75,713 research outputs found

    An iteration method for calculating the relative capacity

    Get PDF
    An iteration method is given for computing the relative capacity of a discrete memoryless channel, i.e., the maximum of the information transmission rate per cost. The algorithm is simpler and more tractable than that of B. Meister and W. Oettli (1967,Inform. Contr. 11, 341–351). Also it contains Arimoto and Blahut's method for computing the capacity as a special case. The convergence of the iteration method is monotone nondecreasing and a bound on the speed of the convergence is given

    Electrical-thermal Co-simulation With Joule Heating And Convection Effects For 3d Systems

    Get PDF
    In a method for simulating temperature and electrical characteristics within an circuit, a temperature of at least one volume within the circuit as a function of a resistance within the at least one volume is repeatedly calculated and the resistance as a function of the temperature is repeatedly calculated until the temperature is within a predetermined tolerance of a previous temperature result and until the resistance is within a predetermined tolerance of a previous resistance result. Once the temperature is within a predetermined tolerance of the previous temperature result and the resistance is within a predetermined tolerance of the previous resistance, then an output indicative of the temperature is generated.Georgia Tech Research Corporatio

    Numerical investigation of the energy performance of a guideless irregular heat and mass exchanger with corrugated heat transfer surface for dew point cooling

    Get PDF
    © 2016 The Author(s) The paper presents an investigation into the energy performance of a novel irregular heat and mass exchanger for dew point cooling which, compared to the existing flat-plate heat exchangers, removed the use of the channel supporting guides and implemented the corrugated heat transfer surface, thus expecting to achieve the reduced air flow resistance, increased heat transfer area, and improved energy efficiency (i.e. Coefficient of Performance (COP)) of the air cooling process. CFD simulation was carried out to determine the flow resistance (K) factors of various elements within the dry and wet channels of the exchanger, while the ‘finite-element’ based ‘Newton-iteration’ numerical simulation was undertaken to investigate its cooling capacity, cooling effectiveness and COP at various geometrical and operational conditions. Compared to the existing flat-plate heat and mass exchangers with the same geometrical dimensions and operational conditions, the new irregular exchanger could achieve 32.9%–37% higher cooling capacity, dew-point and wet-bulb effectiveness, 29.7%–33.3% higher COP, and 55.8%–56.2% lower pressure drop. While undertaking dew point air cooling, the irregular heat and mass exchanger had the optimum air velocity of 1 m/s within the flow channels and working-to-intake air ratio of 0.3, which allowed the highest cooling capacity and COP to be achieved. In terms of the exchanger dimensions, the optimum height of the channel was 5 mm while its length was in the range 1–2 m. Overall, the proposed irregular heat and mass exchanger could lead to significant enhanced energy performance compared to the existing flat-plate dew point cooling heat exchanger of the same geometrical dimensions. To achieve the same amount cooling output, the irregular heat and mass exchanger had the reduced size and cost against the flat-plate ones

    Low Density Lattice Codes

    Full text link
    Low density lattice codes (LDLC) are novel lattice codes that can be decoded efficiently and approach the capacity of the additive white Gaussian noise (AWGN) channel. In LDLC a codeword x is generated directly at the n-dimensional Euclidean space as a linear transformation of a corresponding integer message vector b, i.e., x = Gb, where H, the inverse of G, is restricted to be sparse. The fact that H is sparse is utilized to develop a linear-time iterative decoding scheme which attains, as demonstrated by simulations, good error performance within ~0.5dB from capacity at block length of n = 100,000 symbols. The paper also discusses convergence results and implementation considerations.Comment: 24 pages, 4 figures. Submitted for publication in IEEE transactions on Information Theor

    A New Framework for Network Disruption

    Get PDF
    Traditional network disruption approaches focus on disconnecting or lengthening paths in the network. We present a new framework for network disruption that attempts to reroute flow through critical vertices via vertex deletion, under the assumption that this will render those vertices vulnerable to future attacks. We define the load on a critical vertex to be the number of paths in the network that must flow through the vertex. We present graph-theoretic and computational techniques to maximize this load, firstly by removing either a single vertex from the network, secondly by removing a subset of vertices.Comment: Submitted for peer review on September 13, 201

    A Self-learning Algebraic Multigrid Method for Extremal Singular Triplets and Eigenpairs

    Full text link
    A self-learning algebraic multigrid method for dominant and minimal singular triplets and eigenpairs is described. The method consists of two multilevel phases. In the first, multiplicative phase (setup phase), tentative singular triplets are calculated along with a multigrid hierarchy of interpolation operators that approximately fit the tentative singular vectors in a collective and self-learning manner, using multiplicative update formulas. In the second, additive phase (solve phase), the tentative singular triplets are improved up to the desired accuracy by using an additive correction scheme with fixed interpolation operators, combined with a Ritz update. A suitable generalization of the singular value decomposition is formulated that applies to the coarse levels of the multilevel cycles. The proposed algorithm combines and extends two existing multigrid approaches for symmetric positive definite eigenvalue problems to the case of dominant and minimal singular triplets. Numerical tests on model problems from different areas show that the algorithm converges to high accuracy in a modest number of iterations, and is flexible enough to deal with a variety of problems due to its self-learning properties.Comment: 29 page

    Iteratio: Calculating environmental indicator values for species and relevés.

    Get PDF
    Question: Is it possible to translate vegetation maps into reliable thematic maps of site conditions? Method: This paper presents a new method, called Iteratio, by which a coherent spatial overview of specific environmental conditions can be obtained from a comprehensive vegetation survey of a specific area. Iteratio is a database application which calculates environmental indicator values for vegetation samples (relevés) on the basis of known indicator values of a limited number of plant species. The outcome is then linked to a digitalized vegetation map (map of plant communities) which results in a spatial overview of site conditions. Iteratio requires the indicator values of a minimum of 10–20% of the species occurring. The species are given a relative weight according to their amplitudes: species with a narrow range are weighted stronger, species with a broad range are weighted weaker. Conclusion: The method presented here enables a coherent assessment of site conditions on the basis of a vegetation survey and the indicator values of a limited number of plant species
    • …
    corecore