3 research outputs found

    Questions about linear spaces

    Get PDF
    AbstractWe present three themes of interest for future research that require the cooperation of fairly large teams: 1.linear spaces as building blocks;2.data for an Atlas of linear spaces;3.morphisms of linear spaces

    Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images

    Get PDF
    AbstractIn successive deletion stages of parallel thinning algorithms for binary digital images, one usually checks the preservation of connectivity by verifying that: (a) every removed pixel is individually deletable without modifying connectivity (well-known criteria, such as those of Rosenfeld and Yokoi, exist for that purpose); (b) every pair of 8-adjacent removed pixels is deletable without connectivity modification. In the case of the 8-connectivity for the figure (and the 4-connectivity for the background), two more patterns must be tested for connectivity preservation: an isolated triple or quadruple of mutually 8-adjacent pixels.In this paper we give a formal characterization of these patterns for testing connectivity preservation by what we call minimal non-x-deletable sets (x-MND sets), where x=4, 8 or {4,8} (the type of connectivity considered for the figure). A parallel thinning algorithm whose deletion stage cannot remove an x-MND set is guaranteed to preserve the connectivity properties of any figure. We show that an x-MND set consists in either (1) a single pixel; or (2) a pair of 8-adjacent pixels; or (3) an isolated triple or quadruple of mutually 8-adjacent pixels (for x=8 only)

    Topology on digital label images

    Get PDF
    International audienceIn digital imaging, after several decades devoted to the study of topological properties of binary images, there is an increasing need of new methods enabling to take into (topological) consideration n-ary images (also called label images). Indeed, while binary images enable to handle one object of interest, label images authorise to simultaneously deal with a plurality of objects, which is a frequent requirement in several application fields. In this context, one of the main purposes is to propose topology-preserving transformation procedures for such label images, thus extending the ones (e.g., growing, reduction, skeletonisation) existing for binary images. In this article, we propose, for a wide range of digital images, a new approach that permits to locally modify a label image, while preserving not only the topology of each label set, but also the topology of any arrangement of the labels understood as the topology of any union of label sets. This approach enables in particular to unify and extend some previous attempts devoted to the same purpose
    corecore