3,593 research outputs found

    Processing Spatial Keyword Query as a Top-k Aggregation Query

    Get PDF
    We examine the spatial keyword search problem to retrieve objects of interest that are ranked based on both their spatial proximity to the query location as well as the textual relevance of the object’s keywords. Existing solutions for the problem are based on either using a combination of textual and spatial indexes or using specialized hybrid indexes that integrate the indexing of both textual and spatial attribute values. In this paper, we propose a new approach that is based on modeling the problem as a top-k aggregation problem which enables the design of a scalable and efficient solution that is based on the ubiquitous inverted list index. Our performance study demonstrates that our approach outperforms the state-of-theart hybrid methods by a wide margin

    Low-latency, query-driven analytics over voluminous multidimensional, spatiotemporal datasets

    Get PDF
    2017 Summer.Includes bibliographical references.Ubiquitous data collection from sources such as remote sensing equipment, networked observational devices, location-based services, and sales tracking has led to the accumulation of voluminous datasets; IDC projects that by 2020 we will generate 40 zettabytes of data per year, while Gartner and ABI estimate 20-35 billion new devices will be connected to the Internet in the same time frame. The storage and processing requirements of these datasets far exceed the capabilities of modern computing hardware, which has led to the development of distributed storage frameworks that can scale out by assimilating more computing resources as necessary. While challenging in its own right, storing and managing voluminous datasets is only the precursor to a broader field of study: extracting knowledge, insights, and relationships from the underlying datasets. The basic building block of this knowledge discovery process is analytic queries, encompassing both query instrumentation and evaluation. This dissertation is centered around query-driven exploratory and predictive analytics over voluminous, multidimensional datasets. Both of these types of analysis represent a higher-level abstraction over classical query models; rather than indexing every discrete value for subsequent retrieval, our framework autonomously learns the relationships and interactions between dimensions in the dataset (including time series and geospatial aspects), and makes the information readily available to users. This functionality includes statistical synopses, correlation analysis, hypothesis testing, probabilistic structures, and predictive models that not only enable the discovery of nuanced relationships between dimensions, but also allow future events and trends to be predicted. This requires specialized data structures and partitioning algorithms, along with adaptive reductions in the search space and management of the inherent trade-off between timeliness and accuracy. The algorithms presented in this dissertation were evaluated empirically on real-world geospatial time-series datasets in a production environment, and are broadly applicable across other storage frameworks

    Bridging the gap between algorithmic and learned index structures

    Get PDF
    Index structures such as B-trees and bloom filters are the well-established petrol engines of database systems. However, these structures do not fully exploit patterns in data distribution. To address this, researchers have suggested using machine learning models as electric engines that can entirely replace index structures. Such a paradigm shift in data system design, however, opens many unsolved design challenges. More research is needed to understand the theoretical guarantees and design efficient support for insertion and deletion. In this thesis, we adopt a different position: index algorithms are good enough, and instead of going back to the drawing board to fit data systems with learned models, we should develop lightweight hybrid engines that build on the benefits of both algorithmic and learned index structures. The indexes that we suggest provide the theoretical performance guarantees and updatability of algorithmic indexes while using position prediction models to leverage the data distributions and thereby improve the performance of the index structure. We investigate the potential for minimal modifications to algorithmic indexes such that they can leverage data distribution similar to how learned indexes work. In this regard, we propose and explore the use of helping models that boost classical index performance using techniques from machine learning. Our suggested approach inherits performance guarantees from its algorithmic baseline index, but at the same time it considers the data distribution to improve performance considerably. We study single-dimensional range indexes, spatial indexes, and stream indexing, and show that the suggested approach results in range indexes that outperform the algorithmic indexes and have comparable performance to the read-only, fully learned indexes and hence can be reliably used as a default index structure in a database engine. Besides, we consider the updatability of the indexes and suggest solutions for updating the index, notably when the data distribution drastically changes over time (e.g., for indexing data streams). In particular, we propose a specific learning-augmented index for indexing a sliding window with timestamps in a data stream. Additionally, we highlight the limitations of learned indexes for low-latency lookup on real- world data distributions. To tackle this issue, we suggest adding an algorithmic enhancement layer to a learned model to correct the prediction error with a small memory latency. This approach enables efficient modelling of the data distribution and resolves the local biases of a learned model at the cost of roughly one memory lookup.Open Acces

    Design and Implementation of a Middleware for Uniform, Federated and Dynamic Event Processing

    Get PDF
    In recent years, real-time processing of massive event streams has become an important topic in the area of data analytics. It will become even more important in the future due to cheap sensors, a growing amount of devices and their ubiquitous inter-connection also known as the Internet of Things (IoT). Academia, industry and the open source community have developed several event processing (EP) systems that allow users to define, manage and execute continuous queries over event streams. They achieve a significantly better performance than the traditional store-then-process'' approach in which events are first stored and indexed in a database. Because EP systems have different roots and because of the lack of standardization, the system landscape became highly heterogenous. Today's EP systems differ in APIs, execution behaviors and query languages. This thesis presents the design and implementation of a novel middleware that abstracts from different EP systems and provides a uniform API, execution behavior and query language to users and developers. As a consequence, the presented middleware overcomes the problem of vendor lock-in and different EP systems are enabled to cooperate with each other. In practice, event streams differ dramatically in volume and velocity. We show therefore how the middleware can connect to not only different EP systems, but also database systems and a native implementation. Emerging applications such as the IoT raise novel challenges and require EP to be more dynamic. We present extensions to the middleware that enable self-adaptivity which is needed in context-sensitive applications and those that deal with constantly varying sets of event producers and consumers. Lastly, we extend the middleware to fully support the processing of events containing spatial data and to be able to run distributed in the form of a federation of heterogenous EP systems
    • …
    corecore