∈ X and ĵ ∈ X̂ . With

the chosen distortion measure, we have

d(xn1 , x̂n1) = 2χ0,1 + χ0,0 + χ1,0.

Noticing that e = χ0,0+χ1,0 and ν = χ0,1, the condition (2.1) for one errors-and-erasures

decoding attempt to succeed becomes 2χ0,1 +χ0,0 +χ1,0 < n− k + 1 which is equivalent

to d(xn1 , x̂n1) < n − k + 1.

Next, we try to maximize the chance that this successful decoding condition is

satisfied by at least one of the decoding attempts (i.e., d(xn1 , x̂n1) < n−k+1 for at least

one erasure pattern x̂n1 ). Mathematically, we want to build a set B of no more than



16

Error pattern
Erasure pattern

Fig. 2. Pictorial illustration of a covering problem

2R erasure patterns x̂n1 that achieves the maximum

max
B∶∣B∣≤2R

Pr{min
x̂n1 ∈B

d(Xn
1 , x̂

n
1) < n − k + 1} .

Solving this problem exactly is very difficult. However, one can observe that it is a

covering problem (see Fig. 2) where one tries to cover the most-likely error patterns

using a fixed number of spheres centered at the chosen erasure patterns. This view

leads to two asymptotic solutions of the problem based on rate-distortion theory.

Taking this point of view, we view the error pattern xn1 as a source sequence and the

erasure pattern x̂n1 as a reproduction sequence.

a. RD Approach

Rate-distortion theory (see [41, Chapter 13]) characterizes the trade-off between R̄

and D̄ such that sets B of 2nR̄ reproduction sequences exist (and can be generated

randomly) so that

lim
n→∞

1

n
EXn

1 ,B [min
x̂n1 ∈B

d(Xn
1 , x̂

n
1)] < D̄.

Under mild conditions, this implies that, for large enough n, we have

min
x̂n1 ∈B

d(Xn
1 , x̂

n
1) < nD̄
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with high probability. Here, R̄ and D̄ are closely related to the complexity and

the performance, respectively, of the decoding algorithm. Therefore, we characterize

the trade-off between those two aspects using the relationship between R̄ and D̄.

In this chapter, we denote the rate and distortion by R and D, respectively, using

unnormalized quantities, i.e., R = nR̄ and D = nD̄.

b. RDE Approach

The above-mentioned RD approach focuses on minimizing the average minimum dis-

tortion with little knowledge of how the tail of the distribution behaves. In this RDE

approach, we instead focus on directly minimizing the probability that the minimum

distortion is not less than the predetermined threshold D = n − k + 1 (due to the

condition (2.3)) with the help of an error-exponent analysis. The exact probability

of interest is

pe = Pr(Xn
1 ∶ min

x̂n1 ∈B
d(Xn

1 , x̂
n
1) >D)

that reflects how likely the decoding threshold (2.1) is going to fail. In other words,

every error pattern xn1 can be covered by a sphere centered at an erasure pattern x̂n1

except for a set of error patterns of probability pe. The RDE analysis shows that pe

decays exponentially as n → ∞ and the maximum exponent attainable is the RDE

function F (R,D). Throughout this chapter, we denote the rate-distortion exponent

by F (R,D) using unnormalized quantities (i.e., without dividing by n) and note

that exponent used by other authors in [42, 43, 44] is often the normalized version

F̄ (R,D) ≜ F (R,D)
n .

RDE analysis is discussed extensively in [42, 43] and it is shown that a set B of

roughly 2nR̄ codewords, generated randomly using the test-channel input distribution,

can be used to achieve F̄ (R,D). An upper bound is also given that shows, for any
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ε > 0, there is a sufficiently large n (see [45, p. 229]) such that

pe ≤ 2−n[F̄ (R,D)−ε].

An exponentially tight lower bound for pe can also be obtained (see [45, p. 236]) and

it implies that the best sequence of codebooks satisfy

lim
n→∞

− 1

n
log2 pe = F̄ (R,D).

Remark 1. The RDE approach possesses several advantages. First, the converse

of the RDE [45, p. 236] provides a lower bound for pe. This implies that, given an

arbitrary set B of roughly 2nR̄ erasure patterns and any ε > 0, the probability pe cannot

be made lower than 2−n[F̄ (R,D)+ε] for n large enough. Thus, no matter how one chooses

the set B of erasure patterns, the difference between the induced probability of error

and the pe for the RDE approach becomes negligible for n large enough. Second, it

can help one estimate the smallest number of decoding attempts to get to a RDE of

F (or get to an error probability of roughly 2−nF̄ ) or, similarly, allow one to estimate

the RDE (and error probability) for a fixed number of decoding attempts.

2. Generalized Error Patterns and Erasure Patterns

In this subsection, we consider a generalization of the conventional error patterns and

erasure patterns under the same framework to make better use of the soft information.

At each index of the RS codeword, besides erasing a symbol, we also try to decode

using not only the most likely symbol but also less likely ones as the hard decision

(HD) symbol. To handle up to the ` most likely symbols at each index i, we let

Z`+1 ≜ {0,1, . . . , `} and consider the following definition.

Definition 3. (Generalized error patterns and erasure patterns) Consider a positive
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integer ` smaller than the field size m. Let xn1 ∈ Zn`+1 be a generalized error pattern

where, at index i, xi = j implies that the j-th most likely symbol is correct for j ∈
{1,2, . . . `}, and xi = 0 implies none of the first ` most likely symbols is correct.

Let x̂n1 ∈ Zn`+1 be a generalized erasure pattern used for decoding where, at index i,

x̂i = ĵ implies that the ĵ-th most likely symbol is used as the hard-decision symbol for

ĵ ∈ {1,2, . . . , `}, and x̂i = 0 implies that an erasure is used at that index.

For simplicity, we refer to xn1 as the error pattern and x̂n1 as the erasure pattern

like in the conventional case. Now, we need to convert the condition (2.1) to the form

where d(xn1 , x̂n1) is less than a fixed threshold. Proposition 1 is thereby generalized

into the following proposition.

Proposition 2. We choose the letter-by-letter distortion measure δ ∶ X × X̂ → R≥0,

where in this case X = X̂ = Z`+1, defined by δ(x, x̂) = [∆]x,x̂ in terms of the (` + 1) ×
(` + 1) matrix

∆ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 . . . 2 2

1 0 . . . 2 2

⋮ ⋮ ⋱ ⋮ ⋮
1 2 . . . 0 2

1 2 . . . 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.4)

Using this, the condition (2.1) for a successful errors-and-erasures decoding is equiv-

alent to

d(xn1 , x̂n1) < n − k + 1.

Proof. The reasoning is very similar to the proof of Proposition 1 using the fact that

e = ∑`
j=0 χj,0 and ν = ∑`

ĵ=1∑`
j=0,j≠ĵ χj,ĵ where

χj,ĵ ≜ ∣{i ∈ {1,2, . . . , n} ∶ xi = j, x̂i = ĵ}∣
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for every j, ĵ ∈ Z`+1.

For each ` = 1,2, . . . ,m, we will refer to this generalized case as mBM-` decoding.

Example 3. Consider mBM-2 (or top-` decoding with ` = 2). In this case, the

distortion measure is given by following the matrix

∆ =
⎛⎜⎜⎜⎜⎜⎜⎝

1 2 2

1 0 2

1 2 0

⎞⎟⎟⎟⎟⎟⎟⎠
.

Remark 2. The distortion measure matrix changes slightly if we use the errors-only

decoding instead of errors-and-erasures decoding. In this case, X̂ = Z`+1 ∖ {0} and the

chosen letter-by-letter distortion measure is given in terms of the (` + 1) × ` matrix

obtained by deleting the first column of (2.4). When ` = 2, we consider the first and

second most likely symbols as the two hard-decision symbols at each codeword position.

This is similar to the Chase-type decoding method proposed by Bellorado and Kavcic

[29]. Das and Vardy also suggest this approach by considering only several highest

entries in each column of the reliability matrix Π for single ASD decoding of RS codes

[37].

3. Proposed General Multiple-Decoding Algorithm

In this section, we propose two general multiple-decoding algorithms for RS codes. In

each algorithm, one can choose either Step 2a that corresponds to the RD approach

or Step 2b that corresponds to the RDE approach. These general algorithms apply

to not only multiple errors-and-erasures decoding but also multiple-decoding of other

decoding schemes that we will discuss later. The common first step is designing a

distortion measure δ ∶ X × X̂ → R≥0 that converts the condition for a single decoding
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to succeed to the form where distortion is less than a fixed threshold. After that,

decoding proceeds as described below.

a. Algorithm A

Step 1: Based on the received signal sequence, compute an m × n reliability

matrix Π where [Π]j,i = πi,j. From this, determine the probability matrix P where

pi,j = Pr(Xi = j) for i = 1,2, . . . , n and j ∈ X .
Step 2a: (RD approach) Compute the RD function of a source sequence (error

pattern) with probability of source letters derived from P and the chosen distortion

measure (see Section C and Section E). Given the design rate R, determine the

optimal input-probability distribution matrix Q, for the test channel, with entries

qi,ĵ = Pr(X̂i = ĵ) for i = 1,2, . . . , n and ĵ ∈ X̂ .
Step 2b: (RDE approach) GivenD (in most casesD = n−k+1) and the design rate

R, compute the RDE function of a source sequence (error pattern) with probability

of source letters derived from P and the chosen distortion measure (see Section C

and Section E). Also determine the optimal input-probability distribution matrix Q,

for the test channel, with entries qi,ĵ = Pr(X̂i = ĵ) for i = 1,2, . . . , n and ĵ ∈ X̂ .
Step 3: Randomly generate a set of 2R erasure patterns using the test-channel

input-probability distribution matrix Q.

Step 4: Run multiple attempts of the corresponding decoding scheme (e.g.,

errors-and erasures decoding) using the set of erasure patterns in Step 3 to produce

a list of candidate codewords.

Step 5: Use the maximum-likelihood (ML) rule to pick the best codeword on the

list.

Remark 3. In Algorithm A, the RD (or RDE) function is computed on the fly, i.e.,
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after every received signal sequence. In practice, it may be preferable to precompute

the RD (or RDE) function based on the empirical distribution measured from the

channel. We refer to this approach as Algorithm B, and simulation results show a

negligible difference in the performance of these two algorithms.

b. Algorithm B

Step 1: Transmit τ (e.g., τ = 103 − 106) arbitrary test RS codewords, indexed

by time t = 1,2, . . . , τ , over the channel and compute a set of τ m × n matrices

Π
(t)
1 where [Π(t)

1 ]j,i = π(t)
i,ϕ

(t)
i (j)

is the probability of the j-th most likely symbol at

position i during time t. For each time t, obtain the matrix Π
(t)
2 from Π

(t)
1 through

a permutation σ(t) ∶ {1,2, . . . , n} → {1,2, . . . , n} that sorts the probabilities π
(t)
i,ϕ

(t)
i (1)

in increasing order to indicate the reliability order of codeword positions. Take the

entry-wise average of all τ matrices Π
(t)
2 to get an average matrix Π̄.2 The matrix Π̄

serves as Π in Algorithm A and from this, determine the probability matrix P where

pi,j = Pr(Xi = j) for i = 1,2, . . . , n and j ∈ X .
Step 2a: (RD approach) Compute the RD function of a source sequence (error

pattern) with probability of source letters derived from P and the chosen distor-

tion measure. Given a design rate R, determine the test-channel input-probability

distribution matrix Q where qi,ĵ = Pr(X̂i = ĵ) for i = 1,2, . . . , n and ĵ ∈ X̂ .
Step 2b: (RDE approach) GivenD (in most casesD = n−k+1) and the design rate

R, compute the RDE function of a source sequence (error pattern) with probability of

source letters derived from P and the chosen distortion measure. Also determine the

optimal test-channel input-probability distribution matrix Q where qi,ĵ = Pr(X̂i = ĵ)
for i = 1,2, . . . , n and ĵ ∈ X̂ .

2In fact, one need not store separately each Π
(t)
2 matrix. The average Π̄ can be

computed on the fly.
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Step 3: Based on the actual received signal sequence, compute πi,ϕi(1) and de-

termine the permutation σ that gives the reliability order of codeword positions by

sorting πi,ϕi(1) in increasing order.

Step 4: Randomly generate a set of 2R erasure patterns using the test-channel

input-probability distribution matrix Q and permute the indices of each erasure pat-

tern by the permutation σ−1.

Step 5: Run multiple attempts of the corresponding decoding scheme (e.g.,

errors-and-erasures decoding) using the set of erasure patterns in Step 4 to produce

a list of candidate codewords.

Step 6: Use the ML rule to pick the best codeword on the list.

C. Computing the RD and RDE Functions

In this section, we will discuss some numerical methods to compute the RD and RDE

functions and the corresponding test-channel input-probability distribution matrix

Q, whose entries are qi,ĵ = Pr(X̂i = ĵ) for i = 1,2, . . . , n and ĵ ∈ X̂ . These numerical

methods allow us to efficiently compute the RD and RDE functions discussed in the

previous section for arbitrary discrete distortion measures. For some simple distortion

measures, closed-form solutions are given in Section E.

1. Computing the RD Function

For an arbitrary discrete distortion measure, it can be difficult to compute the RD

function analytically. Fortunately, for a single source X, the Blahut algorithm (see

details in [46]) gives an alternating minimization technique that efficiently computes

the RD function which is given by

R(D) = min
w∈WD

∑
j

∑̂
j

pjwĵ∣j log2

wĵ∣j∑j′ pj′wĵ∣j′
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where pj ≜ Pr(X = j), qĵ ≜ Pr(X̂ = ĵ), wĵ∣j ≜ Pr(X̂ = ĵ∣X = j), and3

WD =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w∣ wĵ∣j ≥ 0,∑ĵ wĵ∣j = 1

∑j∑ĵ pjwĵ∣jδjĵ ≤D
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

More precisely, given the Lagrange multiplier t ≤ 0 that represents the slope of the

RD curve at a specific point (see [47, Thm 2.5.1]) and an arbitrary all-positive initial

test-channel input-probability distribution vector q(0), the Blahut algorithm shows

us how to compute the rate-distortion pair (Rt,Dt).
However, it is not straightforward to apply the Blahut algorithm to compute

the RD for a discrete source sequence xn1 (an error pattern in our context) of n

independent but not necessarily identical (i.n.d.) source components xi. In order

to do that, we consider the group of source letters (j1, j2, . . . , jn) where ji ∈ X as a

super-source letter J ∈ X n, the group of reproduction letters (ĵ1, ĵ2, . . . , ĵn) where

ĵi ∈ X̂ as a super-reproduction letter Ĵ ∈ X̂ n, and the source sequence xn1 as a single

source. For each super-source letter J , pJ = Pr(Xn
1 = J ) =∏n

i=1 Pr(Xi = ji) =∏n
i=1 pji

follows from the independence of source components.4

While we could apply the Blahut algorithm to this source directly, the complexity

is a problem because the alphabet sizes for J and Ĵ become the super-alphabet sizes

∣χ∣n and ∣χ̂∣n respectively. Instead, we avoid this computational challenge by choosing

the initial test-channel input-probability distribution so that it can be factored into

a product of n initial test-channel input-probability components, i.e., q
(0)
Ĵ =∏i=1 q

(0)
ĵi

.

One can verify that this factorization rule still applies after every step τ of the iterative

process, i.e., q
(τ)
Ĵ =∏i=1 q

(τ)
ĵi

. Therefore, the convergence of the Blahut algorithm [48]

3δ(j, ĵ) is sometimes written as δjĵ for convenience.

4In this chapter, the notations pji and pi,j are interchangeable. The notations qĵi
and qi,ĵ are also interchangeable.
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implies that the optimal distribution is a product distribution, i.e., q⋆Ĵ =∏i=1 q
⋆
ĵi

.

One can also finds that, for each parameter t, one only needs to compute the

rate-distortion pair for each source component xi separately and sum them together.

This is captured into the following algorithm.

Algorithm 1. (Factored Blahut algorithm for RD function) Consider a discrete

source sequence xn1 of n i.n.d. source components xi’s with probability pji ≜ Pr(Xi =
ji). Given a parameter t ≤ 0, the rate and the distortion for this source sequence

under a specified distortion measure are given by

Rt = n∑
i=1

Ri,t and Dt = n∑
i=1

Di,t (2.5)

where the components Ri,t and Di,t are computed by the Blahut algorithm with the

Lagrange multiplier t. This rate-distortion pair can be achieved by the correspond-

ing test-channel input-probability distribution qĴ ≜ Pr(X̂n
1 = Ĵ ) = ∏n

i=1 qĵi where the

component probability distribution qĵi ≜ Pr(X̂i = ĵi).

Remark 4. Equation (2.5) can also be derived from [47, Corollary 2.8.3] in a way

that does not use the convergence property of the Blahut algorithm.

2. Computing the RDE Function

The original RDE function F (R,D), defined in [42, Sec. VI] for a single source X, is

given by

F (R,D) = max
w

min
p̃∈PR,D

∑
j

p̃j log2

p̃j
pj

(2.6)

where pj = Pr(X = j), qĵ = Pr(X̂ = ĵ), wĵ∣j = Pr(X̂ = ĵ∣X = j), and

PR,D =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p̃∣ ∑j∑ĵ p̃jwĵ∣j log2

wĵ∣j
∑j′ p̃j′wĵ∣j′

≥ R
∑j∑ĵ p̃jwĵ∣jδjĵ ≥D

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (2.7)
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For a single source X, given two parameters s ≥ 0 and t ≤ 0 which are the

Lagrange multipliers introduced in the optimization problem (see [42, p. 415]), the

Arimoto algorithm given in [49, Sec. V] can be used to compute the exponent, rate,

and distortion numerically.

In the context we consider, the source (error pattern) xn1 comprises i.n.d. source

components xi’s. We follow the same method as in the RD function case, i.e., by

choosing the initial distribution still arbitrarily but following a factorization rule

q
(0)
Ĵ =∏n

i=1 q
(0)
ĵi

, and this gives the following algorithm.

Algorithm 2. (Factored Arimoto algorithm for RDE function) Consider a discrete

source xn1 of i.n.d. source components xi’s with probability pji ≜ Pr(Xi = ji). Given

Lagrange multipliers s ≥ 0 and t ≤ 0, the exponent, rate and distortion under a specified

distortion measure are given by

F ∣s,t = n∑
i=1

Fi∣s,t , R∣s,t = n∑
i=1

Ri∣s,t , D∣s,t = n∑
i=1

Di∣s,t
where the components Fi∣s,t , Ri∣s,t , Di∣s,t are computed parametrically by the Arimoto

algorithm.

Remark 5. Though it is standard practice to compute error-exponents using the

implicit form given above, this approach may provide points that, while achievable,

are strictly below the true RDE curve. The problem is that the true RDE curve

may have a slope discontinuity that forces the implicit representation to have extra

points. An example of this behavior for the channel coding error exponent is given by

Gallager [3, p. 147]. For the i.n.d. source considered above, a cautious person could

solve the problem as described and then check that the component RDE functions are

differentiable at the optimum point. In this work, we largely neglect this subtlety.
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3. Complexity of Computing RD/RDE Functions

a. Complexity of Computing RD Function.

For each parameter t < 0, if we directly apply of the original Blahut algorithm to com-

pute the (Rt,Dt) pair, the complexity is O(τmax∣X ∣n∣X̂ ∣n) where τmax is the number

of iterations in the Blahut algorithm. However, using the factored Blahut algorithm

(Algorithm 1) greatly reduces this complexity to O(τmax∣X ∣∣X̂ ∣n). In Section 3, one

of the proposed algorithms needs to compute the RD function for a design rate R.

To do this, we apply the bisection method on t to find the correct t that corresponds

to the chosen rate R.

● Step 0 : Set tmin < 0 (e.g., tmin = −10)

● Step 1 : If Rtmin
> R, go to Step 3. Else go to Step 2.

● Step 2 : If Rtmin
= R then stop. Else if Rtmin

< R, set tmin ← 2tmin and go to Step

1.

● Step 3 : Find t using the bisection method to get the correct rate R within εR.

The overall complexity of computing the RD function for a design rate R is

O (τmax log2 (−tmin

εR
) ∣X ∣∣X̂ ∣n) .

Now, we consider the dependence of τmax on εR. It follows from [48] that the

error due to early termination of the Blahut algorithm is O ( 1
τmax

). This implies that

choosing τmax = O ( 1
εR

) is sufficient. However, recent work has shown that a slight

modification of the Blahut algorithm can drastically increase the convergence rate

[50]. For this reason, we leave the number of iterations as the separate constant τmax

and do not consider its relationship to the error tolerance.
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b. Complexity of Computing RDE Function.

Similarly, for each pair of parameters t < 0 and s ≥ 0, the complexity if we di-

rectly apply of the original Arimoto algorithm to compute the (R∣s,t,D∣s,t) pair is

O(τmax∣X ∣n∣X̂ ∣n) where τmax is the number of iterations. Instead, if the factored Ari-

moto algorithm (Algorithm 2) is employed, this complexity can also be reduced to

O(τmax∣X ∣∣X̂ ∣n). In one of our proposed general algorithms in Section 3, we need

to compute the RDE function for a pre-determined (R,D) pair. We use a nested

bisection technique to find the Lagrange multipliers s, t that give the correct R and

D.

● Step 0 : Set tmin < 0 and smax > 0 (e.g., tmin = −10 and smax = 2)

● Step 1 : If R∣smax,tmin
≤ R, set tmin ← 2tmin and repeat Step 1. Else go to Step 2.

● Step 2 : Find t using the bisection method to obtain R∣smax,t = R within εR. If

D∣smax,t > D, go to Step 3. If D∣smax,t = D then stop. Else if D∣smax,t < D, set

smax ← 2smax and go to Step 1.

● Step 3 : Find s using the bisection method to get the correct distortion D within

εD while with each s doing the following steps

– Step 3a: If R∣s,tmin
> R, go to Step 3c.

– Step 3b: If R∣s,tmin
= R, then stop. Else if R∣s,tmin

< R, set tmin ← 2tmin and

go to Step 1.

– Step 3c: Find t using the bisection method to get the correct R within εR.

The overall complexity of computing the RD function for a design rate R is therefore

O (τmax log2 (−tmin

εR
) log2 (smax

εD
) ∣X ∣∣X̂ ∣n) .



29

D. Multiple Algebraic Soft-Decision (ASD) Decoding

In this section, we analyze and design a distortion measure to convert the condition

for successful ASD decoding to a suitable form so that we can apply the general

multiple-decoding algorithm to ASD decoding.

First, let us give a brief review on ASD decoding of RS codes. Let {β1, β2, . . . , βn}
be a set of n distinct elements in Fm. From each message polynomial f(X) = f0+f1X+
. . .+fk−1Xk−1 whose coefficients are in Fm, we can obtain a codeword c = (c1, c2, . . . , cn)
by evaluating the message polynomial at {βi}ni=1, i.e., ci = f(βi) for i = 1,2, . . . , n.

Given a received vector r = (r1, r2, . . . , rn), we can compute the a posteriori probability

(APP) matrix Π as follows:

[Π]j,i = πi,j = Pr(ci = αj ∣ri) for 1 ≤ i ≤ n,1 ≤ j ≤m.
The ASD decoding as in [23] has the following main steps.

1. Multiplicity Assignment : Use a particular multiplicity assignment scheme (MAS)

to derive an m × n multiplicity matrix, denoted as M, of non-negative integer

entries {Mi,j} from the APP matrix Π.

2. Interpolation: Construct a bivariate polynomial Q(X,Y ) of minimum (1, k−1)
weighted degree that passes through each of the point (βj, αi) with multiplicity

Mi,j for i = 1,2, . . . ,m and j = 1,2, . . . , n.

3. Factorization: Find all polynomials f(X) of degree less than k such that Y −
f(X) is a factor of Q(X,Y ) and re-evaluate these polynomials to form a list of

candidate codewords.

In this chapter, we denote µ = maxi,jMi,j as the maximum multiplicity. Intuitively,

higher multiplicity should be put on more likely symbols. A higher µ generally allows
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ASD decoding to achieve a better performance. However, one of the drawbacks

of ASD decoding is that its decoding complexity is roughly O(n2µ4) [51]. Even

though there have been several reduced complexity variations and fast architectures as

discussed in [52, 53, 54], the decoding complexity still increases rapidly with µ. Thus,

in this section we will mainly work with small µ to keep the complexity affordable.

One of the main contributions of [23] is to offer a condition for successful ASD

decoding represented in terms of two quantities specified as the score and the cost as

follows.

Definition 4. The score SM(c) with respect to a codeword c and a multiplicity matrix

M is defined as

SM(c) = n∑
j=1

M[cj],j

where [cj] = i such that αi = cj. The cost CM of a multiplicity matrix M is defined as

CM = 1

2

m∑
i=1

n∑
j=1

Mi,j(Mi,j + 1).
Condition 2. (ASD decoding threshold, see [23, 55, 51]). The transmitted codeword

will be on the list if

(a + 1) [SM − a
2
(k − 1)] > CM (2.8)

for some a ∈ N such that

a(k − 1) < SM ≤ (a + 1)(k − 1). (2.9)

To match the general framework, the ASD decoding threshold (or condition for

successful ASD decoding) should be converted to the form where the distortion is

smaller than a fixed threshold.
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1. Bit-level ASD Case

In this subsection, we consider multiple trials of ASD decoding using bit-level erasure

patterns. A bit-level error pattern bN1 ∈ ZN2 and a bit-level erasure pattern b̂N1 ∈ ZN2
have length N = n × η since each symbol has η bits. Similar to Definition 1 of a

conventional error pattern and a conventional erasure pattern, bi = 0 in a bit-level

error pattern implies a bit-level error occurs and b̂i in a bit-level erasure pattern

implies that a bit-level erasure is applied. We also use BN
1 and B̂N

1 to denote the

random vectors which generate the realizations bN1 and b̂N1 , respectively.

From each bit-level erasure pattern, we can specify entries of the multiplicity

matrix M using the bit-level MAS proposed in [55] as follows: for each codeword

position, assign multiplicity 2 to the symbol with no bit erased, assign multiplicity 1

to each of the two candidate symbols if there is 1 bit erased, and assign multiplicity

zero to all the symbols if there are ≥ 2 bits erased. All the other entries are zeros

by default. This MAS has a larger decoding region compared to the conventional

errors-and-erasures decoding scheme.

Condition 3. (Bit-level ASD decoding threshold, see [55]) For RS codes of rate k
n ≥

2
3+ 1

n , ASD decoding using the bit-level MAS will succeed (i.e., the transmitted codeword

is on the list) if

3νb + eb < 3

2
(n − k + 1) (2.10)

where eb is the number of bit-level erasures and νb is the number of bit-level errors in

unerased locations.

We can choose an appropriate distortion measure according to the following

proposition which is a natural extension of Proposition 1 in the symbol level.

Proposition 3. If we choose the bit-level letter-by-letter distortion measure δ ∶ Z2 ×
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Z2 → R≥0 as follows

δ(0,0) = 1, δ(0,1) = 3,

δ(1,0) = 1, δ(1,1) = 0,

then the condition (2.10) becomes

d(bN1 , b̂N1 ) < 3

2
(n − k + 1) . (2.11)

Proof. The condition (2.10) can be seen to be equivalent to

2

3
d(bN1 , b̂N1 ) < n − k + 1

using the same reasoning as in Proposition 1. The results then follows right away.

Remark 6. We refer the multiple-decoding of bit-level ASD as m-bASD.

2. Symbol-level ASD Case

In this subsection, we try to convert the condition for successful ASD decoding in

general to the form that suits our goal. We will also determine which multiplicity

assignment schemes allow us to do so.

Definition 5. (Multiplicity type) Consider a positive integer ` ≤ m where m is the

number of elements in Fm. For some codeword position, let us assign multiplicity mj

to the j-th most likely symbol for j = 1,2, . . . , `. The remaining entries in the column

are zeros by default. We call the sequence, (m1,m2, . . . ,m`), the column multiplicity

type for “top-`” decoding.

First, we notice that a choice of multiplicity types in ASD decoding at each

codeword position has the similar meaning to a choice of erasure decisions in the

conventional errors-and-erasures decoding. However, in ASD decoding we are more

flexible and may have more types of erasures. For example, assigning multiplicity
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zero to all the symbols (all-zero multiplicity type) at codeword position i is similar

to erasing that position. Assigning the maximum multiplicity µ to one symbol cor-

responds to the case when we choose that symbol as the hard-decision one. Hence,

with some abuse of terminology, we also use the term (generalized) erasure pattern

x̂n1 for the multiplicity assignment scheme in the ASD context. Each erasure-letter

xi gives the multiplicity type for the corresponding column of the multiplicity matrix

M.

Definition 6. (Error patterns and erasure patterns for ASD decoding) Consider a

MAS with T multiplicity types. Let x̂n1 ∈ {1,2 . . . , T}n be an erasure pattern where, at

index i, xi = j implies that multiplicity type j is used at column i of the multiplicity

matrix M. Notice that the definition of an error pattern xn1 ∈ Zn`+1 in Definition 3

applies unchanged here.

In our method, we generally choose an appropriate integer a in Condition 2 and

design a distortion measure corresponding to the chosen a so that the condition for

successful ASD decoding can be converted to the form where distortion is less than

a fixed threshold. The following definition of allowable multiplicity types will lead us

to the result of Lemma 1 and consequently, a ≥ µ, as stated in Corollary 1. Also, we

want to find as many as possible multiplicity types since rate-distortion theory gives

us the intuition that in general the more multiplicity types (erasure choices) we have,

the better performance of multiple ASD decoding we achieve as n becomes large.

Definition 7. The set of allowable multiplicity types for “top-`” decoding with max-
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imum multiplicity µ is defined to be5

A(µ, `) ≜
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(m1,m2, . . . ,m`)RRRRRRRRRRR

∑`
j=1mj ≤ µ,

∑`
j=1mj(µ−mj)≤(µ+1)(∣{j ∶mj ≠ 0}∣−1)minj∶mj≠0mj

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

(2.12)

We take the elements of this set in an arbitrary order and label them as 1,2, . . . ,

∣A(µ, `)∣ with the convention that the multiplicity type 1 is always (µ,0, . . . ,0) which

assigns the whole multiplicity µ to the most likely symbol. The multiplicity type ĵ is

denoted as (m1,ĵ,m2,ĵ, . . .m`,ĵ).

Remark 7. Multiplicity types (0,0, . . . ,0), (1,1 . . . ,1) as well as any permutations of

(µ,0, . . . ,0) and (⌊µ2 ⌋, ⌊µ2 ⌋,0, . . . ,0) are always in the allowable set A(µ,µ). We use

mASD-µ to denote the proposed multiple ASD decoding using A(µ,µ).

Example 4. Consider mASD-2. In this case µ = ` = 2 and we have A(2,2) =
{(2,0), (1,1), (0,2)(0,0)} which comprises four allowable multiplicity types for “top-

2” decoding as follows: the first is (2,0) where we assign multiplicity 2 to the most

likely symbol yi,1, the second is (1,1) where we assign equal multiplicity 1 to the

first and second most likely symbols yi,1 and yi,2, the third is (0,2) where we assign

multiplicity 2 to the second most likely symbol yi,2, and the fourth is (0,0) where we

assign multiplicity zero to all the symbols at index i (i.e., the i-th column of M is an

all-zero column). We also consider a restricted set, called mASD-2a, that uses the set

of multiplicity types {(2,0), (1,1), (0,0)}.

Example 5. Consider mASD-3. In this case, the allowable set A(3,3) consists of

all the permutations of (3,0,0), (0,0,0), (1,1,0), (2,1,0), (1,1,1). We can see that

the set A(3,2) consists of all permutations of (3,0), (2,1), (1,1), (0,0) and ∣A(3,2)∣ <
∣A(3,3)∣.

5We use the convention that minj∶mj≠0mj = 0 if {j ∶mj ≠ 0} = ∅.
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From now on, we assume that only allowable multiplicity types are considered

throughout most of the chapter. With that setting in mind, we can obtain the fol-

lowing lemmas and theorems.

Lemma 1. Consider a MAS(µ, `) for “top-`” ASD decoding with multiplicity matrix

M that only uses multiplicity types in the allowable set A(µ, `). Then, the score and

the cost satisfy the following inequality

2CM ≥ (µ + 1)SM.

Proof. Let us denote

eĵ = ∣{i ∈ {1, . . . , n} ∶ x̂i = ĵ}∣
to count the number of positions i that use multiplicity type ĵ for ĵ = 1, . . . , T and

notice that ∑T
ĵ=1
eĵ = n. We also use

νj,ĵ = ∣{i ∈ {1, . . . , n} ∶ xi ≠ j, x̂i = ĵ}∣
to count the number of positions i that use multiplicity type ĵ where the j-th most

reliable symbol yi,j is incorrect for j = 0, . . . , ` and ĵ = 1, . . . , T . The notation

χj,ĵ = ∣{i ∈ {1, . . . , n} ∶ xi = j, x̂i = ĵ}∣
remains the same. Notice also that

eĵ = `∑
j=0

χj,ĵ and χj,ĵ = eĵ − νj,ĵ. (2.13)
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The score and the cost can therefore be written as

SM(c) = n∑
j=1

M[cj],j

= T∑̂
j=1

`∑
j=1

mj,ĵχj,ĵ (2.14)

= µχ1,1 + T∑̂
j=2

`∑
j=1

mj,ĵχj,ĵ (2.15)

= µ⎛⎝n −
T∑̂
j=2

eĵ − ν1,1

⎞⎠ +
T∑̂
j=2

`∑
j=1

mj,ĵ(eĵ − νj,ĵ) (2.16)

and

CM = 1

2

m∑
i=1

n∑
j=1

Mi,j(Mi,j + 1)
= 1

2

T∑̂
j=1

eĵ

`∑
j=1

mj,ĵ(mj,ĵ + 1)
= 1

2
µ(µ + 1)⎛⎝n −

T∑̂
j=2

eĵ
⎞⎠ + 1

2

T∑̂
j=2

eĵ

`∑
j=1

mj,ĵ(mj,ĵ + 1) (2.17)

where (2.15) and (2.17) use the fact that the multiplicity type 1 is always assumed

to be (µ,0, . . . ,0).
Hence, we obtain

2CM − (µ + 1)SM = µ(µ + 1)ν1,1 + T∑̂
j=2

(µ + 1) `∑
j=1

mj,ĵνj,ĵ − T∑̂
j=2

eĵ

`∑
j=1

mj,ĵ(µ − mj,ĵ),
and therefore, since µ and ν1,1 are non-negative, Lemma 1 holds if we can show

(µ + 1) `∑
j=1

mj,ĵνj,ĵ ≥ eĵ `∑
j=1

mj,ĵ(µ −mj,ĵ) (2.18)

for every ĵ = 2, . . . T .
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Next, we observe that

(µ + 1) `∑
j=1

mj,ĵνj,ĵ ≥ (µ + 1)⎛⎝ ∑
j∶mj,ĵ≠0

νj,ĵ
⎞⎠ min
j∶mj,ĵ≠0

mj,ĵ (2.19)

and

∑
j∶mj,ĵ≠0

νj,ĵ = ∑
j∶mj,ĵ≠0

(eĵ − χj,ĵ) (2.20)

= eĵ ∣{j ∶mj,ĵ ≠ 0}∣ − ∑
j∶mj,ĵ≠0

χj,ĵ

≥eĵ(∣{j ∶mj,ĵ ≠ 0}∣ − 1) (2.21)

where (2.20) follows from (2.13) and (2.21) follows from

∑
j∶mj,ĵ≠0

χj,ĵ ≤ `∑
j=0

χj,ĵ = eĵ.
From (2.19) and (2.21), we have

(µ + 1) `∑
j=1

mj,ĵνj,ĵ ≥ eĵ(µ + 1)(∣{j ∶mj,ĵ ≠ 0}∣ − 1) min
j∶mj,ĵ≠0

mj,ĵ (2.22)

and this motivates our definition of allowable multiplicity types.

Specifically, if we choose {m1,ĵ,m2,ĵ, . . . ,m`,ĵ} in the allowable setA(µ, `), defined

in (2.12), then by combining with (2.22), we obtain (2.18) and this completes the

proof.

Corollary 1. With the setting as in Lemma 1, the integer a in Condition 2 must

satisfy a ≥ µ.

Proof. From (a + 1) [SM − a
2(k − 1)] > CM and SM ≤ (a + 1)(k − 1) in (2.8) and (2.9),
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we know that

(a + 1)SM −CM > 1

2
a(a + 1)(k − 1)

≥ 1

2
aSM

and this implies that

2CM < (a + 2)SM. (2.23)

But, Lemma 1 states that 2CM ≥ (µ + 1)SM. Combining this with (2.23) gives a

contradiction unless a > µ − 1.

In Condition 2, if we carefully design a distortion measure then for every a ≥ µ,
the first constraint (2.8) can be equivalently converted to the form where distortion

is smaller than a fixed threshold.

Theorem 1. Consider an (n, k) RS code and a MAS(µ, `) for “top-`” decoding with

multiplicity matrix M that only uses T multiplicity types in the allowable set A(µ, `).

Consider an arbitrary integer a ≥ µ. Let δa ∶ X × X̂ → R≥0, where in this case

X = Z`+1 and X̂ = ZT+1 ∖ {0}, be a letter-by-letter distortion measure defined by

δa(x, x̂) = [∆a]x,x̂, where ∆a is the (` + 1) × T matrix6

∆a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1,a ρ2,a . . . ρT,a

ρ1,a − 2m1,1

a ρ2,a − 2m1,2

a . . . ρT,a − 2m1,T

a

ρ1,a − 2m2,1

a ρ2,a − 2m2,2

a . . . ρT,a − 2m2,T

a

⋮ ⋮ ⋱ ⋮
ρ1,a − 2m`,1

a ρ2,a − 2m`,2
a . . . ρT,a − 2m`,T

a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.24)

6The first column of ∆a is [2µ
a ,0,

2µ
a ,

2µ
a , . . . ,

2µ
a ]T since multiplicity type 1 is always

chosen to be (µ,0,0, . . . ,0).
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with

ρĵ,a = µ(2a + 1 − µ)
a(a + 1) + `∑

j=1

mj,ĵ(mj,ĵ + 1)
a(a + 1)

for ĵ = 1, . . . , T . Then, the equation (2.8) in Condition 2 is equivalent to

d(xn1 , x̂n1) < µ(2a + 1 − µ)
a(a + 1) n − k + 1 ≜Da,

and it is easy to verify that Dµ = n − k + 1.

Proof. First, we show that ∆a consists of non-zero entries. It suffices to show that

ρĵ,a ≥ 2mj,ĵ
a for all j = 1, . . . , ` and ĵ = 1, . . . , T , i.e.,

µ(2a + 1 − µ) + `∑
j′=1

mj′,ĵ(mj′,ĵ + 1) ≥ 2mj,ĵ(a + 1)
which is equivalent to

2(a + 1)(µ −mj,ĵ) + `∑
j′=1

mj′,ĵ(mj′,ĵ + 1) − µ(µ + 1) ≥ 0. (2.25)

This is true since the left hand side of (2.25) is at least

2(µ + 1)(µ −mj,ĵ) +mj,ĵ(mj,ĵ + 1) − µ(µ + 1) = (µ −mj,ĵ)(µ + 1 −mj,ĵ) ≥ 0.

With the same eĵ, νj,ĵ, χj,ĵ as defined in the proof of Lemma 1 and the chosen

distortion matrix ∆a, we have

d(xn1 , x̂n1) = T∑̂
j=1

( `∑
j=1

(ρĵ,a − 2mj,ĵ

a
)χj,ĵ + ρĵ,aχ0,ĵ)

= T∑̂
j=1

(ρĵ,a `∑
j=0

χj,ĵ − 2
`∑
j=1

mj,ĵ

a
χj,ĵ)

= T∑̂
j=1

(ρĵ,aeĵ − 2
`∑
j=1

mj,ĵ

a
χj,ĵ) .

Noting that the first column of ∆a is always [2µ
a ,0,

2µ
a ,

2µ
a , . . . ,

2µ
a ]T and ν1,1 = e1−χ1,1,
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we obtain

d(xn1 , x̂n1) = 2µ

a
ν1,1 + T∑̂

j=2

ρĵ,aeĵ − 2
T∑̂
j=2

`∑
j=1

mj,ĵ

a
χj,ĵ. (2.26)

Next, one can see that (2.8) can be rewritten as

2SM

a
− k + 1 > 2CM

a(a + 1)
which, by substituting SM and CM in (2.16) and (2.17), is equivalent to

2µ

a

⎛⎝n −
T∑̂
j=2

eĵ − ν1,1

⎞⎠ + 2
T∑̂
j=2

`∑
j=1

mj,ĵ

a
χj,ĵ − k + 1

> µ(µ + 1)
a(a + 1) ⎛⎝n −

T∑̂
j=2

eĵ
⎞⎠ +

T∑̂
j=2

eĵ

`∑
j=1

mj,ĵ(mj,ĵ + 1)
a(a + 1) .

Equivalently, this gives

(2µ

a
− µ(µ + 1)
a(a + 1) )n − k + 1

> 2µ

a
ν1,1 − 2

T∑̂
j=2

`∑
j=1

mj,ĵ

a
χj,ĵ + T∑̂

j=2

eĵ (2µ

a
− µ(µ + 1)
a(a + 1) +

`∑
j=1

mj,ĵ(mj,ĵ + 1)
µ(µ + 1) )

which in turn is equivalent to

µ(2a + 1 − µ)
a(a + 1) n − k + 1 > 2µ

a
ν1,1 + T∑̂

j=2

eĵρĵ,a − 2

a

T∑̂
j=2

`∑
j=1

mj,ĵχj,ĵ. (2.27)

Finally, combining (2.26) and (2.27) gives the proof.

Example 6. Consider mASD-2 for a = µ = 2. In this case, the distortion matrix is

∆ =
⎛⎜⎜⎜⎜⎜⎜⎝

2 5/3 2 1

0 2/3 2 1

2 2/3 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
. (2.28)

However, Condition 2 also requires the second constraint (2.9) to be satisfied. In

addition, we need to choose an integer a ≥ µ in order to apply our proposed approach.
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Therefore, we first consider the case of high-rate RS codes where if a = µ then the

satisfaction of (2.8) also implies the satisfaction of (2.9). For the case of lower-rate

RS codes, we obtain a range of a and also propose a heuristic method to choose an

appropriate a.

a. High-Rate Reed-Solomon Codes

In this subsection, we focus on high-rate RS codes which are usually seen in many

practical applications. The high-rate constraint allows us to see that a = µ is essen-

tially the correct choice.

Lemma 2. Consider an (n, k) RS code with rate k
n ≥ 1

n + µ
µ+1 . If equation (2.8) is

satisfied for a = µ, or equivalently, d(xn1 , x̂n1) < n − k + 1 under the distortion measure

∆µ, then whole Condition 2 is satisfied and the transmitted codeword will be therefore

on the list.

Proof. Suppose (2.8) is satisfied for a = µ, i.e.,

SM > CM

µ + 1
+ µ

2
(k − 1). (2.29)

We will show that

µ(k − 1) < SM (2.30)

≤ (µ + 1)(k − 1) (2.31)

and, therefore, both (2.8) and (2.9) in Condition 2 are satisfied for a = µ.

Firstly, using Lemma 1 we have

SM

2
≥ SM − CM

µ + 1
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and consequently, (2.30) is implied by (2.29) since

SM

2
≥ SM − CM

µ + 1
> µ

2
(k − 1).

Secondly, note that (2.31) holds since

SM = µ⎛⎝n −
T∑̂
j=2

eĵ − ν1,1

⎞⎠ +
T∑̂
j=2

`∑
j=1

mj,ĵ(eĵ − νj,ĵ)
= µn − µν1,1 − T∑̂

j=2

`∑
j=0

mj,ĵνj,ĵ − T∑̂
j=2

eĵ (µ − `∑
j=1

mj,ĵ)
≤ µn (2.32)

≤ (µ + 1)(k − 1) (2.33)

where (2.32) is obtained by dropping non-negative terms and (2.33) follows from the

high-rate constraint k−1
n ≥ µ

µ+1 .

Finally, by Theorem 1, one can verify that equation (2.8) with a = µ is equivalent

to

d(xn1 , x̂n1) <Dµ = n − k + 1

under the distortion measure ∆µ.

However, there are possibly other integers a ≠ µ that can also satisfy Condition

2. If we consider higher-rate RS codes, as in the following theorem, then we can claim

that a = µ is the only such integer.

Theorem 2. Consider an (n, k) RS code with rate k
n ≥ 1

n + µ(µ+3)
(µ+1)(µ+2) . The integer a

in Condition 2 must satisfy a = µ and, consequently, the set of constraints (2.8) and

(2.9) in Condition 2 is equivalent to d(xn1 , x̂n1) < n−k+1 under the distortion measure

∆µ.
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Proof. We first see that

(a + 1) [SM − a
2
(k − 1)] > CM

in (2.8) implies

SM − a
2
(k − 1) > CM

a + 1

and, with the score SM and the cost CM computed in (2.16) and (2.17), we obtain

µ
⎛⎝n −

T∑̂
j=2

eĵ − ν1,1

⎞⎠ +
T∑̂
j=2

`∑
j=1

mj,ĵ(eĵ − νj,ĵ) − a2(k − 1)
> µ(µ + 1)

2(a + 1) ⎛⎝n −
T∑̂
j=2

eĵ
⎞⎠ +

T∑̂
j=2

eĵ

`∑
j=1

mj,ĵ(mj,ĵ + 1)
2(a + 1) .

This gives

(µ − µ(µ + 1)
2(a + 1) )n − a2(k − 1) > µν1,1 + T∑

j=2

`∑
j=1

νj,ĵ

+ T∑̂
j=2

eĵ (µ − `∑
j=1

mj,ĵ + `∑
j=1

mj,ĵ(mj,ĵ + 1)
2(a + 1) ) (2.34)

≥ T∑̂
j=2

eĵ (µ − `∑
j=1

mj,ĵ) (2.35)

≥ 0 (2.36)

where (2.35) is obtained by dropping non-negative terms.

Combining this inequality with the high-rate constraint implies that

µ(2a + 1 − µ)
a(a + 1) > k − 1

n
≥ µ(µ + 3)(µ + 1)(µ + 2)

which leads to a < µ + 1, i.e. a ≤ µ.

This, together with a ≥ µ according to Corollary 1, leave a = µ as the only possible
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choice. Finally, by seeing that

k

n
≥ 1

n
+ µ(µ + 3)(µ + 1)(µ + 2) > 1

n
+ µ

µ + 1

and applying Lemma 2 we conclude the proof.

Corollary 2. When the RD approach is used, R(D) is positive for Dmin ≤D <Dmax

and is zero for D ≥ Dmax. Computing Dmax reveals how good the distortion measure

matrix is at rates close to zero (i.e., the erasure codebook has only one entry). For

mASD-µ,

Dmax(mASD-µ) = n∑
i=1

min
ĵ=2,...,T

{2(1 − pi,1), ρĵ,µ − `∑
j=1

mj,ĵ

µ
pi,j}

while for mBM-`,

Dmax(mBM-`) = n∑
i=1

min{1,2(1 − pi,1)}.
Moreover, if mASD-µ uses multiplicity type (0,0, . . .0) then

Dmax(mASD-µ) ≤Dmax(mBM-`)
for every µ, `.

Proof. See Appendix 1.

Example 7. Consider mASD-2 with distortion matrix in (2.28). We have

Dmax(mASD-2) = n∑
i=1

min{1,2(1 − pi,1), 5

3
− 2

3
(pi,1 + pi,2)}

which is less than or equal to Dmax(mBM-`) for every `. This predicts that, as ex-

pected, ASD decoding will be superior when R is small.
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Table I. Example ranges of possible a

RS(255,191) RS(255,127)

µ = 2 2 ≤ a ≤ 3 2 ≤ a ≤ 6

µ = 3 3 ≤ a ≤ 5 3 ≤ a ≤ 9

b. Lower-Rate Reed-Solomon Codes

Without the high-rate constraint as in Theorem 2, we may not have a = µ. However,

we can obtain a range for a and heuristically choose the integer a that potentially give

the highest rate-distortion exponent. After that, we can also apply the algorithms

proposed in Section 3 with the corresponding distortion measure ∆a and distortion

threshold Da derived in Theorem 1.

The following lemma tells us the range of possible a.

Lemma 3. Consider an (n,k) RS code. In order to satisfy (2.8), one must have

µ ≤ a ≤ ⌈µθ − 1/2 +√
µ2θ (θ − 1) + 1/4⌉ − 1

where θ ≜ n
k−1 .

Proof. First note that (2.36) holds for any (n, k). Therefore, we have

µ − µ(µ + 1)
2(a + 1) > a(k − 1)

2n
.

Combining this with a ≥ µ in Corollary 1, we obtain the stated result.

Example 8. Table I gives several example ranges of possible a for some choices of µ

and RS codes.

Among possible choices of a, we are interested in choosing a that gives the largest

rate-distortion exponent and therefore has a better chance to satisfy Condition 2. The
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following lemma can give us an insight of how to choose such an integer a.

Lemma 4. If

a > 1

2
(√1 + 4θµ(µ + 1) − 3) (2.37)

where θ = n
k−1 then starting from a, the rate-distortion exponent Fa strictly decreases

until reaching zero, i.e., Fa > Fa+1 > Fa+2 > . . . ≥ 0 if rate R is fixed.

Proof. For a fixed rate R, the distortion measure ∆a+1 and distortion Da+1 yield

exponent Fa+1. Scaling both ∆a+1 and Da+1 leaves Fa+1 unchanged. Hence, a+1
a ∆a+1

and a+1
a Da+1 also yield Fa+1. Next, we will show that

a + 1

a
∆a+1 ≥ ∆a. (2.38)

To prove (2.38), it suffices to show

a + 1

a
ρĵ,a+1 ≥ ρĵ,a (2.39)

since

a + 1

a
(ρĵ,a+1 − 2mj,ĵ

a + 1
) ≥ ρĵ,a − 2mj,ĵ

a

is also equivalent to (2.39).

Equivalently, we need to show

µ(µ + 1) ≥ `∑
j=1

mj,ĵ(mj,ĵ + 1)
which is true because µ ≥ ∑`

i=1mj,ĵ by the definition of allowable multiplicity types.

Thus, (2.38) holds and, therefore, the exponent yielded by ∆a and a+1
a Da+1 is at
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Table II. Example ranges of a that gives the largest exponent

RS(255,191) RS(255,127)

µ = 2 a = 2 a ∈ {2,3}
µ = 3 a = 3 a ∈ {3,4}
µ = 12 a ∈ {12,13} 12 ≤ a ≤ 17

least Fa+1. From (2.37) we have

Da = µ(2a + 1 − µ)
a(a + 1) n − k + 1

> µ(2a + 3 − µ)
a(a + 2) N − a + 1

a
(k − 1)

= a + 1

a
Da+1.

Since for a fixed R, exponent F is increasing in distortion D [45, Thm 6.6.2], we

know that Fa > Fa+1 where Fa is the exponent yielded by ∆a and Da.

Corollary 3. The integer a that gives the largest exponent lies in the range

µ ≤ a ≤ ⌊1

2
(√1 + 4θµ(µ + 1) − 3) ⌋ + 1.

Example 9. Table II presents several example ranges of a that gives the largest

exponent for some choices of µ and RS codes.

Remark 8. Simulation results also confirm our analysis. For example, in Fig. 3,

a = 3 and a = 4 give roughly same and the largest exponents for µ = 3 while a = 2 yields

the largest exponent for µ = 2. In fact, simulation results suggest that, typically, either

a = µ or a = µ + 1 gives the best exponent.

In Condition 2, for lower-rate RS codes, so far we have only paid attention to
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Fig. 3. Plot of exponent Fa versus a for µ = 2 and µ = 3 with a fixed rate R = 6.

Simulations are conducted for the (255,127) RS code using BPSK over an

AWGN channel at Eb/N0 = 6.0 dB and 6.5 dB.

(2.8). However, it is also required that

a(k − 1) < SM ≤ (a + 1)(k − 1),
or equivalently

a + 1 = ⌈ SM

k − 1
⌉. (2.40)

While it is hard to tell exactly which a will satisfy (2.40) with high probability right

away, we can propose a heuristic method to choose the integer a that is likely to work.

We first need the following lemma.

Lemma 5. Suppose we have obtained a test-channel input-probability distribution

matrix Q (e.g., during Step 2a or Step 2b in the proposed algorithms in Section 3)

and the set of erasure patterns for mASD is generated independently and randomly
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according to Q. Then, the expected score can be computed as follows:

E[SM] = T∑̂
j=1

`∑
j=1

n∑
i=1

mj,ĵpi,jqi,ĵ. (2.41)

Proof. The proof follows from the following equations:

E[SM] = E
⎡⎢⎢⎢⎢⎣
T∑̂
j=1

`∑
j=1

mj,ĵχj,ĵ

⎤⎥⎥⎥⎥⎦ (2.42)

= T∑̂
j=1

`∑
j=1

mj,ĵE[χj,ĵ]
= T∑̂
j=1

`∑
j=1

mj,ĵE [ n∑
i=1

1{Xi=j,X̂i=ĵ}]
= T∑̂
j=1

`∑
j=1

n∑
i=1

mj,ĵ Pr(Xi = j, X̂i = ĵ)
= T∑̂
j=1

`∑
j=1

n∑
i=1

mj,ĵpi,jqi,ĵ

where 1S denotes the indicator function of an event S and (2.42) is implied by (2.14).

Next, we propose a heuristic method to find the appropriate integer a to work

with as follows.

Algorithm 3.

● Step 1: Start with a = µ, using distortion measure ∆a and distortion threshold

Da to get the corresponding distribution matrix Q as discussed above.

● Step 2: Compute the expected score E[SM] using (2.41). If ⌈E[SM]
k−1 ⌉ = a+ 1 then

output a and stop. If not set a← a + 1 and return to Step 1.

Remark 9. In simulations with small to moderate µ, it is usually found that a is

either µ or µ + 1. Typically, E[SM]
k−1 > µ and a unit increase of a produces a small

increase in E[SM]
k−1 .
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Fig. 4. Plot of exponent Fa versus a for µ = 10 with a fixed rate R = 6. The set

of multiplicity types considered is the relaxed set A0(10,2). Simulations are

conducted for the (458,410) RS code over F210 using BPSK over an AWGN

channel at Eb/N0 = 6.0 dB and 6.5 dB.

So far, we have considered only the allowable multiplicity types in Definition 7.

It is possible to obtain better performance if we relax some constraints and allow

multiplicity types to be in the relaxed set

A0(µ, `) ≜ {(m1,m2, . . . ,m`)∣ ∑`
j=1mj ≤ µ } .

In this case, some theoretical results, e.g., results in Lemma 1 and Theorem 2, do

not hold. However, this modification combined with the heuristic method above can

improve the decoding performance, especially with large µ. Specifically, we consider

mASD0-µ which denotes our proposed multiple ASD decoding algorithm that only

uses multiplicity types (0,0) and(m1,m2) of the form m1+m2 = µ. These multiplicity

types form a subset of A0(µ,2). The choice of ` = 2 is suggested by observations that

top-2 decoding performs almost as good as top-` decoding for ` > 2. The integer a

used in mASD0-µ is found through the heuristic method. In Fig. 4, simulations are
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conducted for the (458,410) RS code using BPSK over an AWGN channel. For µ = 10,

it can again be observed that a = µ gives the best exponent. More simulation results

of this heuristic method can be seen in Section G.

E. Closed-Form Analysis of RD and RDE Functions for Some Distortion Measures

1. Closed-Form RD Function

For some simple distortion measures, we can compute the RD functions analytically

in closed form. First, we observe an error pattern as a sequence of i.n.d. random

source components. Then, we compute the component RD functions at each index

of the sequence and use convex optimization techniques to allocate the total rate and

distortion to various components. This method converges to the solution faster than

the numerical method in Section C. The following two theorems describe how to

compute the RD functions for the simple distortion measures of Proposition 1 and 3.

Lemma 6. Consider a binary source X where Pr(X = 1) = p and Pr(X = 0) = 1− p .

With the distortion measure in (2.2), the rate-distortion function for this source is7

R(D) = [H2(p) −H2(D + p − 1)]+ .
Proof. See Appendix 2.

Theorem 3. (Conventional errors-and-erasures “mBM-1” decoding) Let pi,1 ≜ Pr(Xi =
1) for i = 1, . . . , n. The overall rate-distortion function is given by

R(D) = n∑
i=1

[H2(pi,1) −H2(D̃i)]+

7Here [x]+ denotes the non-negative part of x, i.e., [x]+ = {x if x ≥ 0,
0 if x < 0.
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where D̃i ≜ Di + pi,1 − 1 and D̃i can be found be a reverse water-filling procedure (see

[41, Theorem 13.3.3]):

D̃i =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λ if λ < min{pi,1,1 − pi,1}
min{pi,1,1 − pi,1} otherwise

where λ should be chosen so that ∑n
i=1 D̃i = D +∑n

i=1 pi,1 − n. The R(D) function can

be achieved by the test-channel input-probability distribution

qi,0 ≜ Pr(X̂i = 0) = 1 − pi,1 − D̃i

1 − 2D̃i

and qi,1 ≜ Pr(X̂i = 1) = pi,1 − D̃i

1 − 2D̃i

.

Proof. See Appendix 3.

Theorem 4. (Bit-level ASD “m-bASD” decoding) Let ri,1 ≜ Pr(Bi = 1) and ri,0 ≜
Pr(Bi = 0) for i = 1,2, . . . ,N . The overall rate-distortion function in m-bASD scheme

is given by

R(D) = N∑
i=1

[Ri(λ)]+ (2.43)

where

Ri(λ) =H2(ri,1) −H2 ( 1 + λ
1 + λ + λ2

) + (ri,1 − 1 + λ
1 + λ + λ2

)H2 ( λ

1 + λ) (2.44)

and the distortion component Di is given by

Di =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1+2λ+3λ2

1+λ+λ2 − ri,1 1+2λ
1+λ if Ri(λ) > 0

min{1,3(1 − ri,1)} otherwise

where λ ∈ (0,1) should be chosen so that ∑N
i=1Di = D. The R(D) function can be

achieved by the following test-channel input-probability distribution

si,0 ≜ Pr(B̂i = 0) = (1 + λ) − ri,1(1 + λ + λ2)
1 − λ2

(2.45)
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and

si,1 ≜ Pr(B̂i = 1) = ri,1(1 + λ + λ2) − λ(1 + λ)
1 − λ2

. (2.46)

Sketch of proof. With the distortion measure in (3), using the method in [47, Chapter

2] we can compute the rate-distortion function components

Ri(λi) =H2(ri,1) −H2 ( 1 + λi
1 + λi + λ2

i

) + (ri,1 − 1 + λi
1 + λi + λ2

i

)H2 ( λi
1 + λi)

where λi is a Lagrange multiplier such that

Di = 1 + 2λi + 3λ2
i

1 + λi + λ2
i

− ri,1 1 + 2λi
1 + λi

for each bit index i. Then, the Kuhn-Tucker conditions define the overall rate allo-

cation using the similar argument as in the proof of Theorem 3.

Remark 10. While the RD function for mBM-1 as in Theorem 3 can be computed by

strictly following a water-filling schedule, the RD function for m-bASD in Theorem

4 can also be found by a similar algorithm that converges to the true solution in a

finite number of steps. The detail of this algorithm and related discussions are left to

Appendix 5.

2. Closed-form RDE function

In this subsection, we consider the case mBM-1 whose distortion measure is given

in (2.2). We study the setup that RS codewords defined over Galois field Fm are

transmitted over the m-ary symmetric channel (m-SC) which for each parameter p

can be modeled as

Pr(r∣c) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p if r = c
(1 − p)/(m − 1) if r ≠ c .
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Here, c (resp. r) is the transmitted (resp. received) symbol and r, c ∈ Fm. For this

channel model, we restrict our attention to the range of p where the received symbol

is the most-likely (i.e., p > (1−p)/(m−1)). Therefore, at each index i of the codeword,

the hard-decision is also the received symbol and then it is correct with probability

p. Thus, we have pi,1 = Pr(Xi = 1) = p for every index i of the error pattern xn1 .

That means, in this context we have a source xn1 with i.i.d. binary components xi.

Since the components xi’s are i.i.d, we can treat each xi as a binary source X with

Pr(X = 1) = p and first compute the RDE function for this source X as given by an

analysis in Appendix 4. Based on this analysis, we obtain the following lemmas and

theorems for the mBM-1 decoding algorithm of RS codes over an m-SC channel.

Lemma 7. Let h(u) =H2(u)−H2(u+D − 1) map u ∈ [1 −D,1 − D
2
) to R. Then, the

inverse mapping of h,

h−1 ∶ (0,H2(1 −D)]→ [1 −D,1 − D
2
) ,

is well-defined and maps R to u.

Proof. We first notice that h(u) is strictly decreasing since the derivative is negative

over [1 −D,1 − D
2
), hence the mapping h ∶ [1 −D,1 − D

2
) → (0,H2(1 −D)] is one-to-

one. From the analysis in Appendix 4, one can also see that h is onto.

Theorem 5. Using mBM-1 with 2R decoding attempts where R ∈ (0, nH2(1 − D
n )],

the maximum rate-distortion exponent that can be achieved is8

F = nDKL (h−1 (R
n
) ∣∣p) . (2.47)

Proof. First, note that in our context where we have a source sequence xn1 of n i.i.d.

source components, the rate and exponent for each source component are now R
n and

8The Kullback-Leibler divergence is DKL(u∣∣p) ≜ u log2
u
p + (1 − u) log2

1−u
1−p .
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F
n . From Case 3 in Appendix 4 and from Lemma 7, we have

F

n
=DKL(u∣∣p) =DKL (h−1 (R

n
) ∣∣p)

and the theorem follows.

Lemma 8. Let g(u) =DKL(u∣∣p) map u ∈ [1−D,p] to F . Then, the inverse mapping

of g,

g−1 ∶ [0,DKL(1 −D ∣∣p)]→ [1 −D,p]
is well-defined and maps F to u.

Proof. We first see that g(u) is a strictly convex function and achieves minimum value

at u = p and therefore g(u) is strictly decreasing over [1 −D,p]. Thus, the mapping

g ∶ [1 −D,p] → [0,DKL(1 −D ∣∣p)] is one-to-one. From the analysis in Appendix 4,

one can also see that g is onto.

Theorem 6. To achieve a rate-distortion exponent of F ∈ [0, nDKL (1 −D ∣∣p)], the

minimum number of decoding attempts required for mBM-1 is 2R where

R = n [H2 (g−1 (F
n
)) −H2 (g−1 (F

n
) + D

n
− 1)]+ .

Proof. We also note that the rate, distortion and exponent for each source component

are R
n ,

D
n and F

n respectively. Combining all the cases in Appendix 4, we have

R

n
= [H2 (g−1 (F

n
)) −H2 (g−1 (F

n
) + D

n
− 1)]+

and the theorem follows.

Remark 11. In Fig. 5, we simulate the performance of mBM-1(RDE,11) for the

(255,239) RS code over an m-SC channel. One curve reflects the simulated frame-
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Fig. 5. Performance of mBM-1(RDE,11) and its approximation 2−F where F is given

in (2.47) for the (255,239) RS code over an m-SC(p) channel.

error rate (FER) and the other is the approximation derived from 2−F where F is

given in (2.47) with R = 11.

F. Some Extensions

1. Erasure Patterns Using Covering Codes

The RD framework we use is most suitable when n → ∞. For a finite n, choosing

random codes for only a few LRPs can be risky. We can instead use good covering

codes to handle these LRPs. In the scope of covering problems, one can use an `-ary

tc-covering code (e.g., a perfect Hamming or Golay code) with covering radius tc to

cover the whole space of `-ary vectors of the same length. The covering may still

work well if the distortion measure is close to, but not exactly equal to the Hamming

distortion. The method of using covering codes in the LRPs was proposed earlier in
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[56] to choose the test patterns in iterative bounded distance decoding algorithms for

binary linear block codes.

In order take care of up to the ` most likely symbols at each of the nc LRPs of an

(n, k) RS, we consider an (nc, kc) `-ary tc-covering code whose codeword alphabet is

Z`+1∖{0} = {1,2, . . . , `}. Then, we give a definition of the (generalized) error patterns

and erasure patterns for this case. In order to draw similarities between this case

and the previous cases, we still use the terminology “generalized erasure pattern”

and shorten it to erasure pattern even if errors-only decoding is used. For errors-only

decoding, Condition 1 for successful decoding becomes

ν < 1

2
(n − k + 1).

Definition 8. (Error patterns and erasure patterns for errors-only decoding) Let us

define xn1 ∈ Zn`+1 as an error pattern where, at index i, xi = j implies that the j-th

most likely symbol is correct for j ∈ {1,2, . . . `}, and xi = 0 implies none of the first `

most likely symbols is correct. Let x̂n1 ∈ {1,2, . . . , `}n be an erasure pattern where, at

index i, x̂i = j implies that the j-th most likely symbol is chosen as the hard-decision

symbol for j ∈ {1,2, . . . , `}.

Proposition 4. If we choose the letter-by-letter distortion measure δ ∶ Z`+1 × Z`+1 ∖
{0}→ R≥0 defined by δ(x, x̂) = [∆]x,x̂ in terms of the (` + 1) × ` matrix

∆ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1

0 1 . . . 1

1 0 . . . 1

⋮ ⋮ ⋱ ⋮
1 1 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.48)
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then the condition for successful errors-only decoding then becomes

d(xn1 , x̂n1) < 1

2
(n − k + 1). (2.49)

Proof. It follows directly from

d(xn1 , x̂n1) = `∑̂
j=1

`∑
j=0,j≠ĵ

χj,ĵ = ν.

Remark 12. If we delete the first row which corresponds to the case where none of

the first ` most likely symbols is correct then the distortion measure is exactly the

Hamming distortion.

Split covering approach: In this approach, one breaks an error pattern xn1 into

two sub-error patterns xLRPs ≜ xσ(1)xσ(2) . . . xσ(nc) of nc least reliable positions and

xMRPs ≜ xσ(nc+1) . . . xσ(n) of n − nc most reliable positions. Similarly, one can break

an erasure pattern x̂n1 into two sub-erasure patterns x̂LRPs ≜ x̂σ(1)x̂σ(2) . . . x̂σ(nc) and

x̂MRPs ≜ x̂σ(nc+1) . . . x̂σ(n). Let znc be the number of positions in the nc LRPs where

none of the first ` most likely symbols is correct, or

znc = ∣{i = 1,2, . . . , nc ∶ xσ(i) = 0}∣ .
If we assign the set of all sub-error patterns x̂LRPs to be an (nc, kc) tc-covering code

then

d(xLRPs, x̂LRPs) ≤ tc + znc
because this covering code has covering radius tc. Since

d(xn1 , x̂n1) = d(xLRPs, x̂LRPs) + d(xMRPs, x̂MRPs),
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in order to increase the probability that the condition (2.49) is satisfied we want

to make d(xMRPs, x̂MRPs) as small as possible by the use of the RD approach. The

following proposition summarizes how to generate a set of 2R erasure patterns for

multiple runs of errors-only decoding.

Proposition 5. In each erasure pattern, the letter sequence at nc LRPs is set to be a

codeword of an (nc, kc) `-ary tc−covering code. The letter sequence of the remaining

n − nc MRPs is generated randomly by the RD method (see Section 3) with rate

RMRPs = R − kc log2 ` and the distortion measure in (2.48). Since this covering code

has `kc codewords, the total rate is RMRPs + log2 `
kc = R.

Example 10. For a (7,4,3) binary Hamming code which has covering radius tc = 1,

we take care of the 2 most likely symbols at each of the 7 LRPs. We see that 1001001

is a codeword of this Hamming code and then form erasure patterns 1001001x̂8x̂9 . . . x̂n

with assumption that the positions are written in increasing reliability order. The 2R−4

sub-erasure patterns x̂8x̂9 . . . x̂n are generated randomly using the RD approach with

rate (R − 4).

Remark 13. While it also makes sense to use a covering codes for the nc LRPs of

the erasure patterns and set the rest to be letter 1 (i.e., chose the most likely symbol

as the hard-decision), our simulation results shows that the performance can usually

be improved by using a combination of a covering code and a random (i.e., generated

by the RD approach) code. More discussions are presented in Section G.

2. A Single Decoding Attempt

In this subsection, we investigate a special case of our proposed RDE framework

when R = 0 (i.e., the set of erasure patterns consists of one pattern). In this case,

our proposed approach is related to another line of work where one tries to design
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a good erasure pattern for a single BM decoding or a good multiplicity matrix for a

single ASD decoding [34, 36, 35, 37]. We will see that the RDE approach for R = 0

is quite similar to optimizing a Chernoff bound [36, 35] or using the method of types

[37]. The main difference is that this approach starts from Condition 2 rather than

its large multiplicity approximation.

Lemma 9. When rate R = 0, the distribution matrix Q that optimizes the RDE/RD

function consists of only binary entries. Consequently, the random codebook using the

proposed RDE approach (the set of erasure patterns) becomes a single deterministic

pattern.

Sketch of proof. For each (s, t) pair, the total rate is the sum of n individual compo-

nents as seen in Proposition 2. Therefore, the zero total rate implies all components

are zero. Thus, it suffices to show that if an arbitrary rate component (denoted as R

in the proof) is zero then the corresponding column of Q has all entries equal to 0 or

1.

For the RD case, it is well known [47, p. 27] that if R = 0 then the distortion is

given by Dmax = minĵ∑j pjδjĵ where ĵ⋆ is the argument that achieves this minimum

and the test-channel input distribution is

q⋆
ĵ
=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if ĵ = ĵ⋆
0 otherwise

.

Computing the RDE for the source distribution pj is equivalent to solving the RD

problem for an appropriately tilted source distribution p̃⋆j . Therefore, the above

property is inherited by the RDE as well. In particular, the distortion at R = 0 is

given by minĵ∑j p̃
⋆
j δjĵ and the test-channel input distribution is supported on the

singleton element that achieves this minimum.
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This result can also be shown directly by solving (2.6) while dropping the rate

constraint from (2.7).

Let Gĵ(D) be the large deviation rate-function for the distortion when the re-

construction symbol is fixed to ĵ. It is well-known that this can be computed using

either a Chernoff bound or the method of types [41]. Both techniques result in the

same function; for α ≥ 0, it is described implicitly by

D(α) = ∑j pj2
αδj,ĵδj,ĵ∑j′ pj′2
αδj′,ĵ

,

Gĵ(α) =∑
j

pj2
αδj,ĵ

∑j′ pj′2
αδj′,ĵ

log2

2αδj,ĵ

∑j′ pj′2
αδj′,ĵ

.

Theorem 7. The RDE function for R = 0 is equal to

F (0,D) = max
ĵ
Gĵ(D).

Proof. Lemma 9 shows that the reconstruction distribution must be supported on a

single element. Since the exponential failure probability for any fixed reconstruction

symbol follows from a standard large-deviations analysis, the only remaining degree of

freedom is which symbol to use. Choosing the best symbol maximizes the RDE.

Remark 14. This means that the single decoding attempt with the best error-exponent

can be computed as a special case of the RDE approach. Simplifying our proposed

algorithm to use the single Lagrange multiplier α leads to an algorithm that is very

similar to the one proposed in [37]. It also seems unlikely that this new algorithm will

provide any significant performance gains either in performance or complexity.
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Fig. 6. A realization of RD curves at Eb/N0 = 5.2 dB for various decoding algorithms

for the (255,239) RS code over an AWGN channel.

G. Simulation Results

In this section, we present simulation results on the performance of RS codes over

an AWGN channel with either BPSK or 256-QAM as the modulation format. In

all the figures, the curve labeled mBM-1 corresponds to standard errors-and-erasures

BM decoding with multiple erasure patterns. For ` > 1, the curves labeled mBM-`

correspond to errors-and-erasures BM decoding with multiple decoding trials using

both erasures and the top-` symbols. The curves labeled mASD-µ correspond to

multiple ASD decoding trials with maximum multiplicity µ. The number of decoding

attempts is 2R where R is denoted in parentheses in each algorithm’s acronym (e.g.,

mBM-2(RD,11) uses the RD approach with R = 11 while mBM-2(RDE,10) uses the

RDE approach with R = 10). Please note that not all the algorithms listed in this
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Fig. 7. A realization of RDE curves at Eb/N0 = 6 dB for various decoding algorithms

for the (255,239) RS code over an AWGN channel.

section are of the same complexity unless stated explicitly.

In Fig. 6, the RD curves are shown for various algorithms using the RD approach

at Eb/N0 = 5.2 dB where BPSK is used. For the (255,239) RS code, the fixed threshold

for decoding is D = n−k+1 = 17. Therefore, one might expect that algorithms whose

average distortion is less than 17 should have a frame error rate (FER) less than 1
2 .

The RD curve allows one to estimate the number of decoding patterns required to

achieve this FER. Notice that the mBM-1 algorithm at rate 0, which is very similar

to conventional BM decoding, has an expected distortion of roughly 24. For this

reason, the FER for conventional decoding is close to 1. The RD curve tells us that

trying roughly 216 (i.e., R = 16) erasure patterns would reduce the FER to roughly 1
2

because this is where the distortion drops down to 17. Likewise, the mBM-2 algorithm

using rate R = 11 has an expected distortion of less than 14. So we expect (and our

simulations confirm) that the FER should be less than 1
2 . Fig. 6 also depicts the fact

obtained in Example 7.

One weakness of this RD approach is that RD describes only the average distor-
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Fig. 8. Performance of various decoding algorithms for the (255,239) RS code using

BPSK over an AWGN channel.

tion and does not directly consider the probabilitcolay that the distortion is greater

than 17. Still, we can make the following observations from the RD curve. Even at

high rates (e.g., R ≥ 5), we see that the distortion D achieved by mBM-2 is roughly

the same as mBM-3, mASD-2, and mASD-3 but smaller than mASD-2a (see Example

4) and mBM-1. This implies that, for this RS code, mBM-2 using the RD approach is

no worse than the more complicated ASD based approaches for a wide range of rates

(i.e., 5 ≤ R ≤ 35). This is also true if the RDE approach is used as can be seen in Fig.

7 which depicts the trade-off between rate R and exponent F for various algorithms

at Eb/N0 = 6 dB. For this RS code, ASD based approaches have a better exponent

than mBM-2 at low rates (i.e., small number of decoding trials) and have roughly the
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same exponent for rates R ≥ 5.

In Fig. 8, a plot of the FER versus Eb/N0 is shown for the (255,239) RS code

over an AWGN channel with BPSK as the modulation format. The conventional

HDD and the GMD algorithms have modest performance since they use only one or

a few decoding attempts. Choosing R = 11 allows us to make fair comparisons with

SED(12,12). With the same number of decoding trials, mBM-2(RD,11) outperforms

SED(12,12) by 0.3 dB at FER= 10−4. Even mBM-2(RD,7), with many fewer decoding

trials, outperforms both SED(12,12) and the KV algorithm with µ = ∞. Among

all our proposed algorithms using the RD approach with rate R = 11, the mBM2-

HM74(RD,11) achieves the best performance. This algorithm uses the Hamming

(7,4) covering code for the 7 LRPs and the RD approach for the remaining codeword

positions. Meanwhile, small differences in the performance among mBM-2(RD,11),

mBM-3(RD,11), mASD-2(RD,11), and mASD-3(RD,11) suggest that: (i) taking care

of the 2 most likely symbols at each codeword position is good enough for multiple

decoding of this RS code and (ii) multiple runs of errors-and-erasures decoding is

generally almost as good as multiple runs of ASD decoding. Recall that this result

is also correctly predicted by the RD analysis. When the RDE approach is used,

mBM-2(RDE,11) still has roughly the same performance as a more complex mASD-

3(RDE,11). One can also observe that these two algorithms using the RDE approach

achieve better performance than mBM-2(RD,11) and mBM2-HM74(RD,11) that use

the RD approach. We also simulate our proposed algorithm at R = log2 9 to compare

with the GMD algorithm. While both mBM-2(RDE,log2 9) and the GMD algorithm

use the same number of 9 errors-and-erasures decoding attempts, mBM-2(RDE,log2 9)

yields roughly a 0.1 dB gain. The simulation results show that, at this low rate

R = log2 9, mASD-3 has a larger gain over mBM-2 than at a higher rate R = 11. This

phenomenon can be predicted in Fig. 7 where mASD-3 starts to achieve a larger
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Fig. 9. Performance of various decoding algorithms for the (255,239) RS code using

256-QAM over an AWGN channel.

exponent F at small values of R.

To compare with the Chase-type approach (LCC) used in [29], in Fig. 8 we also

consider the mBM2-HM74(4) algorithm that uses the Hamming (7,4) covering code

for the 7 LRPs and the hard decision pattern for the remaining codeword positions.

This shows that, for the (255,239) RS code, the mBM2-HM74 achieves better perfor-

mance than the LCC(4) with the same number (24) of decoding attempts. For the

(458,410) RS code considered in Fig. 10, one can also observe that the group of algo-

rithms that we propose have better performance than LCC(10) with the same number

(210) of decoding attempts. However, the implementation complexity of LCC(10) may

be lower than the algorithms proposed here due to their clever techniques that re-

duce the decoding complexity per trial. It is also interesting to note that the method

proposed here, based on covering codes and random codebook generation, is also
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Fig. 10. Performance of various decoding algorithms for the (458,410) RS code over

F210 using BPSK over an AWGN channel.

compatible with some of the fast techniques used by the LCC decoding.

We also performed simulations using QAM and Fig. 9 shows FER versus Eb/N0

performance of the same (255,239) RS code transmitted over an AWGN channel with

256-QAM modulation. At FER=10−4, our proposed algorithms mBM-2(RD,10) and

mBM-2(RDE,10) achieve 0.3−0.4 dB gain over SED(11,10) (with the same complex-

ity) and also outperform KV(µ = ∞). At R = 10, mBM-2 still achieves roughly the

same performance as mASD-3.

In Fig. 10, a plot of the FER versus Eb/N0 is shown for the (458,410) RS code

that has a longer block length. In this plot, BPSK is used as the modulation format

and we also focus on rate R = 10. With algorithms that use the RD approach,
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Fig. 11. Performance of various decoding algorithms for the (458,410) RS code over

F210 using BPSK over an AWGN channel.

mBM-2(RD,10) still has approximately the same performance as mBM-3(RD,10),

mASD-2(RD,10), mASD-3(RD,10). However, when the RDE approach is employed,

algorithms that run multiple ASD decoding attempts have a recognizable gain over

algorithms that use multiple runs of BM decoding. The performance gain of the

RDE approach (over the RD approach) is small, but can be seen easily by comparing

mASD-3(RDE,10) to mASD-3(RD,10). As a reference, we also plot the performance

of KV(4.99) which corresponds to the proportional KV algorithm [52] with the scaling

factor 4.99.

In Fig. 11, the same setting is used as in Fig. 10. As can be seen in the

figure, KV(µ = ∞) achieve better performance than mASD-3(RDE,10) and mBM-

2(RDE,10). However, by considering higher µ, our algorithms using the heuristic

method mASD0-10(RDE,10) and mASD0-20(RDE,10) can outperform KV(µ =∞).
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Fig. 12. Performance of various decoding algorithms for the (255,127) RS code using

BPSK over an AWGN channel.

To target RS codes of lower rate, we also ran simulations of the (255,127) RS code

over an AWGN channel with BPSK modulation and the results can be seen in Fig. 12.

While mBM-2(RDE,6), mBM-2(RD,6), SED(7,6) and GMD all use the same number

of about 64 errors-and-erasures decoding attempts, our proposed mBM-2 algorithms

outperforms the other two algorithms. As seen in the plot, mASD-3(RDE,6) has quite

a large gain over mBM-2(RD,6) which is reasonable since ASD decoding is known to

perform very well compared to BM decoding with low-rate RS codes. In this figure,

KV(3.99) denotes the proportional KV algorithm [52] with the scaling factor 3.99

and therefore with maximum multiplicity µ = 3. While mASD-3(RDE,6) with 64

decoding attempts outperforms KV(3.99) as expected, the small gain of roughly 0.5

dB at FER=10−4 suggests that with low-rate RS codes, one might prefer increasing

µ in a single ASD decoding attempt to running multiple ASD decoding attempts of
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Fig. 13. Performance of various decoding algorithms for the (255,191) RS code using

256-QAM over an AWGN channel.

a lower µ.

In Fig. 13, we show the FER versus Es/N0 performance for the (255,191) RS

codes using 256-QAM. Again, our proposed algorithm mBM-2(RDE,5) performs fa-

vorably compared to SED(6,6) and GMD with the same number of about 32 errors-

and-erasures decoding attempts. Under this setup, mASD-2(RDE,5) and mASD-

3(RDE,5) achieve significant gains over mBM-2(RDE,5). Our proposed mASD-3(RDE,11)

and mASD-3(RDE,5) algorithms have fairly the same performance as the proportional

KV algorithm with the scaling factor 12.99 and 6.99, respectively.

To compare with the iterative erasure and error decoding (IEED) algorithm pro-

posed in [28], we also conducted simulations of the (255,223) RS code over an AWGN

channel using BPSK and the results are shown in Fig. 14. With the same number of

about 17 errors-and-erasures decoding attempts, our proposed mBM-2(RDE,log2 17)
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Fig. 14. Performance of various decoding algorithms for the (255,223) RS code using

BPSK over an AWGN channel.

algorithm outperforms both the GMD and 17-IEED algorithms. In fact, at FER

smaller than 10−3, mBM-2(RDE,log2 17) has roughly the same performance as 32-

IEED which needs to use 32 decoding attempts. Meanwhile, mBM-2(RDE,5) that

uses 32 decoding attempts performs as good as 112-IEED where 112 decoding at-

tempts are required.

H. Appendix

1. Proof of Corollary 2

Proof. Using the formula in [47, p. 27], we have

Dmax = n∑
i=1

min
ĵ

`∑
j=0

pi,jδjĵ.

For mBM-` with distortion matrix in (2.4), we have ∑`
j=0 pi,jδjĵ = ∑j≠ĵ 2pi,j =
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2(1 − pi,ĵ) for ĵ ≥ 1 and ∑`
j=0 pi,jδj0 = ∑`

j=0 pi,j = 1. Therefore,

Dmax(mBM-`) = n∑
i=1

min
ĵ=1,...`

{1,2(1 − pi,ĵ)}
= n∑
i=1

min{1,2(1 − pi,1)}
since pi,1 = maxĵ≥1{pi,ĵ}.

Similarly, for mASD-µ with distortion matrix ∆µ in (2.24), we have

`∑
j=0

pi,jδjĵ = pi,0ρĵ,µ + `∑
j=1

pi,j (ρĵ,µ − 2mj,ĵ

µ
)

= ρĵ,µ − `∑
j=1

mj,ĵ

µ
pi,j

for ĵ = 1, . . . , T . Since multiplicity type 1 is always defined to be (µ,0, . . . ,0), we have

ρ1,µ = 2 and consequently,
`∑
j=0

pi,jδj1 = 2(1 − pi,1).
Therefore, we obtain

Dmax(mASD-µ) = n∑
i=1

min
ĵ=2,...,T

{2(1 − pi,1), ρĵ,µ − `∑
j=1

mj,ĵ

µ
pi,j} .

If mASD-µ uses multiplicity type (0,0, . . .0) which is, for example, labeled as type T

then we have

ρT,µ − `∑
j=1

mj,T

µ
pi,j = ρT,µ = 1.

Consequently,

Dmax(mASD-µ) = n∑
i=1

min
ĵ=2,...,T−1

{1,2(1 − pi,1), ρĵ,µ − `∑
j=1

mj,ĵ

µ
pi,j}

≤ n∑
i=1

min{1,2(1 − pi,1)}
=Dmax(mBM-`)
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and this completes the proof.

2. Proof of Lemma 6

Proof. With the notation p̄ = 1 − p, according to [47, p. 27] we have

Dmin = p̄min
ĵ
δ0ĵ + pmin

ĵ
δ1ĵ = 1 − p

Dmax = min
ĵ

(p̄δ0ĵ + pδ1ĵ) = min{1,2(1 − p)}.
The function R(D) is not defined for D <Dmin and R(D) = 0 for D ≥Dmax. For

the case Dmin ≤ D < Dmax, the rate-distortion function R(D) is given by solving the

following convex optimization problem

minw I(X; X̂)
subject to wĵ∣j ≜ Pr(X̂ = ĵ∣X = j) ≥ 0 ∀j, ĵ ∈ {0,1}

w0∣0 +w1∣0 = 1

w0∣1 +w1∣1 = 1

p̄w0∣0 + pw0∣1 + 2p̄w1∣0 =D
where the mutual information

I(X; X̂) = p̄∑̂
j

wĵ∣0 log2

wĵ∣0

qĵ
+ p∑̂

j

wĵ∣1 log2

wĵ∣1

qĵ

and the test-channel input probability-distribution

qĵ = Pr(X̂ = ĵ) = p̄wĵ∣0 + pwĵ∣1.
We then form the Lagrangian

J(W )=I(X; X̂)+∑
j

γj(w0∣j+w1∣j−1)+γ(p̄w0∣0+pw0∣1+2p̄w1∣0−D)−∑
j,ĵ

λjĵwĵ∣j
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and the Karush-Kuhn-Tucker (KKT) conditions become9

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂J
∂wĵ∣j

= 0 ∀j, ĵ ∈ {0,1}
w0∣j +w1∣j − 1 = 0 ∀j ∈ {0,1}
wĵ∣j, λjĵ ≥ 0 ∀j, ĵ ∈ {0,1}
λjĵwĵ∣j = 0 ∀j, ĵ ∈ {0,1}

.

By [47, Lemma 1, p. 32], we only need to consider the following cases.

● Case 1: w0∣0 = w0∣1 = 0. In this case, we further have w1∣0 = w1∣1 = 1. This

leads to R = 0 and D = 2(1 − p) ≥ Dmax which is a contradiction as we only consider

D ∈ [Dmin,Dmax).
● Case 2: w1∣0 = w1∣1 = 0. In this case, we have w0∣0 = w0∣1 = 1. This leads to R = 0

and D = 1 ≥Dmax which is also a contradiction.

● Case 3: wĵ∣j > 0 ∀j, ĵ ∈ {0,1}. In this case, we know λjĵ = 0 and then, from

∂J
∂wĵ∣j

= 0, we obtain

p̄(log2

wĵ∣0

qĵ
+ δ0ĵγ) + γ0 = 0 ∀k ∈ {0,1},

p(log2

wĵ∣1

qĵ
+ δ1ĵγ) + γ1 = 0 ∀k ∈ {0,1}.

Equivalently, we have

wĵ∣0 = qĵ2−δ0ĵγ2−γ0
p̄ ∀k ∈ {0,1},

wĵ∣1 = qĵ2−δ1ĵγ2−γ1
p ∀k ∈ {0,1}.

9Here we use some abuse of notation and still write the optimizing values in their
old forms without a ⋆ notation.
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Letting α ≜ 2−µ and noticing that w0∣j +w1∣j = 1 ∀j ∈ {0,1}, we get

w0∣0 = q0

q0 + q1α
, w0∣1 = q0α

q0α + q1

,

w1∣0 = q1α

q0 + q1α
, w1∣1 = q1

q0α + q1

.

Putting this into the constraints

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̄w0∣0 + pw0∣1 + 2p̄w1∣0 =D
q0 = p̄w0∣0 + pw0∣1

q1 = p̄w1∣0 + pw1∣1

we have a set of 3 equations involving 3 variables α, q0, q1. Solving this gives us

α = D + p − 1

2 − (D + p) ,
q0 = 2(1 − p) −D

3 − 2(D + p) ,
q1 = 1 −D

3 − 2(D + p) .
Therefore, we can obtain the optimizing wĵ∣j and have

R =H2(p) −H2( 1

1 + α)
=H2(p) −H2(D + p − 1).

Hence, in all cases R = [H2(p) −H2(D + p − 1)]+ and we conclude the proof.

3. Proof of Theorem 3

Proof. The objective here is to compute the RD function for a discrete source sequence

xn1 of i.n.d. source components xi. First, with the notations pi,j ≜ Pr(Xi = j) and

qi,j ≜ Pr(X̂i = j) for j ∈ {0,1) and i ∈ {1,2, . . . n}, Lemma 6 gives us the rate-distortion
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components

Ri(Di) = [H2(pi) −H2(Di + pi,1 − 1)]+
along with the test-channel input-probability distributions

qi,0 = 2(1 − pi,1) −Di

3 − 2(pi,1 +Di) and qi,1 = 1 −Di

3 − 2(pi,1 +Di)
for each index i of the codeword. The overall rate-distortion function is given by

R(D) = min
∑ni=1Di=D

Ri(Di)
= min
∑ni=1Di=D

n∑
i=1

[H2(pi) −H2(Di + pi,1 − 1)]+
which is a convex optimization problem.

Using Lagrange multipliers, we form the functional

J(D) = n∑
i=1

(H2(pi,1) −H2(Di + pi,1 − 1)) + γ ( n∑
i=1

Di −D)
and compute the derivatives

∂J

∂Di

= log2(Di + pi,1 − 1

2 −Di − pi,1 ) + γ.
The Kuhn-Tucker condition (see the restated version in [3], page 86) then tells

us that there is γ such that

∂J

∂Di

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
= 0 ifRi(Di) > 0

≤ 0 ifRi(Di) = 0

which is equivalent to

Di + pi,1 − 1

2 −Di − pi,1
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
= 2−γ ifH2(pi,1) −H2(Di + pi,1 − 1) > 0

≤ 2−γ ifH2(pi,1) −H2(Di + pi,1 − 1) ≤ 0

.
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With the notations D̃i ≜Di + pi,1 − 1 and λ ≜ 2−γ

1+2−γ , it is equivalent to

D̃i

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
= λ if D̃i < min{pi,1,1 − pi,1}
≤ λ otherwise

.

Finally, it becomes

D̃i =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λ ifλ < min{pi,1,1 − pi,1}
min{pi,1,1 − pi,1} otherwise

where

n∑
i=1

D̃i = n∑
i=1

(Di + pi,1 − 1)
=D + n∑

i=1

pi,1 − n
and we conclude the proof.

4. Analysis of RDE Computation

Consider a binary single source X with Pr(X = 1) = p and Pr(X = 0) = 1 − p ≜ p̄.
According to [42], for any admissible (R,D) pair we can find two parameters s ≥ 0

and t ≤ 0 so that F (R,D) can be parametrically evaluated as

F (R,D) = sR − stD +max
q1

(− log2 f(q1))
= sR − stD − log2 min

q1
f(q1)

where

f(q1) = p̄⎛⎝∑̂
j

qĵ2
tδ0ĵ

⎞⎠
−s + p⎛⎝∑̂

j

qĵ2
tδ1ĵ

⎞⎠
−s

and R,D are given in terms of optimizing q⋆.
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For the distortion measure in (2.2) and with q0 = 1 − q1, we have

f(q1) = p̄ ((1 − q1)2t + q122t)−s + p ((1 − q1)2t + q1)−s
which is a convex function in q1. Taking the derivative ∂f

∂q1
= 0 gives us

q⋆1 = 1 + 2t

1 − 2t
( 1

1 + 2t
− p̄

1
s+1

2
st
s+1p

1
s+1 + p̄ 1

s+1

) ≜ β.
In order to minimize f(q1) over q1 ∈ [0,1], we consider three following cases

where the optimal q⋆1 is either on the boundary or at a point with zero gradient.

● Case 1: 0 ≤ p ≤ 2t

1+2t then β ≤ 0. Since f convex, it is non-decreasing in the

interval [β,∞) and therefore in the interval [0,1]. Thus, the optimal q⋆1 = 0 and we

can also compute

D = 1; R = 0; F = 0 =DKL(p∣∣p).
● Case 2: 1 ≥ p ≥ 1

1+2t(2s+1) then β ≥ 1. Since f convex, it is non-increasing in the

interval (−∞, β] and therefore in the interval [0,1]. Thus, the optimal q⋆1 = 1 and we

get

D = 2p̄

p22ts + p̄ ; R = 0; F =DKL(u∣∣p)
where in this case u = 1−D

2 . We can further see that D ∈ [2(1−p),1] and u ∈ [1−D,p].
● Case 3: 2t

1+2t < p < 1
1+2t(2s+1) then β ∈ (0,1). In this case, the optimal q⋆1 = β. We

can find w⋆
ĵ∣j = q⋆

ĵ
2
tδ
jĵ

∑ĵ q⋆ĵ 2
tδ
jĵ

according to [42] and then obtain

D = 2t

1 + 2t
+ 1 − u,

R =H2(u) −H2(u +D − 1),
F =DKL(u∣∣p)
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where

u = 2
st
s+1p

1
s+1

2
st
s+1p

1
s+1 + p̄ 1

s+1

.

With this notation of u, we can express

q⋆1 = 1 −D
3 − 2(u +D) and q⋆0 = 2(1 − u) −D

3 − 2(u +D) .
We can see that D ∈ (1 − p,1). It can also be verified that, in this case, by varying s

and t, u spans (1 −D,1 − D
2 ) and R spans (0,H2(1 −D)).

5. Faster Algorithm to Compute RD Function for m-bASD

Given a total distortion D in the range [Dmin,Dmax] where Dmin = ∑N
i=1(1 − ri,1)

and Dmax = ∑N
i=1 min{1,3(1 − ri,1)}, the following algorithm gives the corresponding

total rate R and the test-channel input-probability distribution si,1. We assume that

D ∈ (Dmin,Dmax) because the solution is trivial if D is an endpoint. Let us denote

ω(x, y) ≜ 1 + 2x + 3x2

1 + x + x2
− y1 + 2x

1 + x .
The algorithm proceeds as follows.

● Step 1: Start with initial values D̄(0) = D
N , r̄(0) = 1

N ∑N
i=1 ri,1, I(0) = {1,2, . . . ,N}

and set t← 0.

● Step 2: Find the unique λ(t) ∈ (0,1) such that

D̄(t) = ω (λ(t), r̄
(t)) . (2.50)

● Step 3: For convenience, let I(t)+ and I(t)− denote {i ∈ I(t) ∶ Ri(λ(t)) > 0} and
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{i ∈ I(t) ∶ Ri(λ(t)) ≤ 0}, respectively where Ri(⋅) is given in (). Update

D
(t)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω (λ(t), ri,1) if i ∈ I(t)+ ,

min{1,3(1 − ri,1)} if i ∈ I(t)− ,

D
(t−1)
i if i ∉ I(t).

● Step 4: If I(t)− ≠ ∅, update new values

I(t+1) ← I(t)+ ,

D̄(t+1) ← 1∣I(t+1)∣
⎛⎜⎝∣I(t)∣D̄(t) − ∑

i∈I(t)
−

D
(t)
i

⎞⎟⎠ , (2.51)

r̄(t+1) ← 1∣I(t+1)∣
⎛⎜⎝ ∑i∈I(t)

+

ri,1
⎞⎟⎠ , (2.52)

set t ← t + 1 and go back to Step 2. Otherwise, if I(t)− = ∅ then output λ ← λ(t)

and stop. The final rate is given by (2.43) and (2.44). The corresponding

test-channel input-probability distribution is given by (2.45) and (2.46).

To analyze the above algorithm, we first have the following lemma.

Lemma 10. For λ ∈ (0,1), one has

ω(λ, ri,1) < min{1,3(1 − ri,1)} if and only if Ri(λ) > 0, (2.53)

ω(λ, ri,1) > 1 − r1,i, (2.54)

min{1,3(1 − ri,1)} ≥ 1 − r1,i, (2.55)

min{1,3(1 − ri,1)} ≤ 1

2
(4 − 3ri,1). (2.56)

Proof. From the formula for Ri(λ) in (2.44), the RHS is a concave function in r1,i and

equal to zero at λ+λ2

1+λ+λ2 and 1+λ
1+λ+λ2 . Thus, Ri(λ) > 0 if and only if λ+λ2

1+λ+λ2 < ri,1 < 1+λ
1+λ+λ2

which can be shown to be equivalent to ω(x, ri,1) < min{1,3(1 − ri,1)}. Thus, (2.53)
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holds.

Meanwhile, (2.54) can be seen from

ω(λ, ri,1) = 1 − ri,1 + λ

1 + λ ( λ2 + 2λ

1 + λ + λ2
+ 1 − ri,1) > 1 − ri,1.

Furthermore, we have (2.56) because 2 min{1,3(1 − ri,1)} ≤ min{1,3(1 − ri,1)} +
max{1,3(1 − ri,1)} = 4 − 3ri,1 while (2.55) holds trivially.

Now, we show that the proposed algorithm produces the desired solution.

One can see from the construction of the algorithm that I(t) = I(t+1) ∪ I(t)− and

I(0) = (∪tj=0I(j)− )∪I(t+1) for every t. The algorithm must stop after a finite number of

steps because I(0) has a finite number of elements. Also, one has D
(t)
i = min{1,3(1 −

ri,1)} for every i ∈ ∪tj=0I(j)− . From (2.51), it can be shown by induction that

∣I(t)∣D̄(t) = ∣I(0)∣D̄(0) − ∑
i∈∪t−1

j=0I
(j)
−

D
(j)
i

=D − ∑
i∈∪t−1

j=0I
(j)
−

min{1,3(1 − ri,1)}. (2.57)

Suppose the algorithm stops after t = τ , we have I(τ)− = ∅ and therefore I(τ) = I(τ)+ .

This implies

∑
i∈I(τ)

D
(τ)
i = ∣I(τ)∣ω(λ(τ), r̄

(τ)) = ∣I(τ)∣D̄(τ) (2.58)

where the last equation follows from (2.50).

Therefore, one has

N∑
i=1

D
(τ)
i = ∑

i∈∪τ−1
j=0 I

(j)
−

min{1,3(1 − ri,1)} + ∑
i∈I(τ)

D
(τ)
i =D

by combining (2.57) and (2.58).

Thus, at this point, this algorithm produces the solution to the procedure in
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Theorem 4.

However, there is another technical detail regarding (2.50) in the algorithm that

also needs to be addressed.

Lemma 11. The above algorithm can proceed because (2.50) has one and only one

solution of λ(t) in (0,1).

Proof. To show that, one can prove, for all t, that the cubic equation Γ(t)(λ) =
a0λ3 + a1λ2 + a2λ + a3 = 0, which is equivalent to (2.50), has one and only one root

in (0,1) where a0 = D̄(t) + 2r̄(t) − 3, a1 = 2D̄(t) + 3r̄(t) − 5, a2 = 2D̄(t) + 3r̄(t) − 3, and

a3 = D̄(t) + r̄(t) − 1.

We claim that

Γ(t)(0) = D̄(t) + r̄(t) − 1 > 0 and Γ(t)(1) = 3(2D̄(t) + 3r̄(t) − 4) < 0. (2.59)

Thus, Γ(t) has at least one root in (0,1). Because of (2.59), we further have a1 =
Γ(t)(1)

3 − 1 < 0 and a0 = Γ(t)(1)
3 − Γ(t)(0) < 0. Vieta’s formulas tell us that sum of all

roots (may not be real) equals−a1

a0
< 0 and product of the roots equals−a3

a1
> 0. Hence

Γ(t) has only one positive root. Thus, we conclude that Γ(t) must have one and only

one real root in (0,1).
Now we will prove the claim (2.59).

We start by seeing that Γ(0)(0) = D
N + 1

N ∑N
i=1 ri,1 − 1 = 1

N (D − Dmin) > 0 and

Γ(0)(1) = 3
N

(2D −∑N
i=1 (1 + 3(1 − ri,1))) ≤ 3

N (2D − 2Dmax) < 0.
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For t ≥ 0, we have

∣I(t+1)∣Γ(t+1)(0) = ∣I(t)∣D̄(t) − ∑
i∈I(t)

−

min{1,3(1 − ri,1)} − ∑
i∈I(t)

+

(1 − ri,1) (2.60)

> ∣I(t)∣D̄(t) − ∑
i∈I(t)

−

min{1,3(1 − ri,1)} − ∑
i∈I(t)

+

ω (λ(t), ri,1) (2.61)

≥ 0 (2.62)

where (2.60) follows from the update rule (2.52) and (2.52), (2.61) follows from (2.54),

and (2.62) follows from

∣I(t)∣D̄(t) = ∣I(t)∣ω(λ(t), r̄
(t))

= ∑
i∈I(t)

ω(λ(t), ri,1)
≥ ∑
i∈I(j)

−

min{1,3(1 − ri,1)} + ∑
i∈I(j)

+

ω(λ(t), ri,1).
Meanwhile, we also have

N

3
∣I(t+1)∣Γ(t+1)(1) = 2

⎛⎜⎝∣I(j)∣D̄(j) − ∑
i∈I(t)

−

min{1,3(1 − pi)}⎞⎟⎠ + ∑
i∈I(t)

+

(3ri,1 − 4)
< 2 ∑

i∈I(t)
+

min{1,3(1 − pi)} + ∑
i∈I(t)

+

(3ri,1 − 4)
≤ 0 (2.63)

where (2.63) follows from (2.56).
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CHAPTER III

SPATIALLY-COUPLED CODES AND THRESHOLD SATURATION ON

INTERSYMBOL-INTERFERENCE CHANNELS

A. Introduction

Irregular low-density parity-check (LDPC) codes can be carefully designed to achieve

the capacity of the binary erasure channel (BEC) [15] and closely approach the capac-

ity of general binary-input symmetric-output memoryless (BMS) channels [57] under

belief-propagation (BP) decoding. LDPC convolutional codes, which were introduced

in [17] and shown to have excellent BP thresholds in [18, 19], have recently been ob-

served to universally approach the capacity of various channels. The fundamental

mechanism behind this is explained well in [20], where it is proven analytically for

the BEC that the BP threshold of a particular spatially-coupled ensemble converges

to the maximum a-posteriori (MAP) threshold of the underlying ensemble. A similar

result was also observed independently in [58] and stated as a conjecture. Such a

phenomenon is now called “threshold saturation via spatial coupling” and has also

been empirically observed for general BMS channels [59]. In fact, threshold saturation

seems to be quite general and has now been observed in a wide range of problems,

e.g., see [60, 61, 62, 63, 64, 65]1.

In the realm of channels with memory and particularly intersymbol interference

(ISI) channels, the capacity may not be achievable via equiprobable signaling. For

linear codes, a popular practice is to compare instead with the symmetric information

rate (SIR), which is also known as Ci.u.d. [66], because this rate is achievable by

1To be precise, the papers [60, 62, 63] only observe the threshold saturation ef-
fect indirectly because the considered EXIT-like curves provide no direct information
about the MAP threshold of the underlying ensemble.
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random linear codes with maximum-likelihood (ML) decoding. A numerical method

for tightly estimating the SIR of general finite-state channels was first proposed in

[67, 68]. For LDPC codes over ISI channels, a joint iterative BP decoder that operates

on a large graph representing both the channel and the code constraints [66, 69] can

perform quite well and even approach the SIR [70, 71]. Progress has also been made

on the design of SIR-approaching irregular LDPC codes for some specific ISI channels

[70, 71, 72, 73, 74]. However, channel parameters must be known at the transmitter

for such designs and therefore universality across ISI channels appears difficult to

achieve.

Now that the threshold saturation effect of spatially-coupled codes has shown

benefits in a number of communication problems, it is quite natural to consider them

as a potential candidate to universally approach the SIR of ISI channels with low

decoding complexity. In fact, the combination of spatially-coupled codes and ISI

channels was recently considered by Kudekar and Kasai [62] for the simple dicode

erasure channel (DEC) from [71, 75]. They provided a numerical evidence that the

joint BP threshold of the spatially coupled codes can approach the SIR over the DEC

(by increasing the degrees while keeping the rate fixed). Also, they outlined a tentative

proof approach for the threshold saturation following the ideas in [20]. However,

the EXIT-like curves they considered were not equipped with an area theorem and

therefore could not be directly connected with the MAP threshold of the underlying

ensemble. Thus, the threshold saturation effect was only indirectly observed. In

a more recent work, Sekido et al. observed that spatially-coupled codes under joint

iterative decoding can also approach the SIR over the class-II Partial Response (PR2)

channel with erasure noise (PR2EC) [76].

In this chapter, we consider the transmission of the spatially-coupled codes over

the family of generalized erasure channels (GECs) of which the BEC, DEC, and
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PR2EC are three particular examples. For these GECs, we provide a rigorous analy-

sis of the upper bound on the MAP threshold of LDPC codes based on the extension

of [77]. Note that for the DEC, this extension was first described in an earlier pa-

per by one of the authors [78]. We then employ a counting argument and present a

numerical evidence that this bound is indeed tight for the regular LDPC ensembles

and the DEC. With the MAP threshold estimated, the threshold saturation phe-

nomenon can be numerically observed to occur exactly for several channels from the

family of GECs. Next, we also consider the case of more general ISI channels where,

by deriving the appropriate GEXIT curve and associated area theorem, the MAP

threshold upper bound can be computed and threshold saturation can be seen. If

the threshold saturation conjecture holds for these systems, then it is possible for

spatially-coupled codes to universally approach the SIR of ISI channels under joint

iterative BP decoding because regular LDPC codes can achieve the SIR under MAP

decoding [79]. Recently, progress has been made in constructing a general proof for

threshold saturation of spatially-coupled systems over various models among which

are ISI channels [80]. Part of the results reported in this chapter have appeared in

[81, 82].

B. Background

In this section, we briefly describe our notation for ISI channels, LDPC ensembles,

the joint iterative decoder and spatially-coupled codes.

1. ISI Channels and the SIR

For a finite input alphabet X and an output alphabet Y , let {Xi}i∈Z be the discrete-

time input sequence and {Yi}i∈Z be the discrete-time output sequence, i.e., Xi ∈ X
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and Yi ∈ Y. Many ISI channels of interest admit linear models of the form

Yi = ν∑
t=0

atXi−t +Ni, (3.1)

where Y = R, the channel memory is ν, {at}νt=0 is the set of tap coefficients and

{Ni}i∈Z is a sequence of independent noise random variables. One can also write the

above as Yi = Zi +Ni where Zi = ∑ν
t=0 atXi−t is the ISI channel output without noise.

In this chapter, we restrict our attention to the class of binary-input ISI channels.

Often, the tap coefficients are represented through a transform domain polynomial

a(D) = ∑ν
t=0 atD

t. For example, when a(D) = 1 − D, the channel is known as the

dicode channel.

The main subject of Section C is the family of GECs in [71, 75]. For a GEC, one

can evaluate its SIR (see [71, 75] for details) as

Is(ε) = 1 − ∫ 1

0
f(t, ε)dt (3.2)

where f(t, ε) is the function which maps the a priori erasure rate t from the code and

the channel erasure rate ε to the erasure rate at the output of the channel detector

[71]. Strictly speaking, in this chapter we mainly consider a subclass of the GECs

where the channel output sequence can be modeled as a deterministic mapping of the

input sequence plus erasure noise.

The simplest example is the dicode erasure channel (DEC), which is basically

a discrete-time 1st-order differentiator (i.e., a(D) = 1 −D), whose output is erased

with probability ε and transmitted perfectly with probability 1 − ε. Furthermore, if

the input bits are differentially encoded prior to transmission, the resulting channel

is called the precoded dicode erasure channel (pDEC). The simplicity of the channel

models allows one to analyze the recursions used by the Bahl-Cocke-Jelinek-Raviv
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(BCJR) algorithm [83] to compute

fDEC(t, ε) = 4ε2(2 − t(1 − ε))2
(3.3)

for the DEC and

fpDEC(t, ε) = 4ε2t(1 − ε(1 − t))(1 − ε(1 − 2t))2
(3.4)

for the pDEC. For both cases, explicit calculations give Is(ε) = 1 − 2ε2

1+ε [71]. For the

PR2 channel with erasure noise (PR2EC) where a(D) = 1 + 2D +D2, one has

fPR2EC(t, ε) = 4ε3(4 − 4(1 − ε)t + (1 − ε)t2)(4 − 2(1 − ε2)t − (1 − ε)ε2t2)2
(3.5)

which gives Is(ε) = 1− 2ε3(1+ε)
2+ε2+ε3 [76]. Note that this formula also applies to the standard

BEC, where one has fBEC(t, ε) = ε and Is(ε) = 1 − ε.
Section D considers more general ISI channels among which the most common

is linear ISI channels with additive white Gaussian noise (AWGN). For this class of

ISI channels, the SIR is given by

Ci.u.d. = lim
n→∞

1

n
I(Xn

1 ;Y n
1 )∣

pXn
1
(xn1 )=2−n

.

Unfortunately, no closed-form solutions for the SIR are known in this case. Instead,

the numerical method described in [67, 68, 84] is typically used to give tight estimates

of the SIR.

2. LDPC Ensembles and the Joint BP Decoder

When an LDPC code is transmitted over an ISI channel defined by (3.1), one can

construct a large graph by joining the code graph and the channel graph together as

depicted in Fig. 15. Working on this joint graph, a joint iterative decoder typically

passes the information back and forth between the channel detector and the LDPC
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Fig. 15. Tanner graph of the joint BP decoder for ISI channels. The notations a,b, c,d

denote the average densities of the messages traversing along the graph used

in density evolution (DE). The quantities inside the brackets are erasure rates

used in DE for the GEC case. The update schedule of the joint BP decoder

is also implied by the arrows in this figure.

decoder. This technique is termed as turbo equalization and was first considered

by Douillard et al. as a new application of the turbo principle [85]. For analysis,

one typically considers a windowed BCJR detector so that the computation graph

becomes tree-like as n → ∞ (see [6, Ch. 6.4], [66]) and the addition of a random

scrambling vector to symmetrize the effective channel [86]. The latter is very similar

to using a random coset of the LDPC code to allow a general analysis of the decoder

using the all-zero codeword, which was also used in [66] to derive the density evolution

(DE) equation and prove a concentration theorem for the ISI channels. Throughout

this chapter, a superscript W is used to imply that a windowed BCJR detector of

size W is employed.

In this dissertation, we also consider the transmission of SC codes, a special class

of LDPC codes, over the ISI channels. In this case, for example, a joint code/channel

graph for the (3,6, L) SC ensemble and the ISI channels is shown in Fig. 16.
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Fig. 16. The joint graph for the (dl, dr, L) ensemble over the ISI channels. Illustrated

in this figure is the case where dl = 3 and dr = 6. In the setup we consider, the

bit transmission starts in the top left corner and proceeds row by row (e.g.,

see the green arrows). The (red) stars are to “connect” consecutive rows.

C. ISI Channels with Erasure Noise: The GECs

In this section, we focus on the family of GECs. A closed-form analysis of the (E)BP-

EXIT curves is presented for some systems. This analysis allows us to obtain an

upper bound on the MAP threshold of the underlying ensemble. Then, DE is used

to compute the BP thresholds of the corresponding SC ensembles and demonstrate

the threshold saturation effect.

1. BP and EBP Curves for the GEC

For the family of GECs, the DE update equation of the joint BP decoder is given by

x(`+1) = f(L(1 − ρ(1 − x(`)), ε)λ(1 − ρ(1 − x(`))) (3.6)

where x(`) is the average erasure rate emitted from bit nodes to check nodes during

the `th iteration [71].

Since f(⋅, ε) is an increasing function for a fixed channel erasure rate ε, the RHS
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of (3.6) is increasing in x(`) because both L(1 − ρ(1 − x(`)) and λ(1 − ρ(1 − x(`)) are

increasing in x(`). Thus, by induction, x(`) is a monotone sequence which is bounded

within [0,1] and therefore convergent. If one lets x denote the limit of x(`) when

`→∞, then the fixed point (FP) equation is given by

x = f(L(y(x)), ε)λ(y(x)), (3.7)

where, for simplicity of notation, we use y(x) ≜ 1 − ρ(1 − x) (or the shorthand y).

For most GECs, f(t, ε) is strictly increasing in ε for fixed t. In this case, there

exists a unique function ξ(t, s) such that f(t, ξ(t, s)) = s and one can obtain

ε(x) = ξ (L(y(x)), x

λ(y(x))) . (3.8)

Example 11. For the DEC case, one has f(t, ε) = 4ε2

(2−t(1−ε))2 and this gives the FP

equation x = 4ε2λ(y)
(2−L(y)(1−ε))2 . One can also solve for ξ(t, s) = (2 − t)/ ( 2√

s
− t) and gets

ε(x) = 2 −L(y(x))
2
√

λ(y(x))
x −L(y(x)) . (3.9)

Definition 9. Consider a d.d. (λ, ρ) pair and the sequence of LDPC ensembles

LDPC(n,λ, ρ). For each Cn picked uniformly at random from LDPC(n,λ, ρ), let Xn
1

be chosen randomly and uniformly from Cn and Y n
1 be the received sequence after

transmission over a GEC with erasure rate ε and initial state S0. The EXIT function

associated with Cn is defined by

h(Cn, ε) = dH(Xn
1 ∣Y n

1 (ε), S0)
ndε

and the (asymptotic) EXIT function is given by

h(ε) ≜ lim sup
n→∞

ECn [h(Cn, ε)] .
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Theorem 8. The above definition of the EXIT function naturally obeys the area

theorem

1

n
H(Xn

1 ∣Y n
1 (ε∗), S0) = ∫ ε∗

0
h(Cn, ε)dε.

In particular, ε∗ = 1 implies ∫ 1

0 h(Cn, ε)dε = 1
nH(Xn

1 ∣S0), which equals the code rate r

if there is a uniform prior on the set of codewords.

When the BP estimator is used at each bit instead of the optimal MAP estimator,

one also has the BP-EXIT function which is given by the following definition.

Definition 10. Consider the same setting as in Definition 9, the (asymptotic) BP-

EXIT function is defined to be

hBP(ε) ≜ lim
W→∞

lim
`→∞

hBP,`,W (ε) (3.10)

where

hBP,`,W (ε) = lim
n→∞

ECn [ 1

n

n∑
i=1

hBP,`,W
i (ε)] (3.11)

and

hBP,`,W
i (ε) = ∂

∂εi
H(Xn

1 ∣Yi(εi),EBP,`,W
i (Y∼i), S0)∣

εi=ε

and EBP,`,W
i (Y∼i) is the extrinsic BP estimate of the i-th bit after iteration ` that

operates on the computation graph of depth ` associated with the windowed BCJR

channel detector of a fixed window size W (for the computation graph and the win-

dowed BCJR, please refer to [6, Ch. 6.4] and [66]). Here, we imagine that εi is

the erasure rate of the channel from Zi to Yi which is characterized by a common

parameter ε where εi = ε for all i.

Remark 15. By considering the windowed BCJR detector with a fixed window size

W , the associated depth-` computation graph becomes tree-like, for any fixed ` as

n → ∞, and one can employ the concentration theorem for joint iterative decoding.
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This implies the limit in (3.11) exists. Also, the existence of limit in (3.10) is implied

by the fact that hBP,`,W (ε) is non-increasing in ` and in W .

Lemma 12. The EXIT function and BP-EXIT function (after iteration `) can be

written as

h(ε) = lim sup
n→∞

ECn [ 1

n

n∑
i=1

H(Zi∣Y∼i(ε), S0)] , (3.12)

hBP,`,W (ε) = lim
n→∞

ECn [ 1

n

n∑
i=1

H(Zi∣EBP,`,W
i (Y∼i(ε)), S0)] , (3.13)

where Zi is the i-th output without noise. From this, one can see that h(ε) ≤ hBP(ε).

Proof. Let εi be the erasure rate of the channel from Zi to Yi where εi = ε for all i.

For the case of the optimal MAP estimator EMAP, one has

d

dε
H(Xn

1 ∣Y n
1 (ε), S0) = n∑

i=1

∂

∂εi
H(Xn

1 ∣Y n
1 (ε), S0)

= n∑
i=1

∂

∂εi
H(Xn

1 ∣Yi(εi),EMAP
i (Y∼i), S0).

Furthermore, for any extrinsic estimator E , the following holds

H(Xn
1 ∣Yi(εi),Ei(Y∼i), S0) =H(Zn

1 ∣Yi(εi),Ei(Y∼i), S0)
=H(Zi∣Yi(εi),Ei(Y∼i), S0) +H(Z∼i∣Yi(εi),Ei(Y∼i), Zi, S0)
= εiH(Zi∣Ei(Y∼i), S0) +H(Z∼i∣Ei(Y∼i), Zi, S0) (3.14)

and this gives

n∑
i=1

∂

∂εi
H(Xn

1 ∣Yi(εi),Ei(Y∼i), S0) = n∑
i=1

∂

∂εi
H(Zn

1 ∣Yi(εi),Ei(Y∼i), S0)
= n∑
i=1

H(Zi∣Ei(Y∼i), S0) (3.15)

where (3.15) follows from the fact that second term on the RHS of (3.14) does not

depend on εi.
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Thus, by considering two specific cases of E , i.e., EBP,`,W and the optimal EMAP,

one obtains (3.13) and (3.12).

Furthermore, the data processing inequality [41] implies that has

H(Zi∣Y∼i(ε), S0) ≤H(Zi∣EBP,`,W
i (Y∼i(ε)), S0),

which can be combined with (3.13) and (3.12) to imply that h(ε) ≤ hBP,`,W (ε) and

hence h(ε) ≤ hBP(ε).
Remark 16. To simplify the notation, from now on we will largely drop S0 in re-

lated expressions even though the dependency on S0 is always assumed throughout the

chapter.

While computing the (MAP) EXIT function in general is hard, it is relatively

easy to compute the BP-EXIT function.

Lemma 13. The BP-EXIT function for the GEC is given by

hBP(ε) = d

dε̃ ∫
L(y)

0
f(t, ε̃)dt∣

ε̃=ε
. (3.16)

where L(y) is the extrinsic erasure rate given by the FP equation at channel erasure

rate ε.

Proof. Let Y n
1 (ε̃) be the result of passing Xn

1 through the communication channel,

e.g., the GEC, with erasure rate ε̃. More precisely, Yi is an erasure with probability ε̃i

where ε̃i = ε̃ for all index i. Also, with some abuse of notation, let En1 (t) be the result

of passing Xn
1 through a BEC extrinsic channel with erasure probability t. Similarly

to [71], let Tn(1 − t, ε̃) ≜ 1
n ∑n

i=1 I(Xi;Y n
1 (ε̃),E∼i(t)) denote the mutual information

transfer function where E∼i comprises the sequence of extrinsic bit estimates except

for the i-th bit. We also let fn(t, ε̃) ≜ 1 − Tn(1 − t, ε̃). By the area theorem [87, Th.
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2], [77], one obtains

∫ δ

0

1

n

n∑
i=1

H(Xi∣Y n
1 (ε̃),E∼i(t))dt = 1

n
H(Xn

1 ∣Y n
1 (ε̃),En1 (δ)) (3.17)

for some extrinsic erasure rate δ.

We then have

d

dε̃ ∫
δ

0
fn(t, ε̃)dt = d

dε̃ ∫
δ

0
−Tn(1 − t, ε̃)dt (3.18)

= d

dε̃ ∫
δ

0
(− 1

n

n∑
i=1

I(Xi;Y
n

1 (ε̃),E∼i(t)))dt

= d

dε̃ ∫
δ

0
( 1

n

n∑
i=1

H(Xi) − 1

n

n∑
i=1

I(Xi;Y
n

1 (ε̃),E∼i(t)))dt (3.19)

= d

dε̃ ∫
δ

0

1

n

n∑
i=1

H(Xi∣Y n
1 (ε̃),E∼i(t))dt

= d

dε̃
[ 1

n
H(Xn

1 ∣Y n
1 (ε̃),En1 (δ))] (3.20)

= 1

n

n∑
i=1

d

dε̃i
H(Xn

1 ∣Yi(ε̃i),Ei(δ))∣
ε̃i=ε̃

where (3.19) holds because δ
n ∑n

i=1H(Xi) is not a function of ε̃ while (3.20) follows

from (3.17). The derivative in (3.18) exists a.e. because fn(t, ε̃) is non-decreasing in

ε̃.

If one considers the BP estimator then

d

dε̃ ∫
δ`,W,n

0
fn(t, ε̃)dt = 1

n

n∑
i=1

hBP,`,W
i (ε̃)

where δ`,W,n is erasure rate of the extrinsic channel obtained after iteration ` of the

joint BP decoder that employs the windowed BCJR detector of size W .

Taking expectation and letting n→∞, one has

lim
n→∞

ECn [ d

dε̃ ∫
δ`,W,n

0
fn(t, ε̃)dt] = lim

n→∞
ECn [ 1

n

n∑
i=1

hBP,`,W
i (ε̃)]

= hBP,`,W (ε̃) (3.21)
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Furthermore, it can be shown that

lim
n→∞

ECn [ d

dε̃ ∫
δ`,W,n

0
fn(t, ε̃)dt] = d

dε̃
lim
n→∞

ECn [∫ δ`,W,n

0
fn(t, ε̃)dt] (3.22)

= d

dε̃ ∫
δ`,W

0
f(t, ε̃)dt (3.23)

where δ`,W is the extrinsic erasure rate obtained from the DE equation after iteration `.

Here, (3.22) holds because ε̃ does not depend on Cn and the expectation is a finite sum

while (3.23) follows from the following facts: 1) for fixed W,` and by letting n →∞,

one can invoke the standard analysis of concentration around ensemble average and

analyze the computation tree implied by the DE equation, 2) fn(t, ε̃) converges point-

wise to f(t, ε̃) by using the superadditivity of the sequence ∑n
i=1 I(Xi;Y n

1 (ε̃),E∼i(t)),
and an application of Lebesgue’s dominated convergence theorem. Also, derivatives

exist a.e. because fn(t, ε̃) and f(t, ε̃) are non-decreasing in ε̃.

Next, by letting ` → ∞ and W → ∞, one reaches a FP where δ`,W → L(y) and

finally obtains from (3.21) and (3.23) that

d

dε̃ ∫
L(y)

0
f(t, ε̃)dt∣

ε̃=ε
= hBP(ε).

Example 12. Applying (3.16) to (3.3), (3.4), and (3.5) gives the following BP-EXIT

functions

hBP
DEC(ε) = 2εL(y)(4 −L(y)(2 − ε))(2 −L(y)(1 − ε))2

, (3.24)

hBP
pDEC(ε) = 2εL2(y)(2 − ε(1 − 2L(y)))(1 − ε(1 − 2L(y)))2

, (3.25)
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and

hBP
PR2EC(ε) = 2ε2L(y) (24 − 4(6 − 4ε − ε2)L(y) + 2(3 − 4ε + 2ε2 + 2ε3)L2(y))((4 − 2(1 − ε2)L(y) − (1 − ε)ε2L2(y))2 (3.26)

for the DEC, pDEC, and PR2EC, respectively. Here, y is a short notation of y(x)
where x is the DE FP at channel erasure rate ε. The formula (3.24) for the DEC

case is equivalent to the result shown in [78] by analyzing the BCJR algorithm. Fol-

lowing a similar approach, we also computed the BP-EXIT functions for the pDEC

and PR2EC and verified that the results are consistent with (3.25) and (3.26), respec-

tively. One can also apply (3.16) for the BEC to obtain the known result hBP
BEC(ε) =

∂
∂ε̃ ∫ L(y)0 ε̃dt∣

ε̃=ε
= L(y).

Using an approach similar to [77, Sec. III-B] and taking care of (3.8) and (3.16),

one gets the following parametric form for the BP-EXIT function. This involves in

defining

I ≜ ⋃
i=1,...,J

[xi, xi) ∪ {1}
as the unique finite union of disjoint intervals that represent all stable and achievable

FPs of DE equations. Please note that J represents the number of discontinuities

in the BP-EXIT function and ε(x) is monotonically increasing as x is increasing in

I (see [77, Sec. III-B]). The joint BP decoding threshold, denoted as εBP, is the

supremum of all channel parameters ε such that hBP(ε) = 0.

Lemma 14. Given a d.d. pair (λ, ρ), the BP-EXIT function for a GEC is given

parametrically by

(ε, hBP(ε)) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(ε,0), ε ∈ [0, εBP)
(ε(x), d

dε̃ ∫ L(y(x))0 f(t, ε̃)dt∣
ε̃=ε(x)

) ∀x ∈ I, ε ∈ (εBP,1]
where ε(x) is given in (3.8).



98

In [77], the extended BP (EBP) EXIT curve for the BEC was introduced as

the hidden bridge between the BP threshold and its MAP counterpart. In a similar

manner, the EBP-EXIT curve for GECs is given below with its own area theorem.

Definition 11. For a given d.d. pair (λ, ρ), the EBP-EXIT curve for the GEC is

defined by the pair

(ε(x), d

dε̃ ∫
L(y(x))

0
f(t, ε̃)dt∣

ε̃=ε(x)
) , x ∈ [0,1]

where ε(x) is given in (3.8).

Example 13. For the DEC case, using (3.9) and (3.24), the EBP-EXIT curve is

given by

⎛⎜⎝
2 −L(y(x))

2
√

λ(y(x))
x −L(y(x)) , L(y(x))(2

√
x

λ(y(x)) − xL(y(x))2λ(y(x)) )
⎞⎟⎠ , x ∈ [0,1].

For example, the EBP-EXIT curves for various d.d. pairs (λ, ρ) together with

their BP thresholds can be seen in Fig. 17.

Lemma 15. Consider the GEC and a d.d. pair (λ, ρ). Define the “trial entropy” as

P (x) ≜ ∫ x

0
hEBP(t)ε′(t)dt (3.27)

where hEBP(x) is the second coordinate the EBP-EXIT curve. Then, we have

P (x) = ∫ L(y)

0
f(t, ε(x))dt − L′(1)

R′(1)(1 −R(1 − x) − xR′(1 − x)). (3.28)

Proof. First, we let

Q(x) ≜ ∫ L(y)

0
f(t, ε(x))dt − L′(1)

R′(1)(1 −R(1 − x) − xR′(1 − x))
= ∫ L(y)

0
f(t, ε(x))dt −L′(1)∫ x

0
udy(u) (3.29)
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Fig. 17. EBP-EXIT curves and BP thresholds for various LDPC ensembles over

the DEC: (a) (λ, ρ) = (x2, x5), (b) (λ, ρ) = (0.6x + 0.4x9, x5), (c)(λ, ρ) = (0.2x + 0.3x2 + 0.5x15, x9), (d) (λ, ρ) = (0.4x + 0.6x4,0.2x2 + 0.8x7).
Also, by setting the area of the shaded region equal to the design rate of

the corresponding ensemble, one obtains the upper bound ε̄MAP on the MAP

threshold using the technique in Section 2
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where in (3.29), integration by parts is used.

Then, one can use Leibniz’s rule to get

Q′(x) = f(L(y), ε(x))y′L′(y) + ∫ L(y)

0

∂

∂x
f(t, ε(x))dt −L′(1)xy′

= ∫ L(y)

0

∂

∂x
f(t, ε(x))dt (3.30)

= ∫ L(y)

0

∂

∂ε(x)f(t, ε(x)) d

dx
ε(x)dt

= ε′(x)∫ L(y)

0

∂

∂ε(x)f(t, ε(x))dt
= ε′(x)hEBP(x)
= P ′(x) (3.31)

where (3.30) follows from the DE equation f(L(y), ε(x))λ(y) = x and the fact that

λ(y) = L′(y)
L′(1) while (3.31) follows by taking derivative on both sides of (3.27).

Thus, Q(x) and P (x) may differ only by a constant. But, P (0) = Q(0) = 0

implies that one must have P (x) = Q(x).
Example 14. For the DEC, explicit calculation gives

P (x) = 2ε2(x)L(y)
2 −L(y)(1 − ε(x)) − L

′(1)
R′(1)(1 −R(1 − x) − xR′(1 − x)).

Also, one can see that, for the BEC, this gives same formula as [6, p. 124].

Theorem 9. (Area Theorem for EBP) Consider a d.d. pair (λ, ρ) of design rate r.

Then the EBP-EXIT curve for the GEC satisfies

∫ 1

0
hEBP(x)dε(x) = r.

Proof. Using the result in Lemma 15, a direct calculation reveals that

∫ 1

0
hEBP(x)dε(x) = P (1) = ∫ 1

0
f(t,1)dt − L′(1)

R′(1) = 1 − L′(1)
R′(1) = r
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since ∫ 1

0 f(t,1)dt = 1 − Is(1) = 1 and we conclude the proof.

2. Upper Bound on the MAP Threshold

The MAP threshold, called εMAP and defined as the supremum of all channel param-

eters ε such that h(ε) = 0, is generally hard to compute. However, because of the

optimality of the MAP decoder in the sense that hMAP ≤ hBP (see Lemma 12), one can

obtain an upper bound on the MAP threshold by first finding the largest value ε̄MAP

such that ∫ 1

ε̄MAP hBP(ε)dε = r and then bound the MAP threshold by the inequality

εMAP ≤ ε̄MAP. This technique was introduced by Méasson et al. in [77] for the BEC

and conjectured to be tight in many scenarios. In fact, for the whole class of regular

LDPC ensembles over the BEC, this bound was analytically proven to be tight [88].

Using the ingredients provided by our analysis above, this technique can also be

extended to GECs. More specifically, using Lemma 15 and Theorem 9, one has the

following corollary after a few steps.

Corollary 4. Assume that xMAP is the solution of P (x) = 0 in (0,1] such that there

is no x′ ∈ (xMAP,1] satisfying ε(x′) = ε(xMAP). Then, one obtains the upper bound

εMAP ≤ ε(xMAP) = ε̄MAP.

It is also clear that, ε̄MAP for the case of regular LDPC ensembles quickly ap-

proaches εSIR of GECs which is formalized by the following theorem.

Theorem 10. Consider the (dl, dr)-regular ensemble and a GEC. Consider a fixed

design rate r = 1 − dl
dr

. Then

lim
dl,dr→∞,r fixed

ε̄MAP(dl, dr) = εSIR(r),
where εSIR(r) = I−1

s (r) is the erasure rate when the SIR defined in (3.2) equals r.



102

Proof. As defined above, xMAP(dl, dr) must be a root of P (x) = 0. For a fixed rate

r, xMAP(dl, dr) is bounded away from zero for dl large enough (one can show that

xMAP(dl, dr) for the GEC is always greater than xMAP
BEC (dl, dr) for the BEC and the

latter converges to 1 − r [20, Lm. 8]). Suppose that all the limits are taken when

dl, dr →∞ while r is kept fixed. Then, we have (1−xMAP(dl, dr))dr−1 → 0 exponentially

fast in dr.

Next, one also sees that

L(y(xMAP(dl, dr))) = (1 − (1 − xMAP(dl, dr))dr−1)dl → 1 and λ(y(xMAP(dl, dr)))→ 1

(3.32)

which can be obtained from

log (1 − (1 − xMAP(dl, dr))dr−1)
1/(dr − 1) → 0. (3.33)

To see (3.33), we apply L’Hôpital’s rule and use the fact that

(1 − xMAP(dl, dr))dr−1

(1 − (1 − xMAP(dl, dr))dr−1)) /(dr − 1)2
→ 0

because the numerator vanishes exponentially while the denominator only vanishes

quadratically in dr.

Note that for (dl, dr)-regular ensemble, (3.28) can be rewritten as

P (x) = ∫ L(y)

0
f(t, ε(x))dt + dl

dr
(1 − x)dr−1(1 + (dr − 1)x) − dl

dr
= 0. (3.34)

Therefore, we can use P (xMAP(dl, dr)) = 0 and (3.34), (3.32) to have

∫ 1

0
f(t, ε(xMAP(dl, dr)))dt→ dl

dr
= 1 − r.

In addition, from the definition of SIR in (3.2), we have ∫ 1

0 f(t, ε̄MAP(dl, dr)) = 1 −
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Table III. Thresholds of (dl, dr)-regular ensembles over the DEC, pDEC and PR2EC.

(dl, dr)- DEC pDEC PR2EC

regular εBP ε̄MAP εSIR εBP ε̄MAP εSIR εBP ε̄MAP εSIR

(3,6) 0.5689 0.6387 0.6404 0.5288 0.6388 0.6404 0.7056 0.7515 0.7530

(5,10) 0.4647 0.6404 0.6404 0.4377 0.6404 0.6404 0.6275 0.7530 0.7530

(3,27) 0.2318 0.2642 0.2651 0.2143 0.2642 0.2651 0.4221 0.4423 0.4446

(5,45) 0.1921 0.2651 0.2651 0.1808 0.2651 0.2651 0.3831 0.4445 0.4446

Is(ε̄MAP(dl, dr)) and 1 − Is(εSIR(r)) = 1 − r. Therefore,

Is(ε̄MAP(dl, dr))→ Is(εSIR(r))
and one has ε̄MAP(dl, dr)→ εSIR(r) as Is(⋅) is a continuous and monotone function.

Example 15. Let us consider the DEC. For rate one-half ensembles, ε̄MAP(3,6) ≈
0.638659, ε̄MAP(4,8) ≈ 0.640163, ε̄MAP(5,10) ≈ 0.640355, ε̄MAP(7,14) ≈ 0.640387,

ε̄MAP(8,16) ≈ 0.640388 that quickly approach εSIR(1
2) ≈ 0.640388. This can be partially

seen in Fig. 18 where ε̄MAP(4,8) is already very close to εSIR. Estimates of εBP, ε̄MAP

and εSIR for several regular LDPC ensembles over the DEC, pDEC, and PR2EC can

be found in Table III.

3. Tightness of the Upper Bound

In this section, we discuss the tightness of the ε̄MAP bounding technique. Assume that

the joint BP decoder is run on the joint graph of the LDPC code and GEC. Since

one never gets errors in the GEC, the joint BP decoder must reach a FP where no

more bit nodes can be decoded. At this FP, one obtains a residual graph (see [6, Ch.

3]) by removing all the known bit nodes as well as their neighboring check nodes and
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Fig. 18. EBP-EXIT curves for (3,6) and (4,8) regular LDPC ensembles over the DEC.

Projection of the left most point of the curves on to the ε-axis allows one to

determine εBP. Setting the area under the EBP curves to be equal to the

design rate r allows one to find the upper bound ε̄MAP.

the edges connecting them. Then, one can follow the general procedure to show that

the MAP bounding technique is tight, i.e., by seeing at channel erasure rate ε̄MAP,

the design rate of the residual graph is zero and providing numerical evidence that

for this residual graph, the actual rate converges to the design rate as the blocklength

n→∞.

We start with the following lemma.

Lemma 16. Consider a d.d. pair (λ, ρ) and the GEC with channel erasure rate ε.

First, run the joint BP decoder until it reaches a FP so that we obtain a residual

graph. Next, use the remaining channel constraints to merge all bit nodes that must
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have the same value. The expected check node d.d. of the residual graph2 is given by

R̃ε(z) = R(1 − x + zx) −R(1 − x) − zxR′(1 − x) (3.35)

where x is the FP of DE and y = 1 − ρ(1 − x). Furthermore, if the expected bit node

d.d. is

L̃ε(z) = ∫ L(yz)

0
f(t, ε)dt (3.36)

then at ε = ε̄MAP, the design rate of the residual graph r̃ε̄MAP equals zero.

Proof. Consider the original graph at the FP and let x be the average erasure rate

from a bit node to a check node. Pick a check node of degree j in the original graph.

We can obtain a check node of degree i ≤ j in the residual graph by removing all

(j − i) edges with known values. Note that i ≥ 2 since a check node of degree one

must not be in the residual graph. The remaining i edges of this check node must

contain erasure messages. The probability for this event is (j
i
)(1 − x)j−ixi. Thus, the

check node d.d. for the residual graph (normalized by the number of check nodes in

the original graph) is3

R̃ε(z) =∑
j≥2

Rj

j∑
i=2

(j
i
)(1 − x)j−i(xz)i

= R(1 − x + zx) −R(1 − x) − zxR′(1 − x)
and (3.35) holds.

Suppose that the bit node d.d. is given by (3.36), L̃′ε(z) = y′L′(yz)f(L(yz), ε)
2The check node and bit node d.d. are normalized with respect to the number of

nodes in the original graph.
3This formula is the same as the check node d.d. for residual graph left by the

peeling decoder for the BEC, obtained via solving a differential equation in [15].
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and R̃′
ε(z) = xR′(1 − x + zx) − xR′(1 − x). Therefore, one obtains

L̃′ε(1)
R̃′
ε(1) = yL′(y)f(L(y), ε)

xR′(1)(1 − ρ(1 − x))
= L′(1)
R′(1) ⋅ λ(y)f(L(y), ε)x

= L′(1)
R′(1) (3.37)

by using (3.7), y = 1 − ρ(1 − x) and the known facts that L′(y) = L′(1)λ(y) and

R′(1 − x) = R′(1)ρ(1 − x).
Note that the standard d.d. pair from the node perspective of the residual graph

is ( L̃ε(z)
L̃ε(1)

, R̃ε(z)
R̃ε(1)

) and the corresponding design rate is then

r̃ε = 1 − L̃′ε(1)
R̃′
ε(1) ⋅

R̃ε(1)
L̃ε(1) .

Using (3.37), it now is clear that

r̃ε = 1 − L′(1)
R′(1) ⋅ R̃ε(1)

L̃ε(1) = P (x)
L̃ε(1)

where the last equality follows from (3.35), (3.36) and (3.28).

For the special case ε = ε̄MAP, one has r̃ε̄MAP = P (xMAP)/L̃ε̄MAP(1) = 0.

Remark 17. For the BEC, the bit node d.d. given in (3.36) matches the known result

in [6, Th. 3.106]. In fact, this also holds for the DEC case which can be shown by

the following lemma.

Lemma 17. Consider a d.d. pair (λ, ρ) and the DEC with erasure probability ε. The

expected bit node d.d. in this case follows the form (3.36), i.e.,

L̃ε(z) = 2ε2L(yz)
2 −L(yz)(1 − ε) = ∞∑

k=0

ε2 (1 − ε
2

)k L(yz)k+1 (3.38)

Consequently, at ε = ε̄MAP the design rate of the residual graph equals zero.
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Fig. 19. A trellis section in the residual graph for the DEC. The notation “?” denotes

that an erasure is received at the channel output. One can form a larger bit

node by merging all the bit nodes that attach to this trellis section.

Proof. Consider a bit node in the original graph. To remain in the residual graph,

this bit node must connect to a trellis section of the form depicted in Fig. 19 for

some k ∈ N. More specifically, the observation sequence must be (?,
k³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ

0, . . . ,0, ?) and

all the check-to-bit messages to this section must be erasures. Otherwise, the joint

BP decoder can still decode all the bit nodes in this section.

The probability of such a observation sequence is ε2 (1−ε
2
)k. Also, if all messages

from check nodes to the bit nodes that attach to this trellis section are “?” then all

these bit nodes remain in the residual graph. On the other hand, if at least one of the

messages is not “?”, then the joint BP decoder can decode and then remove all these

bit nodes from the residual graph. Therefore, one can consider all the bit nodes that

attach to such a trellis section as one larger bit node whose degree is the sum of the

k + 1 component degrees. The generating function for this sum of k + 1 i.i.d. random

variables is L(z)k+1. This is quite similar to the graph reduction technique discussed

in [89] for IRA/ARA codes.

Therefore, since each edge is associated with erasure rate y, the d.d. (normal-

ized by the number of bit nodes in the original graph) of residual graph after graph
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reduction is then given by

L̃ε(z) = ∞∑
k=0

ε2 (1 − ε
2

)k L(yz)k+1 = 2ε2L(yz)
2 −L(yz)(1 − ε) .

From the above analysis, once one has r̃ε̄MAP = 0, the final missing piece to prove

the tightness4 of the MAP upper bound is to show that the actual rate of the residual

graph equals its design rate with high probability as the blocklength tends to ∞.

While a general proof for this still requires some analytic work, one can use the

following test to numerically verify if this is true.

Lemma 18. [77, Lm. 7-8] Let Cn be chosen uniformly at random from the ensemble

LDPC(n,λ, ρ) and let r(Cn) be its rate. Let r(λ, ρ) be the design rate of the ensemble.

Consider the function

Ψ(u) = −L′(1) log2 (1 + uv
1 + v ) +∑

i

Li log2 (1 + ui
2

) + L′(1)
R′(1)∑j Rj log2 [1 + (1 − v

1 + v)
j]

where v = (∑i
λiu

i−1

1+ui ) / (∑i
λi

1+ui ) .
Assume that Ψ(u) takes on its maximum in the range u ∈ [0,1] at u = 1. Then

there exists B > 0 such that, for any ξ > 0, and n > n0(ξ, λ, ρ), sufficiently large,

Pr{∣r(Cn) − r(λ, ρ)∣ > ξ} ≤ e−Bnξ.
Moreover, there exists C > 0 such that, for n > n0(ξ, λ, ρ)

E[∣r(Cn) − r(λ, ρ)∣] ≤ C logn

n
.

Therefore, to show the tightness of the upper bound, one just needs to show that

4If this is true, then the MAP decoder can decode perfectly for all ε < ε̄MAP and
therefore ε̄MAP = εMAP.
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Fig. 20. Function Ψ(u) for the residual graph obtained after joint BP decoding of the(3,6)-regular LDPC ensemble over the DEC. This shows numerically that the

MAP upper bound is tight in this case.

the function Ψ(u) in Lemma 18 for the residual graph has the following property:

Ψ(u) ≤ 0 in the interval [0,1] with equality only at u = 0 and u = 1.

Remark 18. For a graph whose design rate is zero, one can use the following proce-

dure to examine if Ψ(u) satisfies the property in Lemma 18. For some small δ > 0,

one can numerically verify Ψ(u) < 0 for all u ∉ [0, δ]∪ [1− δ,1] but at u = 0,1 one can

instead show that Ψ′(u) = 0 and Ψ′′(u) < 0.

For our case, the bit node d.d. for the residual graph from (3.36) typically have

unbounded degrees as seen in (3.38) for the DEC case. However, for this DEC and

(dl, dr)-regular ensemble, the fraction of bit nodes with degree dl(k + 1) is upper

bounded by (1
2)k. Therefore, L̃ε(z) has an exponentially vanishing tail, and one can

truncate the series L̃ε(z) to obtain the result with a negligible error. For example,

one can truncate L̃ε(z) at k = 20 and for the (3,6)-regular ensemble, the truncated

version of Ψ(u) is numerically shown in Fig. 20 to satisfy the desired property.
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4. Spatially-Coupled Codes for the GEC

Consider the (dl, dr, L,w) spatially-coupled ensemble over the GEC. The joint code

and channel graph is similar to the one in Fig. 16 which is for the (dl, dr, L) ensemble.

We also follow the DE equation discussed in [62] to compute the BP thresholds of

the coupled ensembles. The main difference is that we use well-defined EBP curves

with area theorems instead of the EXIT-like curves as in [62]. Let x
(`)
i denote the

expected erasure rate at iteration ` from bit nodes at position i to check nodes. For

i ∉ [1, L], we set x
(`)
i = 0. Let us define

g(xi−w+1, . . . , xi+w−1) ≜ ⎛⎝1 − 1

w

w−1∑
j=0

(1 − 1

w

w−1∑
k=0

xi+j−k)dr−1⎞⎠
dl−1

,

Γ(xi−w+1, . . . , xi+w−1) ≜ ⎛⎝1 − 1

w

w−1∑
j=0

(1 − 1

w

w−1∑
k=0

xi+j−k)dr−1⎞⎠
dl

.

The DE equation for the joint BP decoder can be written as

x
(`+1)
i = f(Γ(x(`)

i−w+1, . . . , x
(`)
i+w−1), ε) ⋅ g(x(`)

i−w+1, . . . , x
(`)
i+w−1)

for i ∈ [1, L]. To compute both the stable and unstable FPs of DE, one can use the

fixed entropy DE procedure outlined in [90, Sec. VIII] where the normalized entropy

of a constellation x(`) = (x(`)
1 , . . . , x

(`)
L ), which is defined as χ(x(`)) = 1

L ∑L
i=1 x

(`)
i , is

kept constant at every iteration by varying the channel parameter. With each FP x

obtained, one can compute the EBP-EXIT value of the spatially-coupled ensemble as

1
L ∑L

i=1 h
EBP(xi).

The threshold saturation effect of coupling can be nicely seen by plotting the

(E)BP-EXIT curves for the uncoupled and coupled codes. For the DEC, Fig. 21

shows the EBP curves for the (3,6, L,5) ensembles with various L along with the EBP

curve of the underlying (3,6)-regular ensemble. From the EBP curves, one can de-
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Fig. 21. EBP-EXIT curves for (3,6, L,5) over the DEC with L = 2L̂ + 1 where

L̂ = 2,4,8,16,32,64,128,246. For small values of L, the increase in thresh-

old can be explained by the large rate-loss. As L grows larger, the rate loss

becomes negligible and the curves keep moving left, but they saturate at the

MAP threshold of the underlying regular ensemble.
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Fig. 22. BP-EXIT curves for (3,6, L,5) over the pDEC with L = 2L̂ + 1 where

L̂ = 2,4,8,16,32,64,128,246. Threshold saturation can also be observed for

this case.
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Fig. 23. BP-EXIT curves for (3,27, L,5) over the PR2EC with L = 2L̂ + 1 where

L̂ = 2,4,8,16,32,64,128,246.

termine εBP(3,6) ≈ 0.56892 and ε̄MAP(3,6) ≈ 0.63866. The BP thresholds of spatially-

coupled ensembles for small L can be even larger due to rate-loss, e.g., εBP(3,6,17,6) ≈
0.64170 > ε̄MAP(3,6). However, for a wide range of L, i.e., L = 33,65,129,257,513, we

observe that εBP(3,6, L,5) ≈ 0.63866 which is essentially ε̄MAP(3,6) while the rate loss

gradually becomes insignificant. In [62], Kudekar and Kasai provided a similar plot

but here we include the MAP threshold estimate ε̄MAP and use the EXIT function

hEBP instead of the EXIT-like L(y) in [62]. Similarly, one can also verify the thresh-

old saturation over the pDEC as seen in Fig. 22. For this channel, the BP threshold

for (3,6)-regular ensemble is εBP(3,6) ≈ 0.52877 and, with spatial coupling, the BP

threshold is improved to εBP(3,6, L,5) ≈ ε̄MAP(3,6) ≈ 0.63877 with a negligible loss in

rate as L → ∞. In a similar fashion, Fig. 23, plotted for a high-rate example based

on the (3,27)-regular ensemble, strongly suggests that the threshold saturation effect

also occurs for the PR2EC.

Even though the threshold saturation effect has been only shown numerically
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for several example channels, the above procedure that includes computing the BP

thresholds of spatially-coupled codes and the MAP threshold estimates of their under-

lying ensembles is readily applicable to the entire family of GECs. Still, the analytic

proof for threshold saturation remains open for the GEC. Combining such a proof

with Theorem 10 would demonstrate the SIR-achieving capability and universality of

spatially-coupled ensembles.

D. General ISI Channels

In this section, we shift our focus to ISI channels with more realistic noise models.

The MAP upper bound for general binary memoryless symmetric channels was pre-

sented by Méasson et al. and conjectured to be tight [90]. For general ISI channels,

we apply a similar technique to give an estimate of the MAP threshold of the un-

derlying uncoupled ensemble by first constructing the BP-GEXIT curve that follows

an area theorem. While our method can be used for a wide range of noise models,

we particularly focus on the case of AWGN. The BP thresholds of the corresponding

coupled ensembles are then computed via DE and the threshold saturation effect is

also observed. In addition, simulations of the joint BP decoder for SC codes of finite

length are described that validate these thresholds.

1. GEXIT Curves for the ISI channels

Consider an ISI channel of memory ν. When the channel input Xn
1 is chosen uniformly

at random from a suitable5 binary linear code Cn, the ISI channel output without noise

Zi at some index i is a discrete random variable characterized by its probability mass

5The code is proper [6, p. 14] and its dual code contains no codewords involving
only 0’s and a run of (ν + 1) 1’s.
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function pZi(z) for all values z in the alphabet Z. For example, in the case of a dicode

channel, Z = {0,+2,−2} and pZi(0) = 1
2 , pZi(+2) = pZi(−2) = 1

4 . The channel from Zi

to Yi is a ∣Z ∣-ary input memoryless channel characterized by its transition probability

density pYi∣Zi(y∣z). Without specifying the index, we denote h ≜H(Z ∣Y ) and get

h =H(Z) − I(Z;Y )
=H(Z) − ∫ ∞

−∞
∑
z

p(z)p(y∣z) log2 { p(y∣z)∑z′ p(z′)p(y∣z′)}dy,

where p(z) and p(y∣z) are the shorthand notations of pZ(z) and pY ∣Z(y∣z), respec-

tively.

Instead of looking at a particular channel, we assume that the channel from Zi

to Yi is from a smooth family {M(hi)}hi of ∣Z ∣-ary input memoryless channels char-

acterized by conditional entropy hi. A further assumption is made that all individual

channel families are parametrized in a smooth way by a common parameter6 ε, i.e.,

hi =H(Zi∣Yi)(ε).
With the convention that y∼i ≜ yn1 ∖ yi, define φi(y∼i) ≜ {PZi∣Y∼i(z∣y∼i) ∶ z ∈ Z}

and the random vector Φi ≜ φi(Y∼i). Each value of φi is a vector of length ∣Z ∣ in

the (∣Z ∣ − 1)-dimensional probability simplex. The index of the vector associated

with z ∈ Z is denoted by [z]. It is easy to verify that Φi is a sufficient statistic for

estimating Zi given Y∼i, i.e., Zi → Φi(Y∼i)→ Y∼i forms a Markov chain7.

Definition 12. Suppose the initial state in the trellis is S0. Let Xn
1 , chosen from

6For AWGN case, a convenient choice for ε is ε = − 1
2σ2 .

7To see this, write

PY∼i∣Zi(y∼i∣zi) = PZi∣Y∼i(zi∣y∼i)PZi(zi) PY∼i(y∼i) = Φi ⋅ eT[zi]
PZi(zi) PY∼i(y∼i),

where eT[z] is the standard basis column vector with a 1 in the index [z], and apply

the result from [6, p. 29].
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code Cn according to pXn
1
(xn1), be the input sequence, Zn

1 be the ISI output sequence

without noise and Y n
1 be the final channel output sequence, i.e., Yi is the result of

transmitting Zi over the smooth family {M(hi)}hi of memoryless channels. Then the

i-th GEXIT function is

Gi(h1, . . . ,hn) = ∂

∂hi
H(Xn

1 ∣Y n
1 (h1, . . . ,hn), S0) (3.39)

and the average GEXIT function is defined by

G(h1, . . . ,hn) = 1

n

n∑
i=1

Gi(h1, . . . ,hn).
For the case where all channel families are the same, i.e., hi = h, we have

G(h) = 1

n
⋅ d

dh
H(Xn

1 ∣Y n
1 (h), S0).

Theorem 11. The above form of the GEXIT function naturally conforms with a

generalized area theorem that gives

1

n
H(Xn

1 ∣Y n
1 (h∗), S0) = ∫ h∗

0
G(h)dh.

If one considers a special case that assumes h∗ = H(Z) and a uniform prior on

the set of the codewords then one has

∫ H(Z)

0
G(h)dh = r

which tells that the area under the GEXIT curve equal to the rate of the code.

After defining the GEXIT function that follows the generalized area theorem, it

is now possible to analyze the GEXIT curve and use the MAP bounding technique

discussed above.
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Lemma 19. Assume that all the channel families are the same8, i.e., hi = h. The

i-th GEXIT function is given by

Gi(h) =∑
z

p(z)∫
v
ai,z(v)κi,z(v)dv

where ai,z is the distribution of the vector Φi given Zi = z, v is a vector of length ∣Z ∣
in the (∣Z ∣ − 1)-dimensional probability simplex and the GEXIT kernel (for i and z)

is9

κi,z(v) = ∫ ∞−∞ d
dεp(yi∣z) log2 {∑z′ v[z′]p(yi∣z′)v

[z]p(yi∣z) }dyi

∫ ∞−∞∑z p(z) d
dεp(yi∣z) log2 {∑z′ p(z′)p(yi∣z′)p(z)p(yi∣z) }dyi

.

Proof. Suppose the initial state is S0, we start by writing

H(Xn
1 ∣Y n

1 , S0) =H(Zn
1 ∣Y n

1 , S0)
=H(Zi∣Y n

1 , S0) +H(Z∼i∣Y n
1 , Zi, S0). (3.40)

To simplify notation, we drop S0 in all the expressions although the dependency

on S0 is always implied. From (3.39) and (3.40), it is clear that

Gi(h) = ∂

∂hi
H(Zi∣Y n

1 ). (3.41)

since H(Z∼i∣Y n
1 , Zi, S0) does not depend on hi.

We also have

H(Zi∣Y n
1 ) =H(Zi∣Yi,Φi(Y∼i))

= −∫
φi
∫
yi
∑
zi

p(zi)p(φi∣zi)p(yi∣zi) log2

⎧⎪⎪⎨⎪⎪⎩
p(zi∣φi)p(yi∣zi)∑z
′

i
p(z′i∣φi)p(yi∣z′i)

⎫⎪⎪⎬⎪⎪⎭dyidφi (3.42)

8Note that, for the case of different channel families, one can still compute the
i-th GEXIT function as a function of the common parameter ε.

9p(yi∣z) is dependent on hi and hence is dependent on ε.
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where (3.42) follows from the Bayes’ theorem and the fact that

p(zi, φi, yi) = p(zi, φi)p(yi∣φi, zi) = p(zi)p(φi∣zi)p(yi∣zi). (3.43)

Note that (3.43) is true since Yi and Φi(Y∼i) are independent given Zi, i.e., Yi → Zi →
Φi(Y∼i).

Taking derivative and using p(zi∣φi) = p(zi∣y∼i), we get10

Gi(h) =∑
zi

p(zi)∫
φi
p(φi∣zi)∫

yi

d

dhi
p(yi∣zi) log2

⎧⎪⎪⎨⎪⎪⎩∑z′i
p(z′i∣y∼i)p(yi∣z′i)
p(zi∣y∼i)p(yi∣zi)

⎫⎪⎪⎬⎪⎪⎭dyidφi

=∑
z

p(z)∫
v
ai,z(v)κi,z(v)dv.

where

κi,z(v) = ∫
yi

d

dhi
p(yi∣z) log2 {∑z′ v[z′]p(yi∣z′)

v[z]p(yi∣z) }dyi

= ∫
yi

d

dε
p(yi∣z) log2 {∑z′ v[z′]p(yi∣z′)

v[z]p(yi∣z) }dyi (dhi
dε

)−1

.

Finally, by seeing that

dhi
dε

= dH(Zi∣Yi(ε))
dε

=∑
z
∫
yi
p(z) d

dε
p(yi∣z) log2 {∑z′ p(z′)p(yi∣z′)

p(z)p(yi∣z) }dyi.

we obtain the result.

Remark 19. For erasure noise and the GEC in particular, h = H(Z ∣Y ) = εH(Z)
(scaling ε by H(Z)) and since in this case

κi,z(v) = 1

H(Z) log2 {1 + ∑z′≠z v[z′]

v[z]
} ,

10One can verify that the terms obtained by taking derivative with respect to the
channel inside the log2 vanish.
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G(h) = h(ε)
H(Z) (scaling h(ε) by 1

H(Z)) where h(ε) is the EXIT function for the GEC.

Remark 20. For AWGN with σ = 0 (or erasure noise with ε = 0), h = 0 and ai,z is a

“delta at v = e[z]” where e[z] is the standard basis vector. At this extreme, G(0) = 0

because κi,z(v) = 0. At the σ → ∞ extreme for AWGN (or ε = 1 for erasure noise),

h = H(Z) (e.g., 1.5 for the dicode channel) and G(h) = 1 since ai,z is a “delta at

v[z′] = p(z′) ∀z′”.

a. BP-GEXIT Curve (with AWGN)

In this section, we are particularly interested in computing the asymptotic BP-GEXIT

function for ISI channels with AWGN. In this case, let ΦBP,`,W
i denote the extrinsic

estimate of Zi at the `th round of joint BP decoding that employs a windowed BCJR

detector of size W . If ΦBP,`,W
i is used instead of Φi in the above formulas then one can

compute the (asymptotic) BP-GEXIT function at the `th round GBP,`,W in a similar

manner to [90], i.e.,

GBP,`,W (h) = lim
n→∞

ECn [ 1

n

n∑
i=1

GBP,`,W
i (h)] (3.44)

where the expectation is taken over all code Cn from the ensemble LDPC(n,λ, ρ).
The overall (asymptotic) BP-GEXIT is defined as

GBP(h) = lim
W→∞

lim
`→∞

GBP,`,W (h). (3.45)

The existence of the limit in (3.44) is implied by the fact that for a fixed window

size W , the computation graph of depth ` becomes tree-like as n → ∞ and one can

apply the standard analysis of concentration around ensemble average similarly to

[90, Th. 3]. Meanwhile, the limit in (3.45) also exists because of the monotonicity

of the extrinsic BP estimate ΦBP,`,W
i with respect to L and W . Also, notice that the
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two extremes in Remark 20 still apply when the BP decoder is used instead of the

MAP decoder.

Next, AWGN implies that p(yi∣z) = 1√
2πσ2

e−
(yi−z)

2

2σ2 and then d
dεp(yi∣z) = ((yi−z)2−

σ2)p(yi∣z) where we choose ε = − 1
2σ2 . Therefore, the corresponding i-th BP-GEXIT

is GBP,`
i (C,h) = A

B where

A =∑
z

p(z)∫
v
aBP,`
i,z (v)∫ ∞

−∞
p(yi∣z){(yi − z)2

σ2
− 1} log2 {∑

z′

v[z′]

v[z]
e

(z′−z)(2yi−z−z
′
)

2σ2 }dyidv

and

B =∑
z

p(z)∫ ∞

−∞
p(yi∣z){(yi − z)2

σ2
− 1} log2 {∑

z′

p(z′)
p(z) e (z′−z)(2yi−z−z

′
)

2σ2 }dyi.

In the limit of ` → ∞, one can run the DE for ISI channels [66] to obtain the

DE-FP and compute the quantities A and B at this FP. With some abuse of notation,

let a(`),b(`), c(`) and d(`) denote the average density of the bit-to-check, check-to-bit,

bit-to-trellis and trellis-to-bit messages, respectively (see Fig. 15), at iteration ` with

initial values (at ` = 0) being ∆0, the delta function at 0. Also, let n denote the

density of channel noise. The DE update equation for joint BP decoding of a general

binary-input ISI channels is

a(`) = d(`−1) ⊛ λ(b(`−1)),
b(`) = ρ(a(`)),
c(`) = L(b(`)),
d(`) = Γ(c(`),n)

where for a density x, λ(x) = ∑i λix
⊛(i−1), ρ(x) = ∑i ρix

�(i−1) and L(x) = ∑iLix
⊛i. The

operators ⊛ and � are the standard density transformations used in [6, p. 181].

The map Γ(⋅, ⋅) is not easy to compute in closed form for general trellises and often
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one needs to resort to the Monte Carlo methods (i.e., running the windowed BCJR

algorithm with window parameter W on a long enough trellis - see details in [66]) to

give the estimates. A similar method was used to upper bound the MAP threshold

for turbo codes over BMS channels [91].

The denominator B can be computed either by numerical integration or by

Monte Carlo methods. Meanwhile, the numerator A involves in the quantity v[z] =
p (Zi = z∣T`i) where T`i denotes the computation tree of depth `, rooted at index i,

which includes all channel and code constraints associated with ` iterations of de-

coding. This computation tree T`i excludes the observation yi from the root and is

implied by the decoding schedule in the DE equation. Due to complications from the

trellis, the quantity v[z] is not easy to obtain in closed form. However, one can readily

compute v[z] as an extra output of the BCJR algorithm, which is required by DE, as

v[z] ∝ ∑
si,si−1∶Zi=z

αi−1(si−1) ⋅ γi(si−1, si) ⋅ βi(si),
where γi(si−1, si) is probability of the input xi that corresponds to the transition from

state si−1 (at time index i−1) to state si at (time index i) given the computation tree

T`i . Here, αi(⋅) and βi(⋅) are the standard forward and backward state probabilities in

the BCJR algorithm. Note that the scaling constant can be chosen so that ∑z v[z] = 1.

2. Upper Bound on the MAP Threshold

As briefly discussed before, the above-mentioned GEXIT function (associated with a

code C) naturally follows the area theorem that gives

∫ H(Z)

0
G(h)dh = r.
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One important consequence of this area theorem is to give a good estimate of the

threshold of MAP decoding, which is defined as

hMAP ≜ inf {h ∈ [0,H(Z)] ∶ lim inf
n→∞

1

n
EC[H(Xn

1 ∣Y n
1 (h), S0] > 0} .

To do this, one can apply [90, Lm. 4] to the BMS channel from Zn
1 to Y n

1 and obtain

∂H(Zi∣Y n
1 )

∂hi
≤ ∂H(Zi∣Yi,ΦBP,`

i )
∂hi

.

Consequently, by invoking (3.41), one has the optimality of the MAP decoder in the

sense that G(h) ≤ GBP(h). Therefore, one can use the discussed bounding technique,

i.e., by finding the largest value h̄MAP such that the area under the BP-GEXIT curve

equals the code rate,

∫ H(Z)

h̄MAP
GBP(h)dh = r,

to obtain the MAP upper bound h̄MAP ≥ hMAP (see similar arguments for the BMS

case in [90, Th. 5]).

For example, the BP-GEXIT curve, for the (3,6)-regular LDPC code over an

AWGN dicode channel with a(D) = (1 −D)/√2, was computed using the analysis

in Section 1 and is shown in Fig. 24. In this case, hBP(3,6) ≈ 0.851 ± 0.001 (the

corresponding threshold measured in dB11 is σBP(3,6) ≈ 1.703 ± 0.001 dB) while

h̄MAP(3,6) ≈ 0.920±0.001 (or σ̄MAP(3,6) ≈ 0.959±0.001 dB). Similarly, for the (5,10)-
regular LDPC code, one has hBP(5,10) ≈ 0.716±0.001 and h̄MAP(5,10) ≈ 0.931±0.001.

For a high-rate example, the BP-EXIT curve for the (3,27)-regular LDPC ensemble

is plotted in Fig. 25. The estimated BP and MAP thresholds (measured in dB) for

various regular LDPC ensembles over the dicode and PR2 channels with AWGN can

11We adopt the convention that σ is the SNR threshold measured in dB, i.e., σ =
10 log10

∑νt=0 a2
t

var
where var is the noise variance.
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Fig. 24. The BP-GEXIT curve for (3,6)-regular and (5,10)-regular LDPC codes over

an AWGN dicode channel with a(D) = (1−D)/√2. The upper bound h̄MAP is

obtained by setting the area under the BP-GEXIT curve (the shaded region)

equal to the code rate.

be found in Table IV.

Table IV. Threshold estimates, measured in dB, of (dl, dr)-regular ensembles over the

dicode AWGN and PR2 AWGN channels.

(dl, dr)- Dicode AWGN

regular σBP σ̄MAP σSIR

(3,6) 1.73 0.96 0.82

(5,10) 3.03 0.83 0.82

(dl, dr)- PR2 AWGN

regular σBP σ̄MAP σSIR

(3,27) 7.96 7.29 7.28

(5,45) 8.59 7.28 7.28

3. Spatially-Coupled Codes on General ISI Channels

Consider the (dl, dr, L) spatially-coupled ensemble. For general ISI channels, the DE

equation for this ensemble can be obtained from the protograph chain in a similar

manner to the case of memoryless channels discussed in [92]. For each i, j ∈ [1 −
d̂l, L + d̂l], let a

(`)
i→j (and b

(`)
i←j) denote the average density of the messages from bit
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Fig. 25. A high-rate example: the BP-GEXIT curve for (3,27)-regular LDPC codes

over an AWGN PR2 channel with a(D) = (1+2D+D2)/√6. The upper bound

h̄MAP is determined by the left border of the shaded region.

nodes at position i to check nodes at position j (and the other way around)12. With

all the initial message densities (at ` = 0) being ∆0, the DE update equation (for all

i ∈ [1, L]) is

a
(`)
i→j = d

(`−1)
i ⊛ { ⊛

j′∈[i−d̂l,i+d̂l]∖j
b
(`−1)
i←j′ } ,∀j ∈ [i − d̂l, i + d̂l],

b
(`)
i←j = �

i′∈[j−d̂l,j+d̂l]∖i
a
(`)
i′→j,∀j ∈ [i − d̂l, i + d̂l],

c
(`)
i = ⊛

j′∈[i−d̂l,i+d̂l]
b
(`)
i←j′ ,

d
(`)
i = Γ(c(`)i ,n)

where ⊛j∈{j1,...,jt} xj and �i∈{i1,...,it} xi denote the operations xj1 ⊛ xj2 ⊛ . . . ⊛ xjt and

xi1 � xi2 � . . .� xit , respectively.

12For i ∉ [1, L], set a
(`)
i→j = ∆+∞, the delta function at +∞.
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4. Simulation Results

In this section, we start with the (dl, dr, L) circular ensemble obtained by considering

all the positions i > L of the protograph chain to be the same as position i−L (similar

to [59]). The order of bit transmissions is “left to right” in each length-L row and

then start with the next row (in a total of M rows, see Fig. 16). The I ≜ max(ν, dl−1)
first bits in each row are known. These known bits “break” the circular ensemble into

the (dl, dr, L − I) ensemble and also serve as the pilot bits to fix the trellis state. As

a consequence of this fixing, one only needs to run the BCJR independently in each

row and this can be done in a parallel manner [73, 74].

In our experiments, we conduct simulations over the AWGN dicode channel with

a(D) = (1 −D)/√2 and memory ν = 1. First, we use the DE in Sec. 3 to compute

the BP thresholds of the spatially-coupled coding scheme. The results in Fig. 26

reveals that σBP(3,6,22) is roughly 0.959 ± 0.001 dB and approximately the same as

σBP(3,6,44) whose rate loss is smaller. Notice that this is also roughly σ̄MAP(3,6) -

the MAP threshold estimate of the underlying (3,6)-regular ensemble, obtained by

the bounding technique, and is a significant improvement over σBP(3,6) ≈ 1.703±0.001

dB. This suggests that threshold saturation occurs for regular ensembles. Since MAP

decoding of regular ensembles can achieve the SIR [79], it also suggests that one can

universally approach the SIR of general ISI channels using coupled codes with joint

iterative decoding. To support this, one can also see that for the (5,10,44) ensemble

of the same rate as the (3,6,22) one, the threshold σBP(5,10,44) ≈ 0.834 ± 0.001 dB

(which is also roughly σ̄MAP(5,10)) gets very close to the signal-to-noise ratio (SNR)

corresponding to the SIR (σSIR ≈ 0.823 ± 0.001 dB using the numerical method in

[67, 68]). Similar effects can also be observed for other SC codes based on regular

LDPC ensembles considered in Table IV for dicode and PR2 channels with AWGN.
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Fig. 26. BER and BP thresholds for the (3,6)-regular, (3,6,22)-SC and (5,10,44)-SC

LDPC codes over the AWGN dicode channel.

Also shown in Fig. 26 is the bit error rate (BER) versus SNR plot for the ensembles

derived from the (dl, dr, L) circular ensembles of finite M = 502 and M = 5000. For

each simulation, we use `outer = 20 channel updates and between two such channel

updates, we run ellinner = 5 BP iterations on the code part alone. The curves labeled

“target” give the BER for the bits at position I +1 (right after the known bits) in the

coupled chain while the curve labeled “overall” is the average BER for all positions

[I + 1, L] together. We expect that the “overall” BER will get closer to the “target”

BER for large enough M and large enough number of iterations. From Fig. 26, one

can also observe that the “overall” BER for (3,6,22) and M = 5000 keeps getting

“closer” to the “target” BER as SNR slightly increases. Those BER curves are far to

the left of εBP(3,6) - the BP threshold for the underlying (3,6)-regular ensemble.



126

CHAPTER IV

ON THE MAP THRESHOLD OF MULTIUSER SYSTEMS WITH ERASURES

A. Introduction

If the factor graph representing an LDPC code has no cycles, then the BP decoder

provides an optimal decoding solution whose complexity scales linearly with the block-

length. On the other hand, the maximum a posteriori (MAP) decoding is globally

optimal but its complexity is prohibitively large in many scenarios. Associated with

each decoder is a noise threshold, below which the decoder achieves arbitrarily reliable

communication as n → ∞. In many cases, there is a gap between the BP and MAP

thresholds [6]. Evaluating these two thresholds, for an iterative decoding system, is

an important part of understanding the codes and decoding algorithms.

An interesting example is the threshold saturation phenomenon of spatially-

coupled (SC) LDPC codes, whereby the BP threshold can be improved to the MAP

threshold [20]. While determining the BP threshold is straightforward via density-

evolution (DE) analysis, evaluating the MAP threshold directly is problematic due

to complexity issues. Fortunately, for LDPC codes over the binary erasure channel

(BEC), a fundamental relationship between the BP and MAP thresholds can be found

using extrinsic information transfer (EXIT) curves. One can use this connection to

upper bound the MAP threshold [77]. This bounding technique has now been used

in various point-to-point communication problems [90, 78, 81] and also to evaluate

the MAP threshold of turbo codes [91].

In this chapter, we use a similar analysis to evaluate the MAP thresholds of

LDPC codes over two multiuser systems: the noisy Slepian-Wolf (SW) problem and

the two-user multiple access channel (MAC). For more realistic noise models, one



127

can use generalized EXIT (GEXIT) analysis to compute upper bounds on the MAP

thresholds [64, 65]. This chapter focuses, however, on erasure noise models. The

simplicity of these toy models allows one to perform a thorough analysis and provide

insights into the general case. For each problem, we derive the appropriate EXIT

curve and use the natural area theorem to obtain an upper bound on the MAP

threshold. We then provide a counting argument that allows numerical verification

of the bound’s tightness.

As mentioned earlier, one direct application of this analysis is verification of the

threshold saturation phenomenon, the underlying mechanism behind the impressive

performance of SC codes. While the BP thresholds of SC were recently observed to

get close to the Shannon limits of these considered problems [64, 63], with the MAP

threshold evaluated here, one can see that the BP thresholds of SC codes saturate

not just to some value that can be close to the “capacity” but this value turn outs to

be exactly the MAP threshold of the underlying ensemble. Since the MAP thresholds

can be shown to converge to the Shannon limit as the node degrees increase, it is not

surprising that SC codes can achieve the entire capacity region of the corresponding

problems.

1. Preliminaries

Besides the standard LDPC ensemble (λ(z), ρ(z)), for analysis, we also consider two-

edge-type LDPC ensembles [93] whose degree distribution (d.d.) can be given by

(L(z1, z2),R[1](z),R[2](z)) = (∑i1,i2 Li1,i2z
i1
1 z

i2
2 ,∑iR

[1]
i zi,∑iR

[2]
i zi) where Li1,i2 gives

the fraction of bit nodes with ij outgoing edges of type j while R
[j]
i gives the fraction

of check nodes with i edges of type j for j ∈ {1,2}.
Throughout this chapter, X[j] is used to denote a vector of bits where [j] in-

dicates user (or channel) j for j ∈ {1,2}. Likewise, X
[j]
i represents the i-th bit and
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X[j] is sometimes used if the bit index is not emphasized. For simplicity, X
[j]
∼i is used

when the i-th bit is omitted from the vector X[j]. Erasures are denoted by ?.

B. Slepian-Wolf Problem with Erasures

1. Channel Model

Two correlated discrete memoryless sources are encoded by two independent linear

encoding functions of identical design rate r. These encoders map k input symbols

(U[1] and U[2]) to n output symbols (X[1] and X[2]) which are then transmitted

through two independent channels. A central location receives (Y[1],Y[2]) and jointly

decodes them to (U[1],U[2]). In the model we consider, the two channels are BECs

with erasure rate ε[1] and ε[2], respectively. That is

Y
[j]
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
X

[j]
i with probability 1 − ε[j]i ,

? with probability ε
[j]
i ,

for j ∈ {1,2} and i ∈ {1,2, . . . , n} where we assume ε
[1]
i = ε[1] and ε

[2]
i = ε[2] for all i. We

also consider an erasure correlation model between the two sources. More specifically,

let Z be a Bernoulli-p random variable and X and X ′ be i.i.d. Bernoulli-1
2 random

variables. The sources U1 and U2 are defined by

(U1, U2) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(X,X ′) if Z = 0,

(X,X) if Z = 1.

This gives H(U1∣U2) =H(U2∣U1) = 1−p and H(U1, U2) = 2−p. The decoder is assumed

to have access to the side information Z. In [64], The Slepian-Wolf region is found to
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Fig. 27. Tanner graph for an LDPC code and the SWE

be

ε[1] ≤ 1 −H(U2∣U1)r = 1 − (1 − p)r,
ε[2] ≤ 1 −H(U1∣U2)r = 1 − (1 − p)r,

ε[1] + ε[2] ≤ 2 −H(U1, U2)r = 2 − (2 − p)r.
Assume that the sequences U[1] and U[2] are encoded by LDPC codes with the

same d.d. (λ, ρ) with a punctured systematic encoder. The fraction of punctured

systematic bits is γ = 1− L′(1)
R′(1) (see more discussion in [64]). After puncturing, the two

codes have rate r = γ
1−γ . The Tanner graph for an LDPC code and the SW problem

with erasures (SWE) is given by Fig. 27.

If the joint BP decoder is used, one has the following fixed point (FP) equation

based on DE (see [64])

x1 = [γf(L(y(x2))) + (1 − γ)ε[1]]λ(y(x1)), (4.1)

x2 = [γf(L(y(x1))) + (1 − γ)ε[2]]λ(y(x2)), (4.2)

where f(t) ≜ (1 − p) + pt and y(t) ≜ 1 − ρ(1 − t). Here, x1 (resp. x2) is the average

erasure rate of messages from bit nodes to check nodes corresponding to source 1

(resp. 2) in the limit of infinite block length and infinite number of BP iterations.
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From this, one can write

ε[1](x1, x2) = 1

1 − γ [ x1

λ(y(x1)) − γf(L(y(x2)))] ,
ε[2](x1, x2) = 1

1 − γ [ x2

λ(y(x2)) − γf(L(y(x1)))] .
Let us express x1(x) and x2(x) according to a common parameter x, say x = x1,

and consider a smooth curve C from (x1(1), x2(1)) = (1,1) and decreases in both

arguments. This curve C can be characterized by a single parameter ε ∈ [0,1], say

ε = ε[1]+ε[2]
2 , and it can be seen that ε = 1 corresponds to (ε[1], ε[2]) = (1,1). Many steps

in analysis, presented in Section B, are based on this assumption for the curve C.

2. EXIT Functions

Definition 13. Consider a sequence of LDPC(n,λ, ρ) ensembles. For each n, pick Cn
uniformly at random from LDPC(n,λ, ρ) and let X[1],X[2] be chosen uniformly from

Cn. Let Y n
1 be the received sequence after transmission over the SWE with erasure rate

pair (ε[1], ε[2]) characterized by a common parameter ε. The (MAP-)EXIT function

associated with Cn is defined by

hCn(ε) ≜ 1

n
⋅ d

dε
H (X[1],X[2]∣Y[1] (ε[1](ε)) ,Y[2] (ε[2](ε))) .

and the (asymptotic) EXIT function is given by

h(ε) ≜ lim sup
n→∞

ECn [hCn(, ε)] .
Theorem 12. The above definition of the EXIT function naturally gives an area

theorem as follows

∫ ε∗

0
hCn(ε)dε = 1

n
H (X[1],X[2]∣Y[1](ε[1](ε∗)),Y[2](ε[2](ε∗))) .
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As a consequence, if ε∗ = 1 then this gives the area ∫ 1

0 hCn(ε)dε =H(U [1], U [2])r =
(2 − p)r given uniform priors on the codeword sets.

Lemma 20. For the SWE, the EXIT function becomes

hCn(ε) = 1

n

n∑
i=1

(H(X[1]
i ∣Y[1]

∼i ,Y
[2])dε[1]

dε
+H(X[2]

i ∣Y[1],Y
[2]
∼i )dε[2]

dε
) (4.3)

where Y[1],Y[2],Y
[1]
∼i ,Y

[2]
∼i , ε

[1], ε[2] can all be written as functions of ε.

Proof. Since H(X[1],X[2]∣Y[1],Y[2]) depends on ε
[1]
i and ε

[2]
i , one has

d

dε
H(X[1],X[2]∣Y[1],Y[2]) = n∑

i=1

⎛⎝ ∂

∂ε
[1]
i

H(X[1],X[2]∣Y[1],Y[2])dε
[1]
i

dε

+ ∂

∂ε
[2]
i

H(X[1],X[2]∣Y[1],Y[2])dε
[2]
i

dε

⎞⎠. (4.4)

Using the entropy chain rule, one can write

H(X[1],X[2]∣Y[1],Y[2]) =H(X[1]∣Y[1],Y[2]) +H(X[2]∣X[1],Y[1],Y[2])
=H(X[1]

i ∣Y[1],Y[2]) +H(X[1]
∼i ∣X[1]

i ,Y[1],Y[2])
+H(X[2]∣X[1],Y[1],Y[2])

= ε[1]i H(X[1]
i ∣Y[1]

∼i ,Y
[2]) +H(X[1]

∼i ∣X[1]
i ,Y[1],Y[2])

+H(X[2]∣X[1],Y[1],Y[2]). (4.5)

Now, one obtains

∂

∂ε
[1]
i

H(X[1],X[2]∣Y[1],Y[2]) =H(X[1]
i ∣Y[1]

∼i ,Y
[2]) (4.6)

since the second and third summands on the RHS of (4.5) do not depend on ε
[1]
i .

Similarly, it can be shown that

∂

∂ε
[2]
i

H(X[1],X[2]∣Y[1],Y[2]) =H(X[1]
i ∣Y[1],Y

[2]
∼i ) (4.7)
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and the lemma follows directly from (4.4), (4.6) and (4.7).

When the BP estimator is used instead of the MAP estimator, one also has the

BP-EXIT function. The asymptotic BP- EXIT function can be obtained by taking

the average BP-EXIT function over all the codes Cn and taking n →∞ and followed

by the number of BP iterations ` →∞. Using a concentration theorem and the fact

that, for a fixed number of iterations, the computation graph for a specific bit becomes

tree-like as n→∞, one can compute the asymptotic BP-EXIT function as follows.

Lemma 21. The (asymptotic) BP-EXIT function is given by

hBP(ε) = L(y(x1))dε[1]

dε
+L(y(x2))dε[2]

dε

where (x1, x2) is the FP pair at channel erasure rate pair (ε[1](ε), ε[2](ε)).

3. MAP Threshold

a. Upper Bound on the MAP Threshold

Generally speaking, the MAP threshold (along the curve C) can be defined as the

supremum of all parameters ε such that h(ε) = 0. Likewise, one can define the BP

threshold. By the optimality of the MAP decoder, one can invoke the data processing

inequality [41] and have the following lemma.

Lemma 22. For the SWE, one has 0 ≤ h(ε) ≤ hBP(ε) ≤ 2.

Proof. By the data processing inequality [41], the entropies H(X[1]
i ∣Y[1]

∼i ,Y
[2]) and

H(X[2]
i ∣Y[1],Y

[2]
∼i ) in (4.3) reduce if one replaces the optimal MAP estimator with

the BP estimator. They are also upper bounded by 1. The lemma then follows

immediately.
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Remark 21. With the above analysis, one can use a similar approach to [77] to

obtain an upper bound on the MAP threshold. More specifically, by finding the largest

ε̄MAP such that ∫ 1

ε̄MAP hBP(ε)dε = H(U [1], U [2])r, one has εMAP ≤ ε̄MAP which follows

from ∫ 1

ε̄MAP h(ε)dε ≤ ∫ 1

ε̄MAP hBP(ε)dε =H(U [1], U [2])r ≤ ∫ 1

εMAP h(ε)dε.
To compute the area under the BP-EXIT curve, it is more convenient to consider

the extended BP (EBP) EXIT curve that extends the BP-EXIT by also including the

unstable FPs.

Definition 14. The EBP-EXIT curve for the SWE is defined by

(ε(x), L(y(x1(x)))dε[1]

dε
(x) +L(y(x2(x)))dε[2]

dε
(x))

for x ∈ [0,1] where the second coordinate is called the EBP-EXIT function hEBP(x).

The area under the BP-EXIT curve can be computed with the help of a “trial

entropy” as follows.

Lemma 23. Let P (x) ≜ ∫ x0 hEBP(t)dε(t) denote the “trial entropy”. Then, we have

P (x) = 1

1 − γ{L(y(x1))[(1 − γ)ε[1] + (1 − p)γ] +L(y(x2))[(1 − γ)ε[2] + (1 − p)γ]
+ γpL(y(x1))L(y(x2)) − L′(1)

R′(1)[2 − (R(1 − x1) +R(1 − x2)
+ x1R

′(1 − x1) + x2R
′(1 − x2))]}

where ε[j] and xj are also functions of x for j ∈ {1,2}.
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Proof. We start by realizing that

P (x) = ∫ x

0
(L(y(x1(t))dε[1](t)

dε(t) +L(y(x1(t)) dε[1]

dε(t))dε(t)
= ∫ x

0
L(y(x1(t))dε[1](t) + ∫ x

0
L(y(x2(t))dε[2](t)

= 1

1 − γ ∫
x

0
L(y(x1(t))d( x1(t)

λ(y(x1(t))) + 1

1 − γ ∫
x

0
L(y(x2(t))d( x2(t)

λ(y(x2(t)))
− pγ

1 − γ [∫ x

0
L(y(x1(t))dL(y(x2(t)) + ∫ x

0
L(y(x2(t))dL(y(x1(t))] (4.8)

= 1

1 − γ {L(y(x1)) x1

λ(y(x1)) − L
′(1)

R′(1) [1 −R(1 − x1) − x1R
′(1 − x1)]}

+ 1

1 − γ {L(y(x2)) x2

λ(y(x2)) − L
′(1)

R′(1) [1 −R(1 − x2) − x2R
′(1 − x2)]}

− pγ

1 − γL(y(x1))L(y(x2)) (4.9)

where (4.9) follows from applying the trial entropy formula of the BEC in [6, p. 124]

for the first and second summands of (4.8) and using integration by parts for the

third summand. Here, in (4.9), we write x1 and x2 as shorthand notations for x1(x)
and x2(x), respectively.

Next, from (4.1) and (4.2) , one can substitute x1

λ(y(x1)) by (1 − γ)ε[1](x1, x2) +
γ ((1 − p) + pL(y(x2)) and x2

λ(y(x2)) by (1 − γ)ε[2](x1, x2) + γ ((1 − p) + pL(y(x1)), re-

spectively, in (4.9) and obtain the lemma after a few simplifications.

Corollary 5. The EBP-EXIT curve also satisfies an area property that says

∫ 1

0
hEBP(t)dt = (2 − p)r =H(U [1], U [2])r.

Proof. It follows immediately from Lemma 23 that

∫ 1

0
hEBP(t)dt = P (1) = 1

1 − γ {2(1 − L′(1)
R′(1)) − γp} .

Then, one obtains the result by realizing that 1 − L′(1)
R′(1) = γ and γ

1−γ = r.
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Using Corollary 5, the bounding technique in Remark 21 can also be discussed

in the following way.

Corollary 6. By finding a positive root xMAP of P (x) = 0 that gives the largest

ε(xMAP), one can obtain the upper bound on the MAP threshold εMAP ≤ ε(xMAP) ≜
ε̄MAP.

If one considers regular LDPC ensembles of a fixed rate, using the property

P (xMAP) = 0, the following lemma shows that, for sufficiently high degrees, ε̄MAP

approaches the Shannon limit.

Lemma 24. Consider the (dl, dr) -regular ensembles and let dl →∞ so that the design

rate r = 1− dl
dr

is fixed. Then, we have ε̄MAP(dl, dr)→ εSh(r) where εSh(r) corresponds

to the boundary of the SW region along the considered curve C.

Proof. For simplicity, we denote xj(xMAP(dl, dr)) as xMAP
j (dl, dr) for j ∈ {1,2}. Let

αj be the limit of xMAP
j (dl, dr) as dl, dr → ∞ with r constant. Similarly to the

proof of Theorem 10, L(y(xMAP
j (dl, dr))), λ(y(xMAP

j (dl, dr))), R(1−xMAP
j (dl, dr)) and

R′(1−xMAP
j (dl, dr)) all converge to 1 if αj ≠ 0 and converge to 0 if αj = 0. Then, based

on the observation that P (xMAP(dl, dr)) = 0, one either obtains (ε[1]+ε[2])→ 2−(2−p)r
for the case of α1 ≠ 0 and α2 ≠ 0, ε[1] → 1 − (1 − p)r for the case of α1 ≠ 0 and α2 = 0,

or ε[2] → 1 − (1 − p)r for the case of α1 = 0 and α2 ≠ 0 which depends on the curve C

being considered.

b. Tightness of the Upper Bound

Lemma 25. Assume the joint BP decoder is run until it reaches a FP. Remove all

known bits and merge two aligned bits that have the same value into a larger bit nodes

and obtain a residual graph. The residual graph can be seen as a two edge type LDPC
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ensemble and its expected d.d. (normalized with respect to the original graph) is1

L̃ε(z1, z2) = L(y(x1)z1)(ε[1](1 − γ) + (1 − p)γ) +L(y(x2)z2)(ε[2](1 − γ) + (1 − p)γ)
+ γpL(y(x1)z1)L(y(x2)z2),

R̃
[1]
ε (z) = R(1 − x1 + zx1) −R(1 − x1) − zx1R

′(1 − x1),
R̃

[2]
ε (z) = R(1 − x2 + zx2) −R(1 − x2) − zx2R

′(1 − x2),
where (x1, x2) is the FP at erasure rate pair (ε[1](ε), ε[2](ε)) and y1 ≜ y(x1) and

y2 ≜ y(x2).
Proof. The check node d.d. R̃

[j]
ε (z) can be shown in the same way as in the proof of

Lemma 16. For the d.d. of bit nodes, we use the following counting argument.

One first considers unpunctured bit nodes whose fraction is 1 − γ. For these

unpunctured bit nodes to remain in the residual graph, the messages from the channel

as well as from the corresponding check nodes must be erasures. This happens with

probability ε[1]L(y(x1)) and ε[2]L(y(x2)) for the source 1 and source 2, respectively.

Next, one considers punctured bit nodes whose fraction is γ. Among punctured

bit nodes, there are ones connected by correlation nodes, with probability p, and ones

not connected, with probability 1 − p. For the punctured bit nodes not connected by

correlation nodes to remain in the residual graph, the messages from the correspond-

ing check nodes must be erasures. This happens with probability (1 − p)L(y(x1))
for bits corresponding to the source 1 and (1 − p)L(y(x2)) for bits corresponding

the source 2. Meanwhile, every two punctured bit nodes which are connected by a

correlation node are merged into a larger bit nodes because they must have the same

value. For each larger bit node to remain in the residual graph, the messages from

1The two edge type standard d.d. is ( L̃ε(z1,z2)
L̃ε(1,1)

, R̃
[1]
ε (z)

R̃
[1]
ε (1)

, R̃
[2]
ε (z)

R̃
[2]
ε (1)

) .
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check nodes in both sources must be erasures. This event happens with probability

pL(y(x1))L(y(x2)).
Therefore, we can write the d.d. of the bit nodes in the residual graph as

L̃ε(z1, z2) = (1 − γ)(ε[1]L(y(x1)z1) + ε[2]L(y(x2)z2))
+ γ((1 − p)[L(y(x1)z1) +L(y(x2)z2)] + pL(y(x1)z1)L(y(x2)z2)),

because each edge of type j is associated with a erasure probability y(xj) from check

nodes to bit nodes for j ∈ {1,2}. The result then follows immediately.

Theorem 13. At ε = ε̄MAP , the design rate of the residual graph equals zero.

Proof. Let the number of bit nodes in the original graph be n. Then, then number

of bit nodes in the residual graph is nL̃ε(1,1). Also, the number of check nodes with

outgoing edges of type j, for j ∈ {1,2}, in the original graph is n(1 − rj) = nL′(1)R′(1) .

Thus, the number of check nodes with outgoing edges of type j in the residual graph

is nL
′(1)

R′(1)R̃
[j]
ε (1). Therefore, the total number of check nodes in the residual graph is

nL
′(1)

R′(1) (R̃[1]
ε (1) + R̃[2]

ε (1)) .
Consequently, the design rate of the residual graph is

r̃ε =1 − L′(1)
R′(1) (R̃[1]

ε (1) + R̃[2]
ε (1)) /L̃ε(1,1). (4.10)

Finally, one can see from (4.10), Lemma 23 and Corollary 6 that

r̃ε̄MAP = (1 − γ)P (xMAP)/L̃ε̄MAP(1,1) = 0.

and obtain the theorem.

Remark 22. To show the tightness of the MAP upper bound, it remains to be shown

that the actual rate of the residual graph is zero because if this is true, the MAP decoder
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Fig. 28. θ(e1, e2) of the residual graph for: (a) the SWE in Remark 22 and (b) the

EMAC in Remark 23.

should decode perfectly for all ε < ε̄MAP. One can use the test in [93] to numerically

verify this fact. For simplicity, we focus on the curves C that extends linearly from

(1,1) according to 1 − ε[1] = A(1 − ε[2]) for some A > 0 where, e.g., A = 1 represents

the symmetric channel condition. In Fig. 28 (a), the function θ(e1, e2) (see [93, p.

11] for definition) for the residual graph d.d. is plotted for the case A = 3
2 and one

can see that the maximum of θ(e1, e2) over the unit square is zero. Thus, the actual

rate of the residual graph equals its design rate, which is zero, with high probability as

n→∞. This implies that the upper bound is tight and εMAP = ε̄MAP.

C. Multiple Access Channel with Erasures

1. Channel Model

In this section, we consider the two-user MAC channel with erasure noise (EMAC)

discussed in [63] and evaluate the MAP threshold when the two users transmit LDPC

codes. For the inputs X
[1]
i ,X

[2]
i ∈ {±1}, let the output be given by

Yi =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
X

[1]
i +X[2]

i ≜ Zi with probability 1 − εi,
? with probability εi,
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where erasure rate εi = ε for all i ∈ {1,2, . . . , n}. The achievable rate region for the

design rate pair (r1, r2) of the two users is characterized by

r1 ≤ I(X[1];Y ∣X[2]) = 1 − ε,
r2 ≤ I(X[2];Y ∣X[1]) = 1 − ε,

r1 + r2 ≤ I(X[1],X[2];Y ) = 3

2
(1 − ε),

and therefore the Shannon limit, i.e., the supremum of all erasure rates ε that allows

reliable communication for both users, is εSh(r1, r2)=min{1−r1,1−r2,1− 2
3(r1+r2)}.

We consider the input sequences X[1] and X[2] to be chosen uniformly at random

from LDPC(n,λ[1], ρ[1]) and LDPC(n,λ[2], ρ[2]) ensembles, respectively. If one uses

the joint BP decoder operating on the Tanner graph in Fig. 29, the FP equation

based on DE is given by

x1 = (ε + (1 − ε)L[2](y2(x2)/2)λ[1](y1(x1)),
x2 = (ε + (1 − ε)L[1](y1(x1)/2)λ[2](y2(x2)),

where xj and yj(xj) ≜ 1−ρ[j](1−xj) are the expected erasure rate of the messages from

bit nodes to check nodes and check nodes to bit nodes, respectively, corresponding

to user j (in the limit of infinite block length and infinite number of BP iterations).

One can express the FP pair (x1, x2) as a function of a common parameter x, say

x = x1. Thus, one can write ε(x), x1(x) and x2(x) to emphasize the dependence on x

and note that ε(1) = 1. With some abuse of notation, we write yj(x) as a shorthand

notation of yj(xj(x)) for j ∈ {1,2}.
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Fig. 29. Tanner graph of the joint decoder for the EMAC

2. EXIT Functions

Definition 15. Consider sequences of LDPC(n,λ[1], ρ[1]) and LDPC(n,λ[2], ρ[2]) en-

sembles. For each n, pick C[j]n uniformly at random from LDPC(n,λj, ρj). Let X[j] be

chosen uniformly from C[j]n for j ∈ {1,2} and Y n
1 be the received sequence at the output

of the EMAC with erasure probability ε. The (MAP-)EXIT function associated with

C[1]n and C[2]n is defined by

hC[1]n ,C[2]n
(ε) = 1

n
⋅ d

dε
H(X[1],X[2]∣Y(ε)). (4.11)

and the (asymptotic) EXIT function is given by

h(ε) = lim sup
n→∞

EC[1]n ,C[2]n
[hC[1]n ,C[2]n

(ε)] .
Theorem 14. The definition of the EXIT function leads to an area theorem that says

∫ ε∗

0
hC[1]n ,C[2]n

(ε)dε = 1

n
H(X[1],X[2]∣Y(ε∗)).

Consequently, if ε∗ = 1 then one has ∫ 1

0 hC[1]n ,C[2]n
(ε)dε = r1 + r2 given a uniform prior

on the set of the codewords.
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Lemma 26. The EXIT function for the EMAC is

hC[1]n ,C[2]n
(ε) = 1

n

n∑
i=1

(H(X[1]
i ,X

[2]
i ∣Y∼i(ε)) − 1

2
H(X[1]

i ,X
[2]
i ∣Y∼i(ε), Zi = 0)). (4.12)

Proof. First, we write

H(X[1],X[2]∣Y) =H(X[1]
i ,X

[2]
i ∣Y) +H(X[1]

∼i ,X
[2]
∼i ∣Y,X

[1]
i ,X

[2]
i )

where the second term of the RHS does not depend on εi.

Thus, this gives

d

dε
H(X[1],X[2]∣Y) = n∑

i=1

∂

∂εi
H(X[1],X[2]∣Y)

= n∑
i=1

∂

∂εi
H(X[1]

i ,X
[2]
i ∣Y). (4.13)

Now, one has

H(X[1]
i ,X

[2]
i ∣Y) = εiH(X[1]

i ,X
[2]
i ∣Y∼i) + (1 − εi)H(X[1]

i ,X
[2]
i ∣Y∼i, Zi)

= εiH(X[1]
i ,X

[2]
i ∣Y∼i) + 1 − εi

2
H(X[1]

i ,X
[2]
i ∣Y∼i, Zi = 0) (4.14)

since H(X[1]
i ,X

[2]
i ∣Y∼i, Zi ≠ 0) = 0.

Finally, combining (4.13), (4.14), and (4.11) gives the result.

Replacing the MAP estimator with the BP estimator, one has the BP-EXIT

function for this problem as follows.

Definition 16. The BP-EXIT function after iteration ` for the EMAC is given by

hBP,`

C[1]n ,C[2]n
(ε) = 1

n

n∑
i=1

(H(X[1]
i ,X

[2]
i ∣EBP,`

i (Y∼i(ε)))− 1

2
H(X[1]

i ,X
[2]
i ∣EBP,`

i (Y∼i(ε)), Zi = 0))
where EBP,`

i (Y∼i) is the extrinsic BP estimate of (X[1]
i ,X

[2]
i ) after iteration ` of the

BP decoder.
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The (asymptotic) BP-EXIT function for the EMAC is defined as

hBP(ε) ≜ lim
`→∞

lim
n→∞

EC[1]n ,C[2]n
[hBP,`

C[1]n ,C[2]n
(ε)]

where the expectation is taken over all codes C[1]n ,C[2]n .

By invoking a concentration theorem and the tree-like property of the computa-

tion graph for a bit node (as n→∞ and the number of iterations is fixed), the limits

in Definition 16 exist and, furthermore, one can express the asymptotic BP-EXIT

function conveniently as follows.

Lemma 27. For BP estimator, the (asymptotic) BP-EXIT function is

hBP(ε) = L[1](y1(x1)) +L[2](y2(x2)) − 1

2
L[1](y1(x1))L[2](y2(x2)) (4.15)

where (x1, x2) is the FP pair at channel erasure rate ε.

3. MAP Threshold

a. Upper Bound on the MAP Threshold

Similarly to the case of SWE, the MAP threshold εMAP is defined as the supremum of

all channel parameters ε such that h(ε) = 0. The BP threshold εBP can also be defined

correspondingly. One can also show that the (MAP-)EXIT function lies below the

BP-EXIT function.

Lemma 28. For this EMAC problem, one has

0 ≤ h(ε) ≤ hBP(ε) ≤ 3

2
.

Proof. From (4.14), one has

1

2
H(X[1]

i ,X
[2]
i ∣Y∼i(ε), Zi = 0) = 1

1 − ε (H(X[1]
i ,X

[2]
i ∣Y) − εH(X[1]

i ,X
[2]
i ∣Y∼i(ε))) .
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Combining this with (4.12) gives

hC[1]n ,C[2]n
(ε) = 1(1 − ε)n

n∑
i=1

(H(X[1]
i ,X

[2]
i ∣Y∼i(ε)) −H(X[1]

i ,X
[2]
i ∣Y))

= 1(1 − ε)n
n∑
i=1

I(X[1]
i ,X

[2]
i ;Yi(ε)∣Y∼i(ε))

Now, we claim that I(X[1]
i ,X

[2]
i ;Yi∣Y∼i) ≤ I(X[1]

i ,X
[2]
i ;Yi∣EBP,`

i (Y∼i)) using a

similar argument to the data processing inequality [41] as follows.

By the chain rule, we can expand mutual information in two different ways

I(X[1]
i ,X

[2]
i ,Y∼i;Yi∣EBP,`

i ) = I(X[1]
i ,X

[2]
i ;Yi∣EBP,`

i ) + I(Y∼i;Yi∣X[1]
i ,X

[2]
i ,EBP,`

i )
= I(Y∼i;Yi∣EBP,`

i ) + I(X[1]
i ,X

[2]
i ;Yi∣Y∼i,EBP,`

i ). (4.16)

Next, Yi → (X[1]
i ,X

[2]
i ,EBP,`

i ) → Y∼i forms a Markov chain since the channel is

memoryless and therefore I(Y∼i;Yi∣X[1]
i ,X

[2]
i ,EBP,`

i ) = 0. Furthermore, one also has

I(X[1]
i ,X

[2]
i ;Yi∣Y∼i,EBP,`

i ) = I(X[1]
i ,X

[2]
i ;Yi∣Y∼i) and I(Y∼i;Yi∣EBP,`

i ) ≥ 0. Using this

and (4.16), one proves the claim.

As a consequence, it is clear that hC[1]n ,C
[2]
n

(ε) ≤ hBP,`

C[1]n ,C
[2]
n

(ε) and then h(ε) ≤ hBP(ε).
For simplicity of notations, let vj ≜ L[j](yj(xj)). One can rewrite (4.15) to obtain

hBP(ε) = v1(1− v2)+ v2(1− v1)+ 3
2v1v2 ≥ 0 because 0 ≤ v1, v2 ≤ 1. For a similar reason,

one also has hBP(ε) = 3
2 − 1

4 [(1 − v1)(3 − v2) + (1 − v2)(3 − v1)] ≤ 3
2 .

With the above analysis, one can invoke the bounding technique, i.e., finding the

largest ε̄MAP such that ∫ 1

ε̄MAP hBP(ε)dε = r1 + r2 and obtaining εMAP ≤ ε̄MAP as a result.

To conveniently compute the area under the BP-EXIT curve, we define the EBP-

EXIT curve and compute the “trial entropy” as follows.

Definition 17. The EBP-EXIT curve for the EMAC is defined by

(ε(x), L[1](y1(x)) +L[2](y2(x)) − 1

2
L[1](y1(x))L[2](y2(x)))
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for x ∈ [0,1] where the second coordinate is called the EBP-EXIT function hEBP(x).

Lemma 29. Let P (x) ≜ ∫ x0 hEBP(t)dε(t) denote the “trial entropy”. Then, one has

P (x) = ε(x) [L[1](y1(x)) +L[2](y2(x))] + 1 − ε(x)
2

L[1](y1(x))L[2](y2(x))
− L[1] ′(1)
R[1] ′(1) [1 −R[1](1 − x1(x)) − x1(x)R[1] ′(1 − x1(x))]

− L[2] ′(1)
R[2] ′(1) [1 −R[2](1 − x2(x)) − x2(x)R[2] ′(1 − x2(x))] .

Proof. One starts with

P (x) = hEBP(x)ε(x) − ∫ x

0
ε(t)dhEBP(t) (4.17)

= hEBP(x)ε(x) − ∫ x

0
ε(t) (1 − 1

2
L[2](y2(x2(t))))dL[1](y1(x1(t)))

− ∫ x

0
ε(t) (1 − 1

2
L[1](y1(x1(t))))dL[2](y2(x2(t))) (4.18)

= hEBP(x)ε(x) − ∫ x

0
( x1(t)
λ[1](y1(x1(t))) − L

[2](y2(x2(t)))
2

)dL[1](y1(x1(t)))
− ∫ x

0
( x2

λ[2](y2(x2(t))) − L
[1](y1(x1(t)))

2
)dL[2](y2(x2(t))) (4.19)

= hEBP(x)ε(x) − ∫ x

0

x1(t)
λ[1](y1(x1(t)))dL[1](y1(x1(t)))

− ∫ x

0

x2(t)
λ[2](y2(x2(t)))dL[2](y2(x2(t))) + 1

2
L[1](y1(x1(x)))L[2](y2(x2(x)))

(4.20)

= hEBP(x)ε(x) + [L[1]′(1)x1(x)ρ[1](1 − x1(x)) − L[1]′(1)
R[1]′(1)(1 −R[1](1 − x1(x)))]

+ [L[2]′(1)x2(x)ρ[2](1 − x2(x)) − L[2]′(1)
R[2]′(1)(1 −R2(1 − x2(x)))]

+ 1

2
L[1](y1(x1(x)))L[2](y2(x2(x))) (4.21)

where (4.17) uses integration by parts, (4.18) follows from the definition of hEBP(⋅),
(4.19) holds because of the DE-FP equation while (4.20) and (4.21) both use integra-

tions by parts.
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By substituting the full formula of hEBP(x), the lemma follows after a few sim-

plifications.

Corollary 7. The EBP-EXIT curve for the EMAC satisfies an area property as

follows

∫ 1

0
hEBP(t)dt = r1 + r2.

Proof. It follows from Lemma 29 that

∫ 1

0
hEBP(t)dt = P (1) = 2 − L[1]′(1)

R[1]′(1) − L
[2]′(1)

R[2]′(1) = r1 + r2.

Corollary 8. By finding a positive root xMAP of P (x) = 0 that gives the largest

ε(xMAP), one can obtain an upper bound on the MAP threshold εMAP ≤ ε̄MAP where

ε̄MAP = ε(xMAP).

Again, by considering regular LDPC ensembles of a fixed rate and using the

property P (xMAP) = 0, ε̄MAP can be shown to approach the Shannon limit.

Lemma 30. Consider the (d[1]l , d
[1]
r ) and (d[2]l , d

[2]
r )-regular ensembles for user 1 and

user 2, respectively, and let d
[j]
l →∞ so that rj = 1− d

[j]
l

d
[j]
r

is fixed (for j ∈ {1,2}). Then,

ε̄MAP(d[1]l , d
[1]
r , d

[2]
l , d

[2]
r )→ εSh(r1, r2).

Proof. For simplicity, we denote xj(xMAP(d[1]l , d
[1]
r , d

[2]
l , d

[2]
r )) as xMAP

j for j ∈ {1,2}.

Let αj denote the limit of xMAP
j as d

[1]
l , d

[1]
r , d

[2]
l , d

[2]
r →∞ with r1, r2 constant. Simi-

larly to the proof of Theorem 10, L[j](yj(xMAP
j )), λ[j](yj(xMAP

j )), R[j](1−xMAP
j ) and

R[j]′(1−xMAP
j ) all converge to 1 if αj ≠ 0 and converge to 0 if αj = 0. Then, based on

the observation that P (xMAP) = 0, one either has ε̄MAP → 1− 2
3(r1 + r2) for the case of

α1 ≠ 0 α2 ≠ 0, ε̄MAP → 1 − r1 for the case of α1 ≠ 0 and α2 = 0, or ε̄MAP → 1 − r2 for the
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case of α1 = 0 and α2 ≠ 0 where ε̄MAP = ε(xMAP(d[1]l , d
[1]
r , d

[2]
l , d

[2]
r )) The exact cases to

be considered depends on the corresponding rate pair (r1, r2).
b. Tightness of the Upper Bound

We follow a similar approach as in the case of SWE.

Lemma 31. Assume the joint BP decoder is run until it reaches a FP. Next, remove

all the known bits and their adjacent edges and check nodes. Further, merge any pair

of bit nodes at the same index that have the same value. The residual graph can be

seen as a two-edge-type LDPC ensemble and its expected d.d. (normalized with respect

to the original graph) is

L̃ε(z1, z2) = εL[1](y1z1) + εL[2](y2z2) + 1 − ε
2

L[1](y1z1)L[2](y2z2),
R̃

[1]
ε (z) = R[1](1 − x1 + zx1) −R[1](1 − x1) − zx1R

[1] ′(1 − x1),
R̃

[2]
ε (z) = R[2](1 − x2 + zx2) −R[2](1 − x2) − zx1R

[2] ′(1 − x2),
where (x1, x2) is the FP at channel erasure rate ε.

Proof. The fraction of indices i where Zi =? is ε. Therefore, the probability that bit

nodes of the original graph at these indices remain in the residual graph is εL(y1)
and εL(y2) corresponding to user 1 and user 2, respectively.

Meanwhile, the fraction of indices i where Zi is not erased is 1 − ε. Half of these

indices belongs to the case when Zi ≠ 0, i.e., Zi ∈ {−2,2} where the decoder can

perfectly recover X
[1]
i and X

[2]
i , i.e., the corresponding bit nodes are removed from

the residual graph. Meanwhile, at each index i belonging to the other half where

Zi = 0, the corresponding bit nodes of user 1 and user 2 must have the same value

and can be merged as a larger bit node. For these larger bit nodes to remain in the

residual graph, the messages from the check nodes of both users must be erasures and



147

this happens with probability L(y1)L(y2).
Thus, the d.d. of bit nodes in the residual graph is

L̃ε(z1, z2) = ε (L[1](y1z1) +L[2](y2z2)) + 1

2
(1 − ε)L[1](y1z1)L[2](y2z2)

because each edge of type j, for j ∈ {1,2}, is associated with a erasure probability yj

from check nodes to bit nodes.

Theorem 15. At erasure rate ε = ε̄MAP, the design rate of the residual graph r̃ε̄MAP

equals zero.

Proof. Similarly to the proof of Theorem 13, one knows that the total number of check

nodes in the residual graph is n(L[1] ′(1)
R[1] ′(1)R̃

[1]
ε (1)+ L[2] ′(1)

R[2] ′(1)R̃
[2]
ε (1)). Also, the number of

bit nodes in the residual graph is nL̃ε(1,1).
Therefore, the design rate of the residual graph is

r̃ε =1 − (L[1] ′(1)
R[1] ′(1)R̃[1]

ε (1) + L[2] ′(1)
R[2] ′(1)R̃[2]

ε (1)) /L̃ε(1,1). (4.22)

From (4.22), Lemma 29 and Corollary 8, it is clear that

r̃ε̄MAP = P (xMAP)/L̃ε̄MAP(1,1) = 0.

Remark 23. Similar to Remark 22, one can use the test in [93, p. 11] to show the

tightness of the bound . For example, let us consider the case when user 1 and user

2 use the (3,6)-regular and (3,9)-regular LDPC ensembles, respectively. From Fig.

28 (b), the maximum of θ(e1, e2), for the corresponding residual graph, over the unit

square is zero. Once this is true, the actual rate of this residual graph equals its design

rate, hence equals zero, with high probability as n → ∞ and consequently, the bound

is tight.
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Fig. 30. BP-EXIT curves and MAP threshold for: (a) the (4,6)-regular and (4,6, L,5)
SC ensembles for the SWE where A = 3/2 and L = 2,4,8,16,32,64, (b)

the (3,6,3,9) uncoupled and (3,6,3,9, L,5) SC ensembles for the EMAC for

L = 2,4,8,16,32,64,128.

D. Threshold Saturation of Spatially-Coupled Codes

One important application of our analysis is that one can compare the MAP thresh-

olds of uncoupled LDPC ensembles with the BP thresholds of SC ensembles to observe

the threshold saturation. This can be nicely seen by plotting the BP-EXIT curves

for both the coupled and uncoupled systems. In Fig. 30 (a), the BP-EXIT curves

for the (4,6, L,5) SC ensembles based on the punctured (4,6)-regular ensemble (see

[64]) are plotted for the SWE with an asymmetric channel condition where A = 3
2 (see

Remark 22) and p = 0.5. It can be seen that as L increases, these curves saturate to

the MAP threshold of the uncoupled system. Similarly, in Fig. 30 (b) for the EMAC,

the BP-EXIT curves for the (3,6,3,9, L,5) SC system, i.e., the two users use the

(3,6, L,5) and (3,9, L,9) ensembles respectively, also saturate to the MAP threshold

of the uncoupled system.

Similar plots for the SWE with symmetric channel conditions (A = 1) and the

EMAC with symmetric user rates (r1 = r2) were also plotted in [64] and [63], respec-



149

tively, but without a rigorous consideration of the MAP thresholds. On the other

hand, the main result of this chapter is not to demonstrate the impressive perfor-

mance of SC codes under joint BP decoding but to focus on the MAP threshold

evaluation. With this analysis on the MAP threshold, now one can observe that the

saturation point of the BP thresholds of SC turns out to be the MAP threshold of

the underlying ensembles for these two multiuser problems. We believe this is also a

required step in any proof of threshold saturation for these systems.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

This dissertation studies several coding techniques based on two popular classes of

error-correcting codes, namely Reed-Solomon codes and LDPC codes. Data storage

systems where these two families of codes prevail are among the most important

applications of our work. In this chapter, we summarize the main contributions and

also point out some potential future work.

A. A Rate-Distortion Framework to Analyze and Design Multiple Decoding At-

tempts of Reed-Solomon Codes

1. Summary

In Chapter II, a unified framework based on rate-distortion (RD) theory is developed

to analyze multiple decoding trials, with various algorithms, of RS codes in terms

of performance and complexity. An important contribution is the connection made

between the complexity and performance (in an asymptotic sense) of these multiple-

decoding algorithms and the rate-distortion of an associated RD problem. Based on

this analysis, we propose two solutions; the first is based on the RD function and the

second on the RD exponent (RDE).

The RDE analysis shows that this approach has several advantages. Firstly,

the RDE approach achieves a near optimal performance-versus-complexity trade-off

among algorithms that consider running a decoding scheme multiple times (see Re-

mark 1 in Chapter II). Secondly, it helps estimate the error probability using ex-

ponentially tight bounds for n large enough. Further, we have shown that covering

codes can also be combined with the RD approach to mitigate the suboptimality of
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random codes when the effective block-length is not large enough. As part of this

analysis, we also present numerical and analytical computations of the RD and RDE

functions for sequences of i.n.d. sources. Finally, the simulation results show that

our proposed algorithms based on the RD and RDE approaches achieve a better

performance-versus-complexity trade-off than previously proposed algorithms. One

key result is that, for the (255,239) RS code, multiple-decoding using the standard

Berlekamp-Massey algorithm (mBM) is as good as multiple-decoding using more com-

plex algebraic soft-decision algorithms (mASD). However, for the (458,410) RS code,

the RDE approach improves the performance of mASD algorithms beyond that of

mBM decoding.

2. Future Work

Simulations results suggest an interesting conjecture that, for moderate-rate RS codes,

multiple ASD decoding attempts with small µ is preferred while for low-rate RS codes,

a single ASD decoding with large µ may be preferred. This conjecture remains open

for future research. Our future work will also focus on extending this framework

to analyze multiple decoding attempts for intersymbol-interference channels. In this

case, it will be appropriate for the decoder to consider multiple candidate error-events

during decoding. Extending the RD and RDE approaches directly to this case is not

straightforward since computing the RD and RDE functions for Markov sources in the

large distortion regime is still an open problem. Another interesting extension is to

use clever techniques to reuse the computations from one stage of errors-and-erasures

decoding to the next in order to lower the complexity per decoding trial (e.g., [29]).



152

B. Applications of Spatially-Coupled Codes via Threshold Saturation

1. Summary

In Chapter III, we consider binary communication over ISI channels and numerically

show that, for spatially-coupled codes, threshold saturation occurs on several chan-

nels from the family of GECs as well as the dicode and PR2 channels with AWGN.

To do this, we construct the EXIT and GEXIT curves that satisfy the area theo-

rem and obtain an upper bound on the threshold of the MAP decoder. This upper

bound is conjectured to be tight and, for the DEC, we show a numerical evidence

which strongly supports this conjecture. The observed threshold saturation effect

has an important implication: it suggests that universal performance under joint BP

decoding is possible in practice by first finding a regular LDPC ensemble that has the

performance close to the “capacity” under MAP decoding and then spatially coupling

this underlying ensemble. Although numerical results are shown for these particular

channels, the overall method is readily applicable to ISI channels with higher memory.

In Chapter IV, a similar analysis is extended to obtain an upper bound on

the MAP thresholds of LDPC codes for two multiuser systems, namely the noisy

Slepian-Wolf (SW) problem and the two-user multiple access channel (MAC). We

deliberately focus on the models with erasures because this simplicity enables us to

derive a rigorous analysis and show that the bound is tight in some cases. As a

consequence of this analysis, threshold saturation of spatially-coupled codes is also

observed over these multiuser systems. It then suggests that via spatial coupling, it

is possible to design practical codes to universally achieve the entire capacity region

of the two problems we consider.
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2. Future Work

It has been known that the spatially-coupled codes (or LDPC convolutional codes)

inherit some other advantages such as the typical minimum distance and the size

of the smallest non-empty trapping sets both growing linearly with the protograph

expansion M [94]. In addition, the convolutional structure of the codes allows one to

consider a windowed decoder like the one discussed in [95, 96]. All of these properties

suggest that spatially-coupled codes may be competitive in practice for systems with

ISI, which are usually used to model the magnetic recording systems in data storage.

Also, techniques to mitigate the rate loss induced by spatial coupling also need to be

addressed to improve the finite-length performance. The detailed solutions to these

practical challenges remain future lines of work we would like to consider.

Besides, we believe that applying spatial coupling to two-dimensional (2D) ISI

channels will lead to substantial progress towards computing and achieving the SIR

of 2D-ISI channels, which is unknown in general. Also, a general proof of threshold

saturation for these systems is a challenging and important open problem.
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