736 research outputs found

    An investigation of speaker independent phrase break models in End-to-End TTS systems

    Full text link
    This paper presents our work on phrase break prediction in the context of end-to-end TTS systems, motivated by the following questions: (i) Is there any utility in incorporating an explicit phrasing model in an end-to-end TTS system?, and (ii) How do you evaluate the effectiveness of a phrasing model in an end-to-end TTS system? In particular, the utility and effectiveness of phrase break prediction models are evaluated in in the context of childrens story synthesis, using listener comprehension. We show by means of perceptual listening evaluations that there is a clear preference for stories synthesized after predicting the location of phrase breaks using a trained phrasing model, over stories directly synthesized without predicting the location of phrase breaks.Comment: Submitted for review to IEEE Acces

    Adapting Sequence to Sequence models for Text Normalization in Social Media

    Full text link
    Social media offer an abundant source of valuable raw data, however informal writing can quickly become a bottleneck for many natural language processing (NLP) tasks. Off-the-shelf tools are usually trained on formal text and cannot explicitly handle noise found in short online posts. Moreover, the variety of frequently occurring linguistic variations presents several challenges, even for humans who might not be able to comprehend the meaning of such posts, especially when they contain slang and abbreviations. Text Normalization aims to transform online user-generated text to a canonical form. Current text normalization systems rely on string or phonetic similarity and classification models that work on a local fashion. We argue that processing contextual information is crucial for this task and introduce a social media text normalization hybrid word-character attention-based encoder-decoder model that can serve as a pre-processing step for NLP applications to adapt to noisy text in social media. Our character-based component is trained on synthetic adversarial examples that are designed to capture errors commonly found in online user-generated text. Experiments show that our model surpasses neural architectures designed for text normalization and achieves comparable performance with state-of-the-art related work.Comment: Accepted at the 13th International AAAI Conference on Web and Social Media (ICWSM 2019

    An empirical analysis of phrase-based and neural machine translation

    Get PDF
    Two popular types of machine translation (MT) are phrase-based and neural machine translation systems. Both of these types of systems are composed of multiple complex models or layers. Each of these models and layers learns different linguistic aspects of the source language. However, for some of these models and layers, it is not clear which linguistic phenomena are learned or how this information is learned. For phrase-based MT systems, it is often clear what information is learned by each model, and the question is rather how this information is learned, especially for its phrase reordering model. For neural machine translation systems, the situation is even more complex, since for many cases it is not exactly clear what information is learned and how it is learned. To shed light on what linguistic phenomena are captured by MT systems, we analyze the behavior of important models in both phrase-based and neural MT systems. We consider phrase reordering models from phrase-based MT systems to investigate which words from inside of a phrase have the biggest impact on defining the phrase reordering behavior. Additionally, to contribute to the interpretability of neural MT systems we study the behavior of the attention model, which is a key component in neural MT systems and the closest model in functionality to phrase reordering models in phrase-based systems. The attention model together with the encoder hidden state representations form the main components to encode source side linguistic information in neural MT. To this end, we also analyze the information captured in the encoder hidden state representations of a neural MT system. We investigate the extent to which syntactic and lexical-semantic information from the source side is captured by hidden state representations of different neural MT architectures.Comment: PhD thesis, University of Amsterdam, October 2020. https://pure.uva.nl/ws/files/51388868/Thesis.pd

    Named Entity Recognition for English Language Using Deep Learning Based Bi Directional LSTM-RNN

    Get PDF
    The NER has been important in different applications like data Retrieval and Extraction, Text Summarization, Machine Translation, Question Answering (Q-A), etc. While several investigations have been carried out for NER in English, a high-accuracy tool still must be designed per the Literature Survey. This paper suggests an English Named Entities Recognition methodology using NLP algorithms called Bi-Directional Long short-term memory-based recurrent neural network (LSTM-RNN). Most English Language NER systems use detailed features and handcrafted algorithms with gazetteers. The proposed model is language-independent and has no domain-specific features or handcrafted algorithms. Also, it depends on semantic knowledge from word vectors realized by an unsupervised learning algorithm on an unannotated corpus. It achieved state-of-the-art performance in English without the use of any morphological research or without using gazetteers of any sort. A little database group of 200 sentences includes 3080 words. The features selection and generations are presented to catch the Name Entity. The proposed work is desired to forecast the Name Entity of the focus words in a sentence with high accuracy with the benefit of practical knowledge acquisition techniques

    Multilingual Neural Translation

    Get PDF
    Machine translation (MT) refers to the technology that can automatically translate contents in one language into other languages. Being an important research area in the field of natural language processing, machine translation has typically been considered one of most challenging yet exciting problems. Thanks to research progress in the data-driven statistical machine translation (SMT), MT is recently capable of providing adequate translation services in many language directions and it has been widely deployed in various practical applications and scenarios. Nevertheless, there exist several drawbacks in the SMT framework. The major drawbacks of SMT lie in its dependency in separate components, its simple modeling approach, and the ignorance of global context in the translation process. Those inherent drawbacks prevent the over-tuned SMT models to gain any noticeable improvements over its horizon. Furthermore, SMT is unable to formulate a multilingual approach in which more than two languages are involved. The typical workaround is to develop multiple pair-wise SMT systems and connect them in a complex bundle to perform multilingual translation. Those limitations have called out for innovative approaches to address them effectively. On the other hand, it is noticeable how research on artificial neural networks has progressed rapidly since the beginning of the last decade, thanks to the improvement in computation, i.e faster hardware. Among other machine learning approaches, neural networks are known to be able to capture complex dependencies and learn latent representations. Naturally, it is tempting to apply neural networks in machine translation. First attempts revolve around replacing SMT sub-components by the neural counterparts. Later attempts are more revolutionary by fundamentally changing the whole core of SMT with neural networks, which is now popularly known as neural machine translation (NMT). NMT is an end-to-end system which directly estimate the translation model between the source and target sentences. Furthermore, it is later discovered to capture the inherent hierarchical structure of natural language. This is the key property of NMT that enables a new training paradigm and a less complex approach for multilingual machine translation using neural models. This thesis plays an important role in the evolutional course of machine translation by contributing to the transition of using neural components in SMT to the completely end-to-end NMT and most importantly being the first of the pioneers in building a neural multilingual translation system. First, we proposed an advanced neural-based component: the neural network discriminative word lexicon, which provides a global coverage for the source sentence during the translation process. We aim to alleviate the problems of phrase-based SMT models that are caused by the way how phrase-pair likelihoods are estimated. Such models are unable to gather information from beyond the phrase boundaries. In contrast, our discriminative word lexicon facilitates both the local and global contexts of the source sentences and models the translation using deep neural architectures. Our model has improved the translation quality greatly when being applied in different translation tasks. Moreover, our proposed model has motivated the development of end-to-end NMT architectures later, where both of the source and target sentences are represented with deep neural networks. The second and also the most significant contribution of this thesis is the idea of extending an NMT system to a multilingual neural translation framework without modifying its architecture. Based on the ability of deep neural networks to modeling complex relationships and structures, we utilize NMT to learn and share the cross-lingual information to benefit all translation directions. In order to achieve that purpose, we present two steps: first in incorporating language information into training corpora so that the NMT learns a common semantic space across languages and then force the NMT to translate into the desired target languages. The compelling aspect of the approach compared to other multilingual methods, however, lies in the fact that our multilingual extension is conducted in the preprocessing phase, thus, no change needs to be done inside the NMT architecture. Our proposed method, a universal approach for multilingual MT, enables a seamless coupling with any NMT architecture, thus makes the multilingual expansion to the NMT systems effortlessly. Our experiments and the studies from others have successfully employed our approach with numerous different NMT architectures and show the universality of the approach. Our multilingual neural machine translation accommodates cross-lingual information in a learned common semantic space to improve altogether every translation direction. It is then effectively applied and evaluated in various scenarios. We develop a multilingual translation system that relies on both source and target data to boost up the quality of a single translation direction. Another system could be deployed as a multilingual translation system that only requires being trained once using a multilingual corpus but is able to translate between many languages simultaneously and the delivered quality is more favorable than many translation systems trained separately. Such a system able to learn from large corpora of well-resourced languages, such as English β†’ German or English β†’ French, has proved to enhance other translation direction of low-resourced language pairs like English β†’ Lithuania or German β†’ Romanian. Even more, we show that kind of approach can be applied to the extreme case of zero-resourced translation where no parallel data is available for training without the need of pivot techniques. The research topics of this thesis are not limited to broadening application scopes of our multilingual approach but we also focus on improving its efficiency in practice. Our multilingual models have been further improved to adequately address the multilingual systems whose number of languages is large. The proposed strategies demonstrate that they are effective at achieving better performance in multi-way translation scenarios with greatly reduced training time. Beyond academic evaluations, we could deploy the multilingual ideas in the lecture-themed spontaneous speech translation service (Lecture Translator) at KIT. Interestingly, a derivative product of our systems, the multilingual word embedding corpus available in a dozen of languages, can serve as a useful resource for cross-lingual applications such as cross-lingual document classification, information retrieval, textual entailment or question answering. Detailed analysis shows excellent performance with regard to semantic similarity metrics when using the embeddings on standard cross-lingual classification tasks
    • …
    corecore