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Abstract 

We present three themes of interest for future research that require the cooperation of fairly large 

teams: 
(1) linear spaces as building blocks; 

(2) data for an Atlas of linear spaces; 

(3) morphisms of linear spaces. 

1. About the early years of linear spaces in Brussels 

I would like to dedicate this paper to the memory of Paul Libois (1901-1990). 

Unaware of earlier work on linear spaces like the famous de Bruijn-Erdos theorem 

[lS], Libois coined the name ‘linear space’ and started lecturing on the subject in 

1961. He saw linear spaces as the simplest common generalization of projective and 

affine spaces [23,24]. His students would soon take over. I realized that linear spaces 

were related to conceptual developments such as linear subspace, dimension, hyper- 

plane and that these were perfect tools to build the common generalization of 

projective and affine geometry wanted by Libois. 

A fairly big manuscript of mine, written in 1967, remained unpublished [4]. When 

Dembowski’s [16] book appeared in 1968, I browsed through it in one night before 

giving a lecture in Frankfurt and realized that the problem of classifying all linear 

spaces whose planes are affine was apparently open. The solution was a nice reward 

for the theory of linear spaces [S] and that theme was later used by many other works. 

In 1968, Doyen [17] wrote the dissertation for his first degree, on the linear spaces of 

few points and on the behavior of their number for a given number of points. He went 

on with a thesis on Steiner systems [lS] and became quickly a world expert on linear 

spaces and Steiner systems. Doyen and Hubaut [19] obtained a strong reduction 

toward the classification of the finite linear spaces that are locally projective. 
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This should give an idea of the early consequences of Libois’s move and of the rise 
of a school on linear spaces among his students. Later this would grow further, in 
particular with Teirlinck and Delandtsheer. 

All of this brings me to the future of linear spaces. In 1968, I had become so 
enthusiastic about them that I saw linear spaces as the right setting in order to develop 
abstract incidence geometry. Doyen and I started writing a book [S] whose leading 
idea was: ‘Do it with points and lines’. We wrote about 100 pages and did never get 
further. In the 1970s Crapo and Rota [ 141 wrote along lines which were very close to 
the preceding idea. They felt that matroids were the right concept. 

Why did I give up with the idea? Dembowski [16] showed already that there were 
other important structures. The main stroke came from elsewhere. I was aware of Tits’ 
work. He was the prominent figure among Libois’ students. He was launching the 
theory of buildings. I started work on projective quadrics. I still did it with points and 
lines but not with linear spaces anymore. Buildings were opening new roads. Linear 
spaces were no longer the all embracing frame for incidence geometry. Projective 
spaces became the most important particular case of a huge variety of new structures 
that were as powerful as the former. There was little room left for the linear spaces. 
Around 1975, inspiration by diagram geometries, mainly the sporadic groups and 
their geometry, gave still another perspective on incidence geometry [6]. Today, 
incidence geometries seem to provide the right setting for the foundations. Linear 
spaces appear as one of the best candidates in order to be admitted among future 
‘quasi-buildings’ but the nature of these has to be clarified further by research. Linear 
spaces need to undergo the same fate as projective spaces. They need further internal 
exploration. However, instead of being the universal object from which there is no 
escape, they have to be studied as building blocks of more elaborate structures. 

2. Linear spaces as building blocks 

We shall use the terminology and conventions of diagram geometry, as in 
Buekenhout [7]. Let 

oL_ 

denote the class of linear spaces having at least two lines. Then 

L 
0 0 

k-l r-1 

denotes the Steiner systems with k points per line and r lines per point. 
Particular subclasses of interest are: 

- the projective planes represented by 

0 0, 
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- the affine planes represented by 

0 Af 0, 

- the ‘circles’ (linear spaces whose lines have two points) represented by 

0 c 0, 

- the unitals 

Ii 
0 0, 

- etc. 

What can be said of rank-3-geometries over diagrams using only L and the digons? 
These are: 

The incidence geometry r over such a diagram may be submitted io some global 
axioms such as (F) firm, (RC) residually connected, (IP) intersection property, etc. 

Class I: Assuming (F) and (RC), these are the planar spaces [6]. If we specialize to 
the finite 

L 
0 0, 

a b b 

we are exactly dealing with the Doyen-Hubaut situation [19]. Similarly, 

L 
o-- 

is giving the projective spaces of any dimension d 3 3, 

0 
4. L 

~-0 

a a+1 

is giving the affine spaces of dimension d 3 3, provided that a 3 3 [6]. What can be said 
of diagrams like 

u L 
0 0 0 

and specializations such as 

u u 
0 u 0 *fo, 0 0 o? 

How to go further with Doyen-Hubaut’s result? 
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Class II: A lot of work, assuming (F), (RC), (IP) has been done on the special case 

0 c 0 3 o (semi-biplanes). 

Neat results have been obtained with 

0 Af o Af* 0 [21,22]. 

May we hope something for 

cl u* 0 0 0 0 Af u* 3 0 o? 

Class III: Assuming (F), (RC), (IP), a striking classification was obtained by 

Sprague [30]. It would be most interesting to push this further. 

Class IV: Assuming finiteness, (F), (RC) and orders, the De Bruijn-Erdos theorem 

gives us a<b<c<a so a=b=c and 

therefore all residues are projective planes. Hence, class V vanishes into class IV. 

Would this hold true without orders? Probably yes. And without the finiteness 

assumption? I doubt it. 

Class V: What can be said? 

As a matter of fact, higher-rank diagrams are of interest too. These explorations 

require team work. At some time, they might unearth major new trends and lead to 

a less naive approach. 

There are other valuable themes. For instance, if f is equipped with a chamber- 

transitive group of automorphisms, a lot is known about the diagram 

A. 
In the finite case, the 

Frobenius group 7 : 3, 

a building [17]. 

planes have order 2 and the group induced on them is the 

see [32]. However, every projective plane can occur in such 

I must also mention that much is known about 

0 L c 0 

(see [26]). 

3. Data for an Atlas of linear spaces 

3.1. We consider only finite linear spaces. The project can be worked out with or 

without computers. 
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3.2. My source of inspiration is group theory. The Atlas of finite groups [13], the 

databases included in [lo] and many other data published or not, allow to derive 

many facts concerning geometries equipped with a fairly large automorphism group. 

3.3. In geometry, such a trend has been developed locally for at least 35 years and 

there is now a sudden interest for systematization at various places. This occurs far 

behind the movement in algebra. To my knowledge, there are few databases so far. 

A good example is provided by the tables in [a]. The linear spaces of at most 9 points 

were listed by Doyen [17]. As I understand from Doyen, the case of 10 points was 

settled on a computer by Glynn (1987), who gets 5250 such linear spaces, together with 

their automorphism group and Betten (1989) has shown that there are at least 232 923 

linear spaces on 11 points. All data known to us could usefully be collected, organized, 

completed and made available to a broad audience, especially young mathematicians 

who want to enter the field. 

3.4. Here are some suggestions that may help. Enumeration of 

(1) all linear spaces whose number of points is small, 

(2) same with additional conditions such as 

(3) a constant number of lines on each point (semi-Steiner systems), 

(4) Steiner systems S(2, k, u) with u small. There are at least 2 111 276 systems 

S(2,3 19) [31]. A list of all known projective planes of order n< 100. 

Lists of small planar spaces, small projective spaces, etc. 

3.5. Given a linear space L, we want an easy control over all linear subspaces of L. 
Several equivalences are of interest on the set of linear subspaces of L: orbits under the 

automorphism group, isomorphism, weak isomorphisms (some specified invariants 

are equal). 

3.6. Given L as above, we may want to know all of its restrictions to a subset of the 

point set. 

This interferes with themes such as Baersubplanes, unitals, curves, etc. 

4. Morphisms of linear spaces 

4.1. In projective geometry, there is a rich tradition concerning various kinds of 

(homo)morphisms (e.g. [ll, 12,20,25]). Rather deep questions have been solved. 

Some remain open. 

4.2. As to morphisms in the context of linear spaces, I can only mention my 

unpublished work [4] and Rossi [29]. Delandtsheer suggests to look at the literature 

on matroids. 

4.3. My feeling is that the problems in this area have not yet been presented in 

a unified context and that the subject requires a good deal of clarification. This is 

important for two reasons at least. In present day mathematics, a lot of attention is 

paid to categories and functors. The emphasis is laid on relations between classes of 

structures. This theme is not a standard one in incidence geometry and this may 

contribute to the relative isolation of the subject. The second reason is of another 
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nature. Many mathematicians believe that projective geometry is of no use because it 
is just a translation of linear algebra. This is only true at the surface. If it were true in 
depth, the statement would obviously apply to the various morphisms of projective 
geometry and this is not the case at all. 

4.4. In [4], I came up with a list of 14 pairwise nonequivalent concepts of 
morphism for a linear space and with the various implications among them. 

I would like to come back on that matter and display now more than 10’ 
definitions. How is this possible? 

4.5. As usual in such situations, the ‘secret’ lays in various equivalent ways to define 
a linear space. 

(1) Consider a linear space L = (9,s). Its structure may be described in terms of 
points and lines. But there are other ways. In addition to .!??, and instead of _Y, we may 
give one of 

(2) the ternary collinearity relation C; 
(3) the set of all linear subspaces Y; 
(4) the closure operator CO : for X E P, it gives (X) the linear subspace generated 

by X; 
(5) the set 9 of all free sets; 
(6) the set CY of all connected subspaces, i.e. subspaces that are not the union of 

two disjoint and nonempty linear subspaces 
(7) the set of connected subsets C99’ namely those sets of points in which no pair of 

points constitutes a line. 
(8)-( 14) The complementary sets of ,4”, . . . , CYY in the set 2” of all subsets of 9’. 
There is a paper by Bartolozzi [l] using such an idea. The data provided by CJ and 

one of LZ’, C, ,4”, CO, P, CY, CYY, or their complements are equivalent to (.P, 2). 
Here is a proof for (6). The minimal connected subspaces containing two points at 

least are the lines with more than two points. It is likely that more of such families can 
be found. Bruen suggested the set JY of all intersection sets namely those subsets of 
B that have a nonempty intersection with each line. I must confess that I do not see 
a proof, nor a counterexample. Cameron and Mazzocca [9] show that blocking sets 
do not work in general. 

4.6. A side question is to axiomatize linear spaces in terms of C, Y, . . , CYY or 
their complements. For C this was done in [S]. It is rather obvious for Y and CLO. 
How about other cases? 

4.7. Let L be a linear space, so L =(P’, 2) or better L= (9, 9, C, Y, CO, 9, 

CYY, etc.) and let L’ = (Y, Y, C’, . . . ) be another linear space. Defining a morphism 

c( from L to L’ involves three components: 
_ the set theoretic nature of a, 
_ the sense of the conservation requirement: on CI or on c(-l, 
_ the conservation requirement itself. 
4.7.1. The set theoretic nature of CI may be 
(1) a bijection from 9 onto P, 
(2) an injective mapping from 9 into Y, 
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(3) a mapping of 9 onto Y, 
(4) a function of 9 into 9’. 

There are meaningful examples for each. 
The empty set may be allowed to interfere in various ways. The list is not necessarily 

exhaustive. Ronse [28] working in the context of shape recognition, defines ‘digital 
isomorphisms’ and this time, CI is a relation. How does this interfere with linear spaces? 
From now on, let me assume that (3) holds. 

4.7.2. The sense of the conservation requirement provides two choices. 
4.7.3. The conservation requirement can be expressed in 14 ways (at least) using 

one of dp, C, 9, etc. I mean, for instance, that a(Z) E Y, but we could introduce 
further variations like XEY implies U(X) -C X’ where X’EY (or @(x) 1 x’ with x’EY, 
etc. Actually, our count is not correct since any set among 14 requirements, i.e. 
(214- 1) may be considered. 

4.7.4. Thus, we get easily more than 22. 2. (214- 1) = 131064 kinds of morphisms 

for linear spaces that are distinct at least in their phrasing. It is rather likely that the 
actual number of such definitions may grow to infinity. 

4.8. Of course, this is not very serious. Nobody can believe that such a simple- 
minded structure as linear spaces may require thousands of concepts of morphism. 

The point is to find an explanation and understanding for this situation. 
4.9. It may be useful, to some extent, to determine the implications and equiva- 

lences among some of the morphisms displayed above. Why? Linear spaces are too 
wild a structure for classification purposes. Morphisms of some kind may help to 
determine interesting subclasses. 

4.10. What happens if the preceding definitions are applied to the cases where L or 
L’ (or both) are projective spaces? 

If L, L’ are projective spaces over a division ring, how do the preceding morphisms 
translate in terms of algebra? Much is known already on this matter (see, for instance, 
[ll, 12,201). Interesting algebraic concepts such as field monomorphisms and valu- 
ations are involved in this. 

4.11. Some results. Let L, L’ be linear spaces and let c( be a mapping of 9 onto 8’. 
Let us write, for instance, dY to mean that CI preserves 9 in the direct way while UY 
means that it does so in the undirect way, i.e. for any subspace S’ of L’, cr-‘(S’)E~. 

Then the following implications and no more, hold among 12 (out of the 14) 
‘elementary’ types of morphisms defined earlier: 

This calls for more attention to uCY and to the ‘weakest’ morphisms dC (a classical 
one), dY and dCY. 
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Next, assume that c( is a bijection from 9 onto 9’. Then the following implications 

and no other, hold among the indicated types of morphisms: 

isomorphism - dCY -+ UC H dY +-+ dF 

1 

d9 t, uLY ++ u%fi dually 

$dCL’ - UCY + dC ++ UY - u9 

4.12. A suggestion made by Marchi. Forget L. =(9, 9) and consider a ‘functional 

approach’, i.e. L= (kF’,f) where f is a function defined on the set of pairs of 9 with 

values in the set of subsets of ~9”. Then other inspiration for morphisms may arise. 
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