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In successive deletion stages of parallel thinning algorithms for binary digital images, one 
usually checks the preservation of connectivity by verifying that: (a) every removed pixel is in- 
dividually deletable without modifying connectivity (well-known criteria, such as those of 
Rosenfeld and Yokoi, exist for that purpose); (b) every pair of 8-adjacent removed pixels is 
deletable without connectivity modification. In the case of the S-connectivity for the figure (and 
the 4-connectivity for the background), two more patterns must be tested for connectivity preser- 
vation: an isolated triple or quadruple of mutually 8-adjacent pixels. 

In this paper we give a formal characterization of these patterns for testing connectivity preser- 
vation by what we call minimal non-x-deletable sets (x-MND sets), where x= 4, 8, or !4,8) (the 
type of connectivity considered for the figure). A parallel thinning algorithm whose deledon stage 
cannot remove an x-MND set is guaranteed to preserve the connectivity properties of avly figure. 
We show that an x-MND set consists in either (R) a single pixel; or <2) a pair of 8-adjacent pixels; 
or (3) an isolated triple or quadruple of mutually 8-adjacent pixels (for x= 8 only). 

Keywords. Binary digital images, thinning, connectivity preservation, parallel algorithms, 
deletability, strong deletability, minimal nondeletable sets. 

1. Introduction 

Many thinning algorithms for binary digital images have been published, and still 
continue to appear in the literature. (We do not intend to survey them.) Their aim 
is to reduce a figure in a digital binary picture to a one-pixel thick sketch, called a 
skeleton, by removing from it successive layers of pixels. The skeleton must satisfy 
some constraints concerning its similarity with the original figure. They are mainly 
of two types [I]: 

(1) Geometrical: the skeleton must maintain the overall shape of the figure. 
(2) Top~l~,gical: the skeleton must preserve the connectivity properties of the 

figure and of its complement in the picture. 
Geor?ze#rica& constraints have always been st 
ueness can be considered as i 
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of mathematical morphology [lo]. Indeed, shape can be described in terms of basic 
templates called structuring elements. A skeleton of the figure can be obtained by 
taking reference pixels of all maximal structuring elements that fit into the figure 
[2,3, IO]. NOW there is no “objective” choice for the shape of structuring elements. 
For example, if one considers square structuring elements, a square will have a 
skeleton reduced to a single pixel; on the other hand, if one takes circular structuring 
elements, then that square will have a skeleton formed by its two diagonals. 

Qn the other hand, topological constraints can be characterized in a precise 
mathematical way. This was done in [5], and we will return to it later. 

Once topological and geometrical constraints have been defined, their combina- 
tion can be achieved in two ways. First one can try to incorporate them into the 
criterion for removing a pixel in a thinning algorithm; this is what is done in most 
cases. +A-(? npa nn 

bb,vLL , u lb -n adopt the methodology proposed by Davies and Fl-ummer 
[I]: one builds a geometrical skeleton (for example the distance skeleton) and mark 
its pixels as “nondeletable”, then one applies a thinning algorithm satisfying the 
topological constraints, with the further condition that pixels marked “non- 
deletable” cannot be removed. 

In this paper, which is in some way a continuation of 151, wc do not consider 
geometrical constraints, buz only topological ones. The problem that we consider 
is the following. There are two types of thinning algorithms: sequential ones and 
parallel ones. Both types consist in a repetition of deletion stages in which successive 
layers of pixels are removed, until further applications of that deletion stage do not 
remove new pixels. In a deletion stage of a sequential algorithm, one applies a 
removal criterion to every pixel in succession. When a pixel is removed from the 
figure, this is done before applying the criterion to the next pixel. Therefore the con- 
nectivity preservation in such an algorithm reduces to the connectivity preservation 
for the deletion of a single pixel, and there are well-known criteria for this 
[6,11,12]. 

0n the other hand, in a deletion stage of a parallel thinning algorithm, one applies 
a removal criterion to every pixel, and then all pixels satisfying it are removed ot 
the same time. Thus the property of connectivity preservation for the algorithm does 
not reduce to that property for the deletion of a single pixel, since! usually several 
pixels are simultaneously removed. One needs thus criteria for connectivity preser- 
vation of the deletion of a group of pixels. 

In most papers, authors test the connectivity preservation of their algorithm as 
follows, First every pixel satisfying the algorithm’s removal criterion must be indi- 
vidually deletable without modifying the connectivity for the figure and 
background, as in a sequential algorithm (we mentioned above that there are well- 
known criteria for this [6,11,12]). Second, any pair of 80adjacent pixels satisfying 
that algorithm’s removal criterion must be deletable without connectivity modifica- 
tion. Note however that in the case where we consider the 8-connectivity for the 

u& an algorithm satisfying these two conditions can nevertheless remove an 
isolated triple or quadruple of pairwise acent pixels in the fi ure (this fact tends 
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to be overlooked by authors of particular algorithms appearing in the literature). 
Such a method for testing connectivity preservation in a parallel thinning 

algorithm is empirical, and we need to have a precise formal criterion for this pur- 
pose, and to provide a mathematical justification for it. In [$] Wssenfeld 
characterized parallel thinning algorithms based on successive stages deleting N, W, 
S, and E pixels respectively; in other words he analyzed parallel thinning algorithm 
steps in which all removed pixels must have their neighbor in a given axial direction 
(N, W, S, or E) belonging to the background. In particular, he gave a criterion for 
the connectivity preservation for the deletion of E: group of pixels each having their 
neighbor in that direction belonging to the background. However our aim is to give 
such a criterion for any parallel thinning algorithm, without assumption of a decom- 
position into N, W, S, and E deletion stages. 

Qttr characterization in [S] of the topological require ments of thinning allows us 
to solve this problem. Given a figure r” in a digital grid G, and the background 
B = G \ F, we suppose that in a deletion stage a subset D of F is removed from it. 
For technical reasons (related to finiteness) we assume that G contains a rectangular 
frame @G such that @G and the set of all pixels outside it either are included in F, 
or are included in B, and D must be in the interior of @G (see the next section for 
more details). We must ensure that F and F \ D have the same “topology”. This 
can be envisaged in two ways 151. 

First we can simply require that F has the same number of connected components 
as F \ D, and LB has the same number of connected components as BUD. We say 
then that D is deletable from F. In fact, according to the type of connectivity that 
we consider for the figure F @he 4- or 8connectivity, or both), we say that D is 
x-deletable, where x=4, 8, or {4,8)_ (see Definitions 2.1 and 2.4 below). 

Second9 we may require a stronger assumption, namely that the set inclusion rela- 
tion c induces a bijection from the set of connected components of F \ D to the 
set of connected components of 17, and from the set of connected components of 
B to the set of connected components of BUD. We say then that D is strongly 

deletable frorm F, or more precisely that D is strongly x-deletable, where x= 4, 8, 
or (4,s)) according to the type of connectivity that we consider for F (see Defini- 
tions 2.2 and 2.4 below). 

Of coLrse, strong deletability is a stronger property than deletabihty, but when 
Lb is 4-connected, and in particular when D consists in a single pixel, they are 
equivalent (see Lemma 2.3 below). 

In [5] we argued that strong deletability of 0, rather than only its deletability, 
is the appropriate requirement for the preservation of connectivity properties. One 
important fact in favour of this view is the following result that we proved there (see 
also Proposition 25 below): D is strongly x-deletable from F iff D = { ~1, . . . 9 Pi) 9 
where for i= 1, . . . . t pixel pi is deletable from F \ { Pj 1 j< i} . In other words 
strongly x-deletable iff it can be removed from 
able individual pixels: this is what happens in 
there, a consequence of this result is that whe 
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F and F \ D have the same adjacency tree [4,7], and as we explained in [4], we 
can then consider that they have the same topology. 

Suppose now that D is the set of pixels removed by a deletion stage in a parallel 
thinning algorithm. If D is not deletable, then consider the smallest UC L) such that 
U is not deletable. Such a set U is not deletable, but every proper subset of it is 
deletable, and we call it a minima! nondeletable set. An interesting fact is that this 
property is independent of the choice of the deletability or strong deletability for 
U or for its subsets (see Corollary 3.2). However, it depends uporA the choice of the 
connectivity for F, and so we speak of a minima! non-x-deletable set, or in brief an 
x-A&VD set, where x=4, 8, or {4,8} (see Definition 3.3). 

Clearly D is strongly x-deletable whenever it does not contain an x-MND set - _ 

(otherwise we take the smallest UC D which is not strongiy M&t&k, and then U 
is a X-MND setj. Thus X-MND sets are the patterns which must be tested for con- 
nectivity preservation of a deletion stage in a thinning algorithm. We show in 
Theorem 3.5 that an x-MND set consists in a single pixel, a pair of B-adjacent pixels, 
or for x= 8 an isolated triple or quadruple of mutually &adjacent pixels. 

A deletion stage of a parallel thinning algorithm, which cannot remove x-MND 
sets from a figure, will in fact remove from it a strongly x-deletable sets of pixels, 
and so a succession of such stages will also remove a strongly x-deletable set. Thus 
this algorithm will preserve the connectivity of the figure. Hence we give a 
mathematical justification to the fact that, in a parallel thinning algorithm, the con- 
nectivity preservation can be verified by checking that every pixel or pair of 
&adjacent pixels satisfying the removal criterion of the algorithm is x-deletable, and 
moreover that for x= 8 an isolated triple or quadruple of mutually &adjacent pixels 
cannot vanish. In particular this explains the usual empirical test mentioned above, 
which is correct, but incomplete for the &connected case. 

Well-known criteria exist for checking the deletability of a pixel [6,11 y 121. Now 
a pair {p, q} of deletable pixels is deletable from F iff p is deletable from F \ {q} . 
We can thus very easily check whether a parallel thinning algorithm preserves con- 
nectivity. 

2. Preliminaries 

Let us give here the general background about binary digital images and recall the 
main definitions and results from [5]. 

Let 6 be a rectangular or quadruled grid consisting of p&&s. T+wo adjacency rela- 
tions can be defined on G, the 4-adjacency and the $-adjacency [6,9]. For k= 4 or 
8, the k-adjacency leads to the well-known notions of k-connectedpath, k-connect- 
edness, and to the partition of any subset of G into its k-connected components 
W,91. 

A two-tone or binary image on G is a map C--+ {i&l}. Pixels rmapped onto 1 are 
painted black and those map ed onto 0 are painted white. e call the set of black 
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pixels of G the figure and write it F; on the other hand, the set of white pixels of 
G will be called the background and written B. Clearly B= G \ F. 

For k = 4, 8, let k’ = 12 - k. It is well-known [4,63 that if k-connectedness is used 
for F, then the opposite one, namely the k’-cormectedness must be used for B. 
The k-adjacency graph [4,7] of the image F has as vertices the k-connected com- 

ponents of F and the k’-connected components of B, and has as edges the pairs con- 
stituted by a k-connected component of F and a k’-connected component of B 
which are $-adjacent (in fact they are 4-adjacent whenever they are B-adjacent). 

Although the grid G can be infinite, we will work only in a finite portion of it. 
We assume thus that all 4- and 8-connected components of F and B are enclosed 
in a bounded region, except one. Thus there is a rectangular frame @G such that 
@G and the portion of G surrounding it are either both included in For both includ- 
ed in G. In [5] ‘we called this requirement the restrictedJframe assumption, c?r in brief 
the RFA. Then the adjacency graph becomes a tree with the connected component 
containing #G on top, and whenever two vertices are adjacent, the one on the top 
of them corresponds to a connected component surrounding the other one pi. -We 
will not make any transformation outside @G, and so we can assume that @G is the 
boundary of G. Write GQ for the irrterior of G, in other words the set of pixels sur- 
rounded by @G. Note that Go is finite. 

We consider a subset D of F, and contemplate the deletion of D from F in thin- 
ning. The topological structure of F is characterized by the set of k-connected com- 
ponents of F, the set of k’-connected components of B, their adjacency and 
surrounding relations, and the relation of @G (and its surroundings) to F and B 
[4,7]. The preservation of the relation of @G (and its surroundings) to F and B 
means simply that when we delete D from F, pixels in @G (and around) may not 
change their tone. In other words we must have D E Go. Now the preservation of 
black and white connected components can be understood in tvo was: 

Definition 2.1 [S]. Let D E F and k = 4,8. Then we say that D is k-dele:abIe from Fif 
(i) DE Go, 

(ii) F has the same number of k-connected components as F \ 0, and 
(iii) B has the same number of k’-connected components as BUD. 

Definition 2.2 [S]. Let D c F and k = 4,8. Then we say that D is strongly k-de&able 
porn F ifm 

(i) D;GO; 
(ii) the containment relation 2 induces a bijection from the set of k-connected 

components of F to the set of k-connected components of F \ (in other words 
every k-connected component of F contains a unique k-connected component of 
F \ D and every k-connected component of F \ D is contained in a unique k-con- 
nected component of F); and 

(iii) the inclusion relation c induces a bijection 
ponents of B to the set of 

e set of k’-comnec 
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K-connected component of B is contained in a unique k’-connecteul component of 
BUD and every K-connected component of BUD contains a unique P-connected 
component of B). 

Note that the condition D c Go implies in particular that D is finite. In the strong 
deletability, we have thus a direct one-to-one correspondence between the black and 
white connected components in the two binary images (before and after the deletion 
of D). Clearly strong deletability is a stronger property than delztability. However 
we have the following: 

Lemma 2,3 [S]. Let D S F and k = 4, 8. If D is konnected (and in particular [f D 
contains a single p&e/), then D is &deletabIe fko.m _F i&f it is strongiy k-&&&e 
fPOrn F. 

We do not exclude the case where we consider both the 4- and Sadjacencies on 
F. We make thus the following: 

Definition 2.4 [5]. Let D c F. Then we say that D is (strongly) {4,8} -deletable from 
F if it is both (strongly) 4deletable from F, and (strongly) g-deletable from -F; 

In [S] we argued that strong deletability is the correct requirement for the connect- 
ivity preservation of the deletion of D from F. We proved the following 
characterization of strongly deletable sets: 

Proposition 2.5 [S]. Let D E F f7 Go, t = IDI, and let x= 4, 8 or {4,8}. Assume that 
t> 1. Then the following two statements are equivalent: 

(i) D is strong@ x-deletable from F. 
(ii) The elements of D can be labelledp l ,..., pt, insucha waythatfori=l,..., t 

pivel pi is x-deletable from F \ (Pi 1 j < i) . 

One consequence of this result is that F and F \ D have the same adjacency tree. 
Indeed, when we remove a deletable pixel p from F, a connected component of 
F \ {p} is adjacent to a connected component of BU {p} iff the corresponding 
connected component of F is adjacent to the corresponding connected component 
of B; we iterate this argument with the sequence of deletable pixels ~1, l . . , ptm As 
explained in [4], this adjacency tree characterizes the topology of F. 

Another consequence of this result is that it links the requirement of strong 
deletability to the basic methodology underlying thinning, that is the successive dele- 
tion of individual pixels from the figure. 

In the proof of Proposition 3.5 we obtained two lemmas which will be fundamen- 
tal here: 
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Lemma 2.6 [S]. Let lXFnG” andx=4, 8 or {4,8}. Suppose that D=D’UD”, 
where D’ CID” - - 0. T/ten any two of the following three statements imply the third: 

(i) 13’ is x-deletable fro 
(ii) Dn is x-deletable from F \ D’. 

(iii) D is x-deletable from F. 

Lemma 2.7 [S]. LetD cFf’IG” andx=4, 8 or (4,8}. Suppose that D=D’UD”, 
where D’ f? D” - - 0, D’ is x-deletable from F, D” is x-deletable from F \ D’, and 
so D is x-deletable from F (see Lemma 2.6). Then the following two statements are 
equivalent : 

(i) D is strongly x-deletable from F. 
(ii) D’ is strongly x-deletable from F and D” is strongly x-deletable from F \ D’. 

it 
As strong deletability reduces to the existence of a sequence of 
is important to give deletability criteria for individual pixels: 

deletable pixels, 

I,emlma 2.8 [S]. Let p E Fn Go and k = 4, 8. Then p is kgdeletabfe porn F iff there 
is exactly one k-connected component of F \ ( p) which is k-adjacent top and there 
is exactly one k’-connected component of B which is k/-adjacent to p. 

An interesting fact is that the k-deletability of a pixel p depends only upon the 
configuration of black and white pixels in the 3 x 3-neighborhood centered on it. 
For k= 4 or 8, let Nk(p) be the set of pixels k-adjacent to p. The following result 
was shown by Rosenfeld under the assumption that B is k’-connected, but his proof 
does not require it: 

Lemma 2.9 [6]. Let pi Fn Go and k=4, 8. Then p is kmdeletable from F iff 
FnNk(p)#0, Bf’lNkfi(p)#O, and FnN8(p) has exactly one k-connected compo- 
nent which is k-adjacent to p. In other words: 

(a) p is 4-deletable from F iff Ffl Rpb(p) +0, Bn Ns(p) +0, and Fn N*(p) has a 
&connected component containing Fbl N4(p). 

(b) p is 8-deletable from F iff FnNs(p)#O, BnN&p)# 
8-connected. 

The k-deletability of a pixel p can be tested by computing okoi’s k-connectivity 
numbers: p is k-deletable from F iff its k-connectivity number is equal to 1 (see 
[ 11,121 for more details). 

Now that we have recalled all previous results t 
our problem and characterize the patterns to be tested for the connec 

. 
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3. Mitimal nondeletable sets 

We suppose that a parallel thinning algorithm is applied to a figure F, and that 
during a stage of it, pixels in a finite nonvoid subset D of Fn Go are marked for 
deletion, and then removed together from F. In order to preserve the topology of 
F, the set D should be x-deletable, and even strongly x-deletable, where x= 4, 8 or 
{4,8} (the adjacency taken into account on F). 

However we do not know the a priori shape of D for an arbitrary figure F. We 
can nevertheless describe “forbidden features” that D cannot contain. Indeed, if D 
is not (strongly) k-deletable from F, then it contains a smallest nonvoid subset U 
which is not (strongly) k-deletable. Thus U is not (strongly) k-deletable from F, but 
every proper subset of U is. Then U will be called a minimal non-x-deletable subset 
of F. We will characterize such sets, but we must beforehand show that their defini- 
tion does not depend on whether we consider k-deletability or strong k-deletability: 

Lemma 3.1. Let VcFnGO, with V+0, and k==4, 8. Then the following two 
statements are equivalent: 

(i) Every nonvoid subset of V, including V itseu, is k-deletable from F. 
(ii) Every nonvoid subset of V, including V itseu, is strongly k-deletable from F. 

Proof. Clearly (ii) implies (i). We show the converse by induction on the size of a 
subset of V. We assume that every nonvoid subset of V (including itself) is 
k-deletable from F. Let WC_ V, with W#0. If 1 WI = 1, then by Lemma 2.3 the 
k-deletability of W implies its strong k-deletability. 

Suppose now that 1 q = t> 1, and that every IV’ E V such that O< 1 W’l et, is 
strongly k-deletable from F. Takep E Wand W’ = W \ {p} . As W= W’ U {p} and 
W’ are k-deletable, Lemma 2.6 implies that { p} = W \ W’ is k-deletable from 
F \ W’. Now {p} is strongly Xc-deletable from F \ W’ by Lemma 2.3, and the in- 
duction hypothesis states that W’ is strongly k-deletable from F. Then Lemma 2.7 
implies that W= W’U {p) is strongly k-deletable from F. By induction, every non- 
void subset of V, including itself, is strongly k-deletable from F. Cl 

Corollary 3.2. Let LJcFnG”, with l&0, and x=4, 8, or {4,8}. Then: 
(a) The following two statements are equivalent: 

(i) Every nonvoid proper subset of U is x-deietable from F. 
(ii) Every nonvoid proper subset of U is strongly x-deletable from F. 

(Is) If 0 satisfies (i) and (ii), then the following two statements are equivalent: 
(iii) U is x-deletable from F. 
(iv) W is strong& x-deletabe from F. 

. The equivalence tween (i) and (ii) follows by applying Lemma 3.1 to every 
nonvoid proper subset of U for any k= 4, 8 intervening in xc Now if we apply 
Lemma 3.1 to U for any k = 4,8 interve ing in x% we obtain that (i) and (iii) together 
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are equivalent to (ii) and (iv) together. Thus if (i) and (ii) hold, then (iii) is equivalent 
to (iv). •I 

Thanks to this last result, we can now define minimai nondeletable subsets of F 
without ambiguity concerning the choice of ordinary or strong deletability: 

Definition 3.3. Let UC Fn Go, with U#0, and x= 4, 8 or {4,8}. Then we say that 
the set W is minimal non-x-deletable from F (or in brief, that U is x-MND from F) 
if U is not (strongly) x-deletable from F, but every nonvoid proper subset of U is 
(strongly) x-deletable from F. 

Note that in this definition, we put the word “strongly” between parentheses in 
order to mean that the definition does not change whether we consider x-deletability 
or strong x-deletability for nonvoid proper subsets of U or for U itself. 

It is clear that if a nonvoid subset D of FnG” is not strongly x-deletable from 
F, then the smallest nonvoid subset of D (possibly D itself) which is not strongly 
x-deletable from F is an x-MND subset from F. Thus if we can characterize the 
possible shapes for an x-MND set, then we can garantee that D is strongly x-delet- 
able whenever it does not contain some particular patterns. We will classify 
x-MND sets in Theorem 3.5, after the following preliminary result: 

Lemma 3.4. Let al, a2, a3, a4 be four mutually 8-adjacent pixels of Go forming a 
square with diagonals (a,, a3 ) arod ( a29 a4). Let H be a figure such that 
aI, a3,ag E H and a2 $ H. Then for any k= 4, 8, a3 is k-deletable from H iff it is 
k-deletable from H \ (a, ) . 

Proof. We show below NS(a3) (up to a symmetry): 

a2 a3 l 

. . . 

Then N&Q) forms the following two configurations of black and white pixels in 
H and H \ {al) respectively, where e represents a black pixel, * a white one, and 
* one which can be either black or white: 

e 

0 

* 

e 

Q3 

jr 

* 

* 

* 

0 

0 

1 

* 

* 

* 

A k-connected path in HnNs(a3) which connects to CH~ a pixel b E 
distinct from aI and a4, cannot pass through a2 (since a2 
pass through aI (since a2 is the only pixel in J&(a3), a 
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jacent to a,). Thus every b E Hn_Iv,(q), either is al, and so is k-adjacent to a4, or 
is in H \ (al }, and in this case it is k-connected to o4 by a path in H nN8(a3) iff 
it is &connected to a4 by a path in (H \ {a,})nlv,(a,). In other words, 
HnN&) is k-connected through HnN8(a3) iff (H \ (al))nNk(a3) is k-con- 
nected through (H \ {a, })I7 N8(a3). By Lemma 2.9, this means that a3 is k-delet- 
able from H iff it is k-deletable from H \ { ar}. Note that we can also show it by 
checking that Yokoi’s k-connectivity numbers [11,12] are the same in both con- 
figurations shown above. Cl 

Theorem 3.5. Let U@nG*, with U#0, and x= 4, 8, or (4,8). Then U is an 
x-MND set from F iff one o,f the following holds: 

(i) U con&s in a single pixel which & not x-deletable from F. 
(ii) U is a pair of g-adjacent pixels which are x-deletable from F, but U is not 

x-dele?able from F. 
(iii) x= 8, U is a triple or a quadruple of pairwise &adjacent pixels, and U is an 

S-connected component of F (in other words, no pixel of F \ U is S-adjacent to U). 

Proof. It is easily seen that if (i), (ii), or (iii) holds, then U is x-MND from F. Let 
us now show the reverse. Let p and q be two arbitrary distinct pixels of U. Write 

v,=u \ {PI, Ua=U \ {qL v,,=U \ {Pd?), 

Fp=F \ Up, Fw=F \ WM. 

As Uw and U’ are both x-deletable from F and Uq = V,U { p}, Lemma 2.6 im- 
plies that p is xdeletable from F \ Uw - - Fw . As Up is x-deletable from F, U is not, 
and U= Cl”& ( p} , Lemma 2.6 again implies that p is not x-deletable from 
F \ Up’ Fp. It follows then by Lemma 2.9 that 

But Fw = FpU (q}, and so we deduce that q E N8(p). 
As p and q were arbitrarily chosen, the pixels of U are all pairwise &adjacent, 

and so it is easy to see that Ucontains at most 4 pixels. Hence either (i) or (ii) holds, 
or Uis a triple or a quadruple of pairwise $-adjacent pixels. We have only to show 
that (iii) holds in the latter case. We have two subcases: 

(a) U h a triple. We can write U= { pt, p2, p3), where p2 is 4-adjacent to p1 and 
p3. Let q be the pixel of G which is 8-adjacent to all three pixels pl, p2, p3 (clearly 
q E Go). Up to a symmetry, UU (q} forms the following configuration: 

PI q 

P2 P3 

Suppose that q E F. As p2 and {p2, p3} are x-deletable from F, Lemma 2.6 im- 
plies that p3 is x-deletable from F \ { ~2). Applying Lemma 3.4 with ~11 = PI 9 
a2cpp2, a3=p3, a4=q, and =F \ { p2}, we see that for any k intervening in x, 
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p3 is k-deletable from F \ ( p2} iff it is k-deletable from F \ { pl, p2}. Thus p3 is 
x-deletable from F \ (pl, p2} l By Lemma 2.6, as { pl, pz} is x-deletable from F, 
this means that U= { pl, pa, ~3) is x-deletable from F, a contradiction. 

Hence q $ F. Suppose now that x#8, and so 4 intervenes in X. Then p2 is 
4-deletable from F, and as pl,p3 E N4(p2)nF, Lemma 2.9 implies that p1 and p3 
are joined by a 4-connected path in FnN*(pz). We also proved above that qeF. 
Now we show below N8(p2): 

r2 P2 P3 

r3 f4 fs 

The only 4-connected path in Ns(p2) which joins pI to pl wIthout containing q 
is p :, tl , r2, r3, r4, Q, p3. Therefore rr , . . . , rs E ,F. %xn 

which is 4-connected and intersects Nd(p2). It follows by Lemma 2.9 that p2 is 
(4, 8).deletable from F \ { ~1, p3}. As { pl, pz} is x-deletable from F and p2 is 
x-deletable from F \ { pl, p3}, Lemma 2.6 implies that U= { pl, p2, p3} is x-delet- 
able from F, a contradiction. 

Hence x = 8. Suppose that U is not isolated, in other words there is some 
pixel r~ F \ U which is S-adjacent to some pi E U (i = 1, 2, or 3). Take j E 
{l,2,3}\{i}andk~{1,2,3}\{i,j}(inotherwords{i,j,k}={l,2,3}).As(p~) 
and {pi, pk} are 8-deletable from F, Lemma 2.6 implies that pi is 8-deletable 
from F \ { pk} . Lemma 2.9 implies then that Na(pi)n (F \ { pk)) is $-connected. 
As r, pi E Ns(pi) (7 (F \ (Pk}), they are &connected in Ns(pi) f7 (F \ ( p&, 

and in particular this means that there is some pixel se Ng(pi)n(F \ (pk)) 
which is &adjacent to pj, in other words SE F \ U and s is 8-adjacent to both pi 
and pj. We repeat this argument with s instead of r, and with (j, k, i) instead of 
(i, j, k), and so there is a pixel s’ E F \ U which is s-adjacent to both Pi and pkm 
We repeat this argument again, and there is a pixel s” E F \ U which is &adjacent 
to both pk and pi. Dow (1,3} must be one of the pairs {i, j}, {j, k), or {k,i}, 
and so there is a pixel in F \ U which is &adjacent to both p1 and p3. But we 

know that q is the only pixel of G \ U which is g-adjacent to both p1 and ~73, 

and that q$ F. We have thus a contradiction, and so U must be isolated. Hence 
(iii) holds. 

(b) U is Q qutadmp!c. Take any PE U. For any nonvoid proper subset V of 
U \ (p} p both VU {p} and {p} are proper subsets of U, and so are %-deletable 
from F; thus V is x-deletable from F \ {p} by Lemma 2.6. On the other hand, 

U=(U \ {P))U1P) is not x-deletable from F, and as (p) is, Lemma 2.6 implies 
that U \ {p} is not x-deletable from F \. (p) . ence U \ (p) is an x- 
from F \ {p} . Then (a) implies that x= 8 and that W \ {p) is 
in other words no pixel of (F \ {p)) \ ( \u is 
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of U \ {p). As p was arbitrarily chosen, this means that no pixel of F \ U is 
$-adjacent to a pixel of U. Therefore (iii) holds. D 

We can say more in the case (ii) of Theorem 3.5 when x= 8: 

Proposition 3.6. Let U = ( p, q} be a pair of diagonal& adjacent pixels of Fn Go. 
If U is an 8-MND set from F, then U is an g-connected component of F (in other 
words, no pixel of F \ U is g-adjacent to U). 

Proof. Suppose that there exist a pixel r~ F \ U which is 8-adjacent to U, say to 
q. As p, rE Ng(q) and q is 8-deletable from F, Lemma 2.9 implies that there is an 
8-connected path in Fn Ns(q) joining r to p. As r#p, this implies that there is 
some u E Fn Ns(q) which is 8-adjacent to p, in other words u is 8-adjacent to both 
p and q. Let v be the other pixel 8-adjacent to both p and q (thus p, u, q, v form 
a square). We have two cases: 

(a) v@ F. We apply Lemma 3.4 with a1 =p, a2 = v, a3 = q, a4 = u, and H= F, and 
so q is 8-deletable from F iff it is 8-deletable from F \ {p) o As { pI q} is an 8-MND 
set from F, we have a contradiction by Lemma 2.6. 

(b) VEF. We show below Ns(qj: 

P v l 

As q is 8-deletable from F, Lemma 2.9 implies that every pixel w E N*(q) such 
that w#v, is joined to v by an $-connected path in FnN*(q). If w#p and this 
path passes through p, it must also pass through u (since u is the only pixel of 
Ns(q)J apart from v, which is k-adjacent to p). As u is 8-adjacent to v, removing 
p from that path leaves it El-connected. Thus every pixel w E Ns(q) distinct from p 
and v, is joined to v by an 8-connected path in (F \ { p))nNs(q), and so Lemma 
2.9 implies that q is 8-deletable from F \ {p}, and we have again a contradiction 
by Lemma 2.6. Cl 

Note that, thanks to Lemma 2.6, in order to c&- .lb.,k that a pair {p, q) of $-adjacent 
pixels is x-MN’D from F, we can simply check that p and q are both x-deletable from 
F, but p is not _y-deletable from F \ {q} (or equivalently q is not x-dreletable from 

F \ 0). 
Theorem 3.5 with the refinement of Proposition 3.6 gives us a simple sufficient 

condition for a parallel thinning algorithm to preserve the connectivity properties 
of a figure. A deletion stage in such an algorithm applies a local removal criterion 
to all pixels of the figure (inside the frame of G), and deletes in parallel from that 
figure all pixels satisfying that criterion. We simply check that: (1) a figure pixel 

that removal criterion must be x-deletable (for example satisfies the condi- 
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tion given in Lemhma 2.9); (2) a pair of &adjacent figure pixels satisfying that 
criterion must be x-deletable; (3) if x= 8, an isolated triple or quadruple of pairwise 
&adjacent figure pixels will not be completely removed (in other words, contains 
at least one pixel which does not satisfy that criterion). If these three conditions are 
satisfied, we know that a deletion stage in this parallel algorithm will remove from 
a figure F a subset D of Fn Go which does not contain any x-MND set; then II will 
be strongly x-deletable from F. When we repeat this deletion stage, we remove from 
Fn Go successive strongly x-deletable sets Dr, . . . , D,. Thanks to Lemmas 2.6 and 
2.7, their union DI U l .0 UD, will be strongly x-deletable from F. 

The reader can check the connectivity preservation of various algorithms 
presented in the literature by verifying that their removal criterion does not allow 
the deletion of x-MND sets. 
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