
DESIGN AND IMPLEMENTATION OF A MIDDLEWARE

FOR UNIFORM, FEDERATED AND DYNAMIC

EVENT PROCESSING

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften
(Dr. rer. nat.)

dem Fachbereich Mathematik und Informatik
der Philipps-Universität Marburg

vorgelegt von

Bastian Hoßbach
aus Hessisch-Lichtenau

Marburg an der Lahn, 2015

Vom Fachbereich Mathematik und Informatik der
Philipps-Universität Marburg (Hochschulkennziffer: 1180)
als Dissertation am 12. Juni 2015 angenommen.

Erstgutachter: Prof. Dr. Bernhard Seeger
Zweitgutachter: Prof. Dr. Bernd Freisleben
Weitere Mitglieder der Prüfungskommission: Prof. Dr. Gabriele Taentzer

Prof. Dr. Thorsten Thormählen

Tag der mündlichen Prüfung am 17. Juni 2015.

Abstract

In recent years, real-time processing of massive event streams has become an impor-
tant topic in the area of data analytics. It will become even more important in the
future due to cheap sensors, a growing amount of devices and their ubiquitous inter-
connection also known as the Internet of Things (IoT). Academia, industry and the
open source community have developed several event processing (EP) systems that al-
low users to define, manage and execute continuous queries over event streams. They
achieve a significantly better performance than the traditional “store-then-process”
approach in which events are first stored and indexed in a database. Because EP
systems have different roots and because of the lack of standardization, the system
landscape became highly heterogenous. Today’s EP systems differ in APIs, execution
behaviors and query languages. This thesis presents the design and implementation of
a novel middleware that abstracts from different EP systems and provides a uniform
API, execution behavior and query language to users and developers. As a conse-
quence, the presented middleware overcomes the problem of vendor lock-in and dif-
ferent EP systems are enabled to cooperate with each other. In practice, event streams
differ dramatically in volume and velocity. We show therefore how the middleware
can connect to not only different EP systems, but also database systems and a native
implementation. Emerging applications such as the IoT raise novel challenges and
require EP to be more dynamic. We present extensions to the middleware that enable
self-adaptivity which is needed in context-sensitive applications and those that deal
with constantly varying sets of event producers and consumers. Lastly, we extend the
middleware to fully support the processing of events containing spatial data and to be
able to run distributed in the form of a federation of heterogenous EP systems.

iii

Zusammenfassung

In den letzten Jahren hat sich die Echtzeitverarbeitung von massiven Ereignisströ-
men zu einem wichtigen Thema im Bereich der Datenanalyse entwickelt. Sie wird
in Zukunft sogar noch wichtiger aufgrund günstiger Sensoren, einer wachsenden
Zahl von Geräten und deren allgegenwärtigen Vernetzung auch bekannt als das In-
ternet der Dinge (IdD). Hochschulen, Industrie und die Open Source Gemeinschaft
haben viele Systeme zur Ereignisverarbeitung (EV) entwickelt, die es Benutzern er-
möglichen kontinuierliche Anfragen auf Ereignisströmen zu definieren, zu verwal-
ten und auszuführen. Diese erzielen eine deutlich bessere Leistung als der tradi-
tionelle Ansatz, in dem Ereignisse zuerst in einer Datenbank gespeichert und index-
iert werden. Da EV-Systeme unterschiedliche Wurzeln haben und es keine Standards
gibt, wurde die Systemlandschaft sehr heterogen. EV-Systeme unterscheiden sich in
APIs, Verhalten und Anfragesprachen. In dieser Arbeit werden der Entwurf und die
Umsetzung einer neuartigen Middleware präsentiert, die von unterschiedlichen EV-
Systemen abstrahiert und Benutzern sowie Entwicklern eine einheitliche Plattform
anbietet. Damit überwindet die Middleware das Problem des Vendor-Lock-in und
ermöglicht unterschiedlichen EV-Systemen die Zusammenarbeit. In der Praxis unter-
scheiden sich Ereignisströme deutlich in Volumen und Geschwindigkeit. Wir zeigen
wie sich die Middleware nicht nur zu EV-Systemen verbinden kann, sondern auch zu
Datenbanken und einer nativen Implementierung. Anwendungen wie das IdD führen
zu besonderen Herausforderungen und benötigen eine dynamischere EV. Wir stellen
Erweiterungen der Middleware vor, die Selbst-Adaptivität ermöglichen, welche in
kontextabhängigen Anwendungen und jenen, die sich mit sich ständig ändernden
Mengen von Quellen und Senken befassen müssen, benötigt wird. Schließlich er-
weitern wir die Middleware um die Unterstützung der Verarbeitung von räumlichen
Daten und die Fähigkeit verteilt als Föderation heterogener EV-Systeme zu laufen.

v

Acknowledgements

First of all, I would like to thank my thesis advisor Prof. Dr. Bernhard Seeger for
supervising my research during the last years. In particular, I am deeply grateful for
all our fruitful discussions. A conservation with him was always inspiring and helped
me to solve problems as well as to generate new ideas. I also wish to thank Prof. Dr.
Bernd Freisleben who was kindly willing to review my thesis. At the department, I
would like to thank my present and former colleagues of the database systems and
distributed systems research groups as well as Mechthild Keßler. I would particularly
like to express a special thank you to Marc Seidemann who took over the development
of the B+-tree event store. The Java Event Processing Connectivity would not have
been possible without many committed students who assisted in the implementation.
In alphabetical order I would like to thank Sebastian Brust, Nikolaus Glombiewski,
Marcus von Keil, Christian Koch, Michael Körber, Andreas Morgen, Marcus Pinnecke,
Franz Ritter, Anneke Walter and Stephan Wöllauer. Last but not least, I would also like
to gratefully acknowledge the support of the German Federal Ministry of Education
and Research (Bundesministerium für Bildung und Forschung, BMBF) under grant
numbers 01BY1206A and 16BY1206A.

vii

Contents

I Introduction 1

1 Big Data in Motion 3
1.1 Introduction . 4
1.2 Data Stream Processing . 6
1.3 Event Processing . 8
1.4 Remainder of the Part . 9

2 Problems and Emerging Challenges of Event Processing 11
2.1 Introduction . 12
2.2 Heterogeneity . 12
2.3 Performance . 13
2.4 Dynamic Applications . 13
2.5 Temporal and Spatiotemporal Applications 14

3 Contributions of the Thesis 17
3.1 Introduction . 18
3.2 Abstraction and Unification . 18
3.3 High-Performance Event Processing . 18

3.3.1 Efficient Operator Implementations 19
3.3.2 Novel Optimization Techniques 19
3.3.3 Distributed Event Processing . 19

3.4 Dynamic Event Processing . 20
3.5 Temporal and Spatiotemporal Pattern Matching 21

ix

Contents

4 Outline of the Thesis 23
4.1 Introduction . 24
4.2 JEPC Core and JEPC Bridges . 24
4.3 JEPC Extensions . 25

II Core of the Middleware 27

5 Introduction 29
5.1 An Abstraction Layer for Event Processing 30
5.2 Design Goals and Principles . 31
5.3 Remainder of the Part . 31

6 Theoretical Foundations 33
6.1 Introduction . 34
6.2 Event Streams . 34
6.3 Event Processing Algebra . 37

6.3.1 Parameters . 37
6.3.2 Windows . 40
6.3.3 Event Processing Agents . 42

7 Design of the JEPC Core 49
7.1 Introduction . 50
7.2 Time, Events and Event Streams . 50
7.3 Event Processing Agents and Networks 52
7.4 Output Processors . 60
7.5 Event Processing Providers . 61
7.6 JEPC Query Language . 62

8 JEPC Bridges to Stream Processing Engines 67
8.1 Introduction . 68
8.2 Implementation of the API . 68
8.3 Compiler for EPAs . 69

8.3.1 Translation of the Snapshot-Reducible EPAs 69
8.3.2 Translation of the Pattern Matching EPA 71

9 JEPC Bridge to Standard Database Systems 73
9.1 Introduction . 74

x

Contents

9.2 Implementation of the JEPC Bridge to JDBC 75
9.2.1 Management of Events in Database Tables 75
9.2.2 Translation of the Snapshot-Reducible EPAs 76
9.2.3 Translation of the Pattern Matching EPA 76

9.3 Evaluation . 79

10 JEPC Bridge to Native EPA Implementations 85
10.1 Introduction . 86
10.2 Outline . 86

11 An Efficient Index for Large Sets of Continuous Queries 87
11.1 Introduction . 88
11.2 Preliminaries . 90
11.3 BE-Tree . 91

11.3.1 Predicate Mapping . 91
11.3.2 Structure of BE-Tree . 92
11.3.3 Local Reorganization . 97
11.3.4 Insert, Delete and Match . 101

11.4 Shortcomings in Event Processing Applications 103
11.4.1 Globally Non-Optimal Space Partitioning 104
11.4.2 Inefficient Clustering . 107

11.5 BE+-Tree . 110
11.5.1 Bulk Loading of BE-Trees . 111
11.5.2 Handling of Stuck Intervals . 116

11.6 Implementation . 122
11.6.1 Optimization of Boolean Expressions 124
11.6.2 Indexing of Arbitrary Boolean Expressions 124

11.7 Handling Dynamic Sets of Continuous Queries 125
11.8 Evaluation . 126

11.8.1 Globally Optimal Partitioning, Grid Tightening and Avoidance
of Empty Cells . 126

11.8.2 Interval Splits . 129
11.8.3 Benchmarks . 145

11.9 Related Work . 153

xi

Contents

12 Efficient Aggregation over Event Streams with Time-Interval Semantics 157
12.1 Introduction . 158
12.2 Standard Implementation . 158
12.3 Tree-Based Implementation . 162

12.3.1 The 2-3-Tree . 162
12.3.2 Managing Partial Aggregates in 2-3-Trees 163
12.3.3 The Agg-2-3-Tree . 165

12.4 Evaluation . 175
12.4.1 Scalability . 175
12.4.2 Simultaneous Events and Jumping Windows 176
12.4.3 Grouping . 178

12.5 Related Work . 181
12.5.1 Temporal Aggregation in Databases 182
12.5.2 Sliding Window Aggregation in Stream Processing 183

13 Conclusions 185

III Extensions to the Middleware 187

14 Introduction 189
14.1 Extending Event Processing Technology 190
14.2 Remainder of the Part . 191

15 Temporal and Spatiotemporal Pattern Matching over Event Streams 193
15.1 Introduction . 194
15.2 ASEQ Operator . 196

15.2.1 Symbols and Predicates . 197
15.2.2 Sequential Patterns . 198
15.2.3 Syntax . 199
15.2.4 Semantics . 199

15.3 TPStream Operator . 201
15.3.1 Temporal predicates . 201
15.3.2 Temporal Constraints . 204
15.3.3 Temporal Patterns . 205
15.3.4 Syntax . 207
15.3.5 Semantics . 208

15.4 Expressing Sequential Patterns . 209

xii

Contents

15.5 Expressing Spatiotemporal Patterns . 213
15.6 Implementation . 215
15.7 Evaluation . 219

15.7.1 Optimizing the Evaluation Order 220
15.7.2 Maximum Throughput under Varying Parameters 221

15.8 Related Work . 223

16 Automatic Matchmaking in Real-Time Data Stream Processing 227
16.1 Introduction . 228
16.2 Background and Motivation . 230

16.2.1 State-of-the-Art Connection Management 230
16.2.2 Benefits of Automatic Matchmaking 231

16.3 Matchmaking Problem . 232
16.3.1 Data Model . 233
16.3.2 Problem Statement . 234

16.4 Solutions . 235
16.4.1 Basic Transformations . 236
16.4.2 Naïve Matchmaking . 239
16.4.3 Optimized Matchmaking . 243
16.4.4 Fast Matchmaking . 244

16.5 Implementation . 248
16.5.1 Parallelization . 250
16.5.2 Query Updates . 251
16.5.3 Properties . 251

16.6 Evaluation . 252
16.6.1 Impact on Performance . 252
16.6.2 Evaluation of Matching Techniques 255
16.6.3 Evaluation of Pruning Techniques 256

16.7 Related Work . 259

17 Event Stores 263
17.1 Introduction . 264
17.2 Event Store Interface . 265
17.3 JDBC Event Store . 267
17.4 In-Memory Event Store . 268
17.5 B+-Tree Event Store . 268

xiii

Contents

18 A General Approach to Efficiently Updating Continuous Queries On-the-Fly273
18.1 Introduction . 274
18.2 Background . 274

18.2.1 Problem Description . 274
18.2.2 Dynamic Event Processing . 277

18.3 Update Method . 278
18.3.1 Preliminaries . 278
18.3.2 Algorithm . 283
18.3.3 Implementation . 285

18.4 Use Cases . 286
18.4.1 Anomaly-Based Detection . 286
18.4.2 Elastic Windows . 286
18.4.3 Query Optimization . 288

18.5 Related Work . 289

19 Query Optimization 291
19.1 Introduction . 292
19.2 Optimization Techniques . 293

19.2.1 Predicate Ordering . 293
19.2.2 Filter Push-Down . 294
19.2.3 Correlation EPA Ordering . 296
19.2.4 Optimization of Pattern Matcher EPAs 301

19.3 Implementation . 304
19.4 Evaluation . 306

19.4.1 Predicate Ordering . 306
19.4.2 Filter Push-Down . 308
19.4.3 Correlation EPA Ordering . 313
19.4.4 Optimization of Pattern Matching EPAs 314

20 Parallel and Federated Event Processing 317
20.1 Introduction . 318
20.2 Parallelization of JEPC . 318
20.3 Distribution of EPAs . 320

20.3.1 Classification . 321
20.3.2 Load Balancing . 325
20.3.3 Clustering . 325

20.4 Implementation . 327

xiv

Contents

20.5 Evaluation . 327
20.6 Related Work . 329

21 Conclusions 333

IV Thesis Conclusions and Future Research 335

22 Thesis Conclusions 337

23 Future Research 339
23.1 Introduction . 340
23.2 Additional JEPC Bridges . 340
23.3 What-If Analysis and Query Quality . 341
23.4 Application of Dynamic Event Processing 342

Appendices 343

A Development and Evaluation Details 345
A.1 Introduction . 346
A.2 Unit Tests . 346
A.3 Evaluation Framework . 346

A.3.1 Random Number Generator . 347
A.3.2 Event Generators . 353
A.3.3 Query Generators . 353

B Matchmaker Example 355
B.1 Introduction . 356
B.2 Wrapping Instances of JEPC . 356
B.3 Transformations . 356

B.3.1 Basic Transformations . 357
B.3.2 Combining and Adding Basic Transformations 360

B.4 Creating Queries . 360
B.5 Registering External Producers . 362
B.6 Processing of Events . 363
B.7 Runtime Adaptivity . 364

Bibliography 365

xv

Contents

List of Acronyms 387

List of Algorithms 391

List of Figures 393

List of Listings 399

List of Tables 401

Curriculum Vitae 403

xvi

Part I

Introduction

1

1
Big Data in Motion

Outline
1.1 Introduction . 4

1.2 Data Stream Processing . 6

1.3 Event Processing . 8

1.4 Remainder of the Part . 9

3

1 Big Data in Motion

1.1 Introduction

Over the last years, the processing and analysis of streaming data in real-time evolved
to an established and important class of data management in a broad range of do-
mains. Especially many business applications are facing real-time data more and
more. In such applications, information is updated continuously and often at a very
high rate. Hence, the information comes in the form of data streams that can be mas-
sive in terms of volume and velocity. Today’s stream processing technology does not
require data to be stored first as in traditional data management. Instead, new data
is processed efficiently by continuous queries on-the-fly. In particular, the processing
is done completely in main memory and incrementally. On new data, the output of a
running continuous query is updated and, thus, forms a new stream of data. Because
data streams can be huge or even unbounded, sliding windows are used to limit the
scope of continuous queries to finite and small sections of data streams. Those sliding
windows keep only the most recent data which is the most relevant data in nearly all
cases and continuous queries are evaluated only on the current content of the associ-
ated sliding windows. To motivate this technology, we present different application
domains that have to deal with big data in motion. The following examples are use
cases of stream processing technology in general and event processing in particular.

Fraud Detection. Credit card fraud is a big issue nowadays. The damage it causes
has a volume of billions of U.S. dollars worldwide every year. For instance, the bank-
ing industry estimated that losses through credit card fraud had a volume of 535
million British pounds only in the United Kingdom in 2007 [BBC]. Luckily, fraud-
ulent use of credit cards results in specific patterns appearing in the stream of transac-
tions. Stream processing technology is perfectly suited for searching patterns in those
streams in order to detect credit card fraud in real-time [SMP09]. This gives the oppor-
tunity to reduce or even avoid damage by canceling fraudulent transactions. Another
area where stream processing technology has been successfully applied for real-time
fraud detection is cellular telephony. Here, massive streams of call description records
are analyzed in order to detect mobile phone fraud [Gul10].

Healthcare. Modern intensive care units monitor critically ill patients by perma-
nently measuring a variety of vital signs such as heart rate, temperature or blood
pressure via body sensors. Typically, the most recent information is visualized on
screens and analyzed by healthcare professionals to detect changes in the condition of

4

1.1 Introduction

a patient as soon as possible. One medical professional is responsible for more than
one patient in general. In times where medical staff is absent, intensive care units must
analyze the sensor data by themselves and trigger an alarm when the condition of a
patient becomes worse. For detecting serious situations in real-time, stream process-
ing technology is optimal and has gained attention therefore [Blo10, HRP06, Sow10].

Internet of Things. Already today mobile devices outnumber people [Cis14]. And
in the near future, the number of mobile devices will continue to grow enormously.
Besides smartphones and tablet computers, also household appliances, cars, clothes,
and public infrastructures are attached more and more with embedded computers,
sensors and actors. Connected to the Internet and having unique IP addresses, all
those objects can interact with each other, become remotely controllable, and provide
enormous streams of information. This massive interconnection of everyday objects
over the Internet is known as the Internet of Things (IoT) [AIM10, VF13]. Its main
applications are automation and monitoring. Much work is currently done in the
areas of home automation (smart home), car automation (smart vehicle), and resource
management (smart grid and smart city) [Fre14, Mon13, Piy13]. Because there are
huge streams of information to analyze and because actions must be taken in time,
stream processing technology plays obviously a key role in the IoT.

IT Infrastructure Monitoring. Stream processing technology is ideal for perma-
nently monitoring objects. This is, for example, extremely important in the case of
IT infrastructures. Today’s companies rely so much on their IT infrastructures that ev-
ery single downtime and failure is very costly (up to millions of U.S. dollars per hour
downtime) [Con04]. Longer downtimes can even ruin some kinds of business (e.g.,
banks or cloud service providers). Possible threats are diverse and come from two
directions. First, hardware as well as software can fail. The holistic monitoring of both
is crucial to achieve high availability and to early detect problems that can impact the
performance [HFS12, Hoß11]. Second, IT infrastructures are confronted with attacks
coming from insiders as well as outsiders. Successful attacks not only might decrease
performance or make services unavailable, but also sensible and business-critical data
might be leaked. Attacks must be detected as they happen and sensible data should
be prevented from leaving the internal network. For instance, every network packet
having a target destination outside the intranet can be first scanned for sensible infor-
mation using stream processing technology [Kan08].

5

1 Big Data in Motion

Logistics. Today’s logistics is important for economies all over the world and quite
complex through its global scale. A single product is typically the result of a collabo-
ration of multiple partners organized in a supply chain [Chr11]. While some suppliers
provide the most basic resources and raw materials, others produce intermediate and
final products. At the end, distribution and sales partners take care of the delivery to
end consumers. Supply chains must work optimally all time and require continuous
monitoring, controlling and forecasting therefore. Many supply chains implement the
just-in-time production strategy [BS11]. This means that goods are moved upstream
to the next partner at the very moment they are needed. Just-in-time logistics leads
to more flexible supply chains and reduces the need of stores which saves costs but
makes the entire supply chain more vulnerable because there are no buffers to over-
come temporary problems. Stream processing technology is well-suited for synchro-
nizing entire supply chains accurately [TIB11].

Stock Market Analysis. The integration of stream processing technology into sys-
tems for stock market analysis and electronic trading is one of the most famous ex-
amples of its application [Agr08, Bar07, Dem07, DIG07, GÖ03, MM09, ZS02]. Stream
processing technology is excellently suited, because it is not only capable of process-
ing massive stock-ticker streams in real-time, but also able to detect complex patterns
that are of high interest in technical analysis [Bal13, SÇZ05].

1.2 Data Stream Processing

Data streams can be defined and modeled in many different ways. But in general,
a data stream is a potentially unbounded sequence of individual data items. In this
thesis, we use the expression data stream processing (or simply stream processing) as a
general term for any kind of tool, algorithm or system that consumes and processes
data streams in an online manner. This means that new data items are directly pro-
cessed without the need to store them first and that the result of the processing is
continuously updated as new data items arrive.

Figure 1.1 shows the three essential components of the stream processing
paradigm [Aba03, Bab02, Hoß13, HS13, SÇZ05]. First, there are data sources which
provide streams of data items. Second, the data streams are consumed and processed
by continuous queries (CQ). Third, the output streams of CQs are consumed by
data sinks. Note that it is fundamentally possible that a CQ consumes multiple data
streams or the output data streams of other CQs (both are depicted in the figure).

6

1.2 Data Stream Processing

CQ
CQ

CQ
CQ

Data
Source

Data
Source

Data
Source

Data
Sink

Data
Sink

Data
Sink

... ...

...

Figure 1.1: Data stream processing

In the above description, the data model of data streams and the processing performed
by CQs remain abstract. Since there are various areas focusing on different kinds of
data stream processing, our description is as abstract as possible in order to cover
them all. We introduce some important kinds of data stream processing in the fol-
lowing. The database systems community has developed data stream management
systems (DSMS) which are complementary to traditional database management sys-
tems (DBMS). In a DSMS, the CQs perform exactly the same type of processing that
is done by ad-hoc queries in a DBMS efficiently over streams of tuples (in particular
projection, filtering, aggregation, join and set operations such as union and differ-
ence). Many DSMSs evolved into general-purpose stream processing engines (SPE)
whose functionality goes beyond the functionality of DSMSs (e.g., pattern matching
over data streams is supported). For example, modern SPEs are Esper [Esp] (open
source), Odysseus [App12] (academia) and webMethods Business Events [web] (com-
mercial). DSMSs as well as SPEs provide powerful query languages, which are mostly
based on SQL [SQL], to define CQs. Query definitions are translated into directed
and acyclic operator graphs and compiled into final execution plans. The data mining
community has modified their basic algorithms (e.g., for clustering [BH06]) to one-
pass algorithms so that they can be applied in the form of CQs over data streams.
Furthermore, the publish/subscribe community has developed brokers that are capa-
ble of matching streams of messages against a large number of subscriptions. As a
final example, the IT security community has built intrusion detection systems (IDS)
(e.g., Snort [Sno]) that search for signs of penetration in massive network streams.

7

1 Big Data in Motion

1.3 Event Processing

The main area in which the research presented in this thesis was done is event pro-
cessing (EP) that is another specific kind of data stream processing. Event processing
focuses on the analysis of streams of events via basic operations. The notion of an
event comprises any type of information from either real world (e.g., position update
of a moving object, price update of a stock) or virtual world (e.g., notification about
changed state of a software component). In addition, every event is associated with
the point in time it happened. The analysis of event streams has a concrete objective
in general, namely the detection of situations of interests (SoI) in real-time.

Time

!

Situation
of

Interest

Impact

Reaction Costs

Options

Benefit

Figure 1.2: Situation of interest

Figure 1.2 motivates this aim of event processing. Single events as well as combi-
nations of events indicating a problem or an opportunity (we summarize both un-
der the term SoI) must be detected as early as possible in order to be able to take
(counter-)measures in good time. Otherwise, the benefit out of opportunities and the
total number of options decrease over time while the impact and the costs caused
by problems increase over time. Event processing supports the detection of SoIs by
providing basic types of CQs, called event processing agents (EPA), as atomic building
blocks for creating detection rules [EB09, EN10]. The most important types of EPAs
are as follows. The filter EPA is for selecting events having certain user-defined prop-
erties. A set of events can be summarized via the aggregation EPA using user-defined
aggregate functions. The correlation EPA joins two or more event streams on basis
of a user-defined correlation condition. Lastly, the pattern matching EPA detects user-
defined patterns in streams of events. The power of event processing lies not primarily
in the set of provided elementary EPAs, but in the possibility to arbitrarily compose
EPAs to more complex CQs called event processing networks (EPN).

8

1.4 Remainder of the Part

Occasionally and particularly in the context of pattern matching, EP is also called com-
plex event processing (CEP). In this thesis, we prefer the term event processing since
pattern matching is an important but only a small aspect of EP. The exact terminology
throughout this thesis is as follows. In the presentations of work specifically for event
processing we use the corresponding specialized terms (i.e., event, event stream, event
source, EPA, EPN, event sink). But some of the presented work is more general and
can be adopted by other kinds of data stream processing. Also when such work is
presented specifically in the context of event processing, we use the general terms of
data stream processing (i.e., data item, data stream, data source, CQ, data sink).

1.4 Remainder of the Part

The rest of the introductory part is structured as follows. Chapter 2 presents serious
issues of state-of-the-art event processing technology. Chapter 3 gives a high-level
overview of the contributions of this thesis. Chapter 4 outlines the rest of this thesis.

9

2
Problems and Emerging

Challenges of Event Processing

Outline
2.1 Introduction . 12

2.2 Heterogeneity . 12

2.3 Performance . 13

2.4 Dynamic Applications . 13

2.5 Temporal and Spatiotemporal Applications . 14

11

2 Problems and Emerging Challenges of Event Processing

2.1 Introduction

Although event processing has been in focus by academia and industry for over a
decade now, it is still a young technology facing many problems. In addition, new
and future applications such as, for example, IT security monitoring [Bau15] and the
Internet of Things cause challenges that cannot be successfully mastered by state-of-
the-art event processing technology.

2.2 Heterogeneity

In the absence of standards such as the famous query language SQL [SQL] of DBMSs
and generally accepted principles, the area of event processing became extremely het-
erogenous in terms of data models, APIs, query languages, query semantics, expres-
siveness, and processing behaviors. This problem is well-known and has been stud-
ied intensively [Bot10, CM12, Din13, Etz10, Hoß13, Jai08, Tat10]. But until now there
are no efforts to establish binding standards so that systems for event processing will
strongly differ also in the future and heterogeneity will remain a serious problem in
the event processing area. The consequences of high heterogeneity are manifold and
critical. Applications implemented with one specific EP system cannot be moved to
another EP system. Thus, applications are highly intermeshed with the used EP sys-
tem and cannot be shared or sold. Moreover, if the used EP system becomes no longer
suitable (e.g., the vendor goes out of business, an increased workload cannot be han-
dled anymore, or there is simply a better or cheaper alternative system), the exchange
for another EP system is nearly impossible, because it would require a costly rewrite of
the entire application (vendor lock-in). The same is true for extensions built on top of
a specific EP system. An extension to EP is platform-dependent and only compatible
with the system it was implemented for. To support multiple different EP systems, an
extension must be implemented for all EP systems separately. Again, heterogeneity
causes high costs and prevents universal extensions. Lastly but not less importantly,
different EP systems cannot cooperate in a federation. Let us take the supply chain ex-
ample of the last chapter. In the case that the partners of a supply chain use different
EP systems, it is quite hard to integrate the different systems in order to implement a
holistic monitoring of the entire supply chain. Based on their inherent incompatibility,
different EP systems also cannot work together in order to exploit synergies (from a
functionality point of view as well as from a performance point of view).

12

2.3 Performance

2.3 Performance

Good performance in terms of high event throughput and low latency is an important
issue in event processing. Many real-world event streams are already massive and ex-
pected to grow further in the future. As in any other area of data management, there
are good chances and various possibilities to improve the performance by better algo-
rithms or better implementations also in the event processing area. Furthermore, there
are plenty of opportunities to optimize (continuous) queries that are specified with re-
spect to a solid operator algebra. On basis of algebraic equivalences, operator plans
can be transformed into equivalent but more efficient operator plans. This powerful
technique of query optimization is an integral part of query compilers for DBMSs, but
only rarely implemented by existing EP systems.

The rise of MapReduce [DG08, Läm07] and NoSQL systems [Gro13] in the last
years clearly showed that challenging workloads can only be processed adequately
by distributed infrastructures. This is because data volumes grew significantly faster
than the performance of computing hardware. Of course, this development affects not
only batch processing, but also stream processing. Analogues to the past development
in the area of batch processing, distributed infrastructures will play an important role
in the future of stream processing. Therefore, the ability to efficiently run distributed
while still remaining easy to use will become crucial for EP systems.

2.4 Dynamic Applications

Independent of concrete EP systems, applications built on top are static during run-
time. The entire workflow from the external event sources through an EP system
up to final consumers is hard-wired. Changes of one element require manual adap-
tion of subsequent elements and of the connections between them. For example, it is
currently almost impossible to seamlessly integrate new types of event sources or to
update an existing event type at runtime (e.g., a temperature sensor measuring the
temperature in degrees Fahrenheit is exchanged for a new sensor that measures the
temperature in degrees Celsius). The problem of inflexibility becomes really serious in
cases where EP applications must connect to a constantly varying set of event sources
and event sinks. In order to enable novel applications such as the Internet of Things,
EP systems must be self-adaptive and need a more flexible way of connecting event
sources to queries, queries to other queries, and queries to event sinks as it is currently
provided by today’s EP systems.

13

2 Problems and Emerging Challenges of Event Processing

Another important aspect of state-of-the-art EP systems is that continuous queries are
static during runtime. Once created and started, the definition of a CQ cannot be
modified anymore. Updating a CQ requires to stop it, to redefine it and to deploy it
again. Then, it must be waited until the updated CQ reaches a consistent state. This
procedure is unacceptable in business-critical applications and not working in appli-
cations that need queries to be updated with high frequency. The inability to update
continuous queries on-the-fly leads to serious problems in context-sensitive applica-
tion domains and prevents anomaly detection via event processing. Context-sensitive
domains require applications to be highly adaptive. Otherwise, SoIs depending on a
specific context (e.g., time, location or the states of some objects) cannot be detected
adequately. Today’s static CQs are simply signatures specifying precisely the SoIs
they are looking for. Signature-based detection is known for being expensive (each
single SoI must be specified as a signature), potentially incomplete (there might exist
unknown or unexpected SoI without an active signature) and hard to maintain. On
the opposite side, perfect signatures have a 100 % detection rate and produce no false
positives. A different way of detecting SoIs is searching for anomalies. Anomalies
are significant differences from a normal state and behind each anomaly a problem
or an opportunity could be concealed [CBK09]. Anomaly detection can produce false
positives, but is inexpensive, complete (every anomaly is detected) and easy to main-
tain. Additionally and in comparison to the signature-based strategy, the detection of
anomalies discovers unexpected or even unknown SoIs as a side effect.

2.5 Temporal and Spatiotemporal Applications

The temporal dimension is inherent in event processing and separates event process-
ing from most other areas of data stream processing. In particular, every event is asso-
ciated with a point in time and CQs can always take into consideration the temporal
dimension. This allows, for example, to support sliding time windows that capture
the most recent events within a fixed range of time. However, some of the basic EPAs
still do not fully utilize the temporal dimension. Pattern matching is one of the most
famous and important basic EPAs. But the underlying detection model of existing
approaches is based on the sequential order of events and does not utilize the tempo-
ral dimension. In existing approaches, only three different relationships between two
events can be expressed in total. One event can happen before, after or at the same
time as another event. But the temporal information contained in every event allows
for expressing more detailed and manifold relationships between two events.

14

2.5 Temporal and Spatiotemporal Applications

Another problem is that all basic EPAs support neither spatial data types nor spatial
operations, because an event is not associated with a location by default. Spatial in-
formation, if present, must be manually encoded using elementary data types only.
Moreover, only simple spatial operations can be performed via provided functional-
ity. This workaround is quite limited when it comes to representing not only simple
geometries such as points, but also complex geometries such as lines and areas. Con-
sequently, the integration of EP systems into spatial applications is nearly impossible.
But there are numerous spatial applications which would benefit from event process-
ing technology. For example, the city of Stockholm has installed numerous fixed point
and moving sensors in order to monitor the city traffic [Kar12]. An automated traffic
management system that utilizes the sensor data must react timely. Event processing
technology would be ideal, but obviously there is a lot of spatial data involved.

15

3
Contributions of the Thesis

Outline
3.1 Introduction . 18

3.2 Abstraction and Unification . 18

3.3 High-Performance Event Processing . 18

3.4 Dynamic Event Processing . 20

3.5 Temporal and Spatiotemporal Pattern Matching 21

17

3 Contributions of the Thesis

3.1 Introduction

This thesis presents the design and implementation of a novel middleware for event
processing named Java Event Processing Connectivity (JEPC). Its aim is to overcome
the problems of state-of-the-art event processing technology described in Chapter 2.
Therefore, the contributions of this thesis coincide with improvements of existing fea-
tures of EP achieved by JEPC and novel features of EP introduced by JEPC. In the
following, we give a basic overview of the JEPC middleware.

3.2 Abstraction and Unification

JEPC provides an abstract view on EP. In particular, JEPC specifies a simple and clear
but complete API and query language for EP. The API is needed to create and main-
tain EP applications. For instance, event streams must be registered and continuous
queries must be created. A main feature of JEPC is the well-founded semantics of its
queries that is based on a solid theoretical foundation. Continuous queries can be de-
fined by composing EPAs to EPNs purely in Java or in a SQL-like query language. Via
a REST [Fie00] interface, JEPC is also remotely available as a Web service.

The abstraction from specific EP providers allows JEPC to unify them with respect
to APIs, query languages and behaviors. This is done by creating a tailor-made bridge
for each EP provider being supported. The bridges are used to map the API, query
language and behavior of JEPC to different EP providers. This concept enables not
only dedicated EP systems to implement the JEPC specification, but also database
systems and novel computing platforms such as GPUs and FPGAs. Besides JEPC
bridges to different stream processing engines, we also developed a bridge to JDBC
that enables every standard database system to support event processing and we offer
a direct implementation of the JEPC specification in the form of a bridge. This native
EP provider achieves high performance, because we can use very efficient algorithms
and implementations tailored to the JEPC specification.

3.3 High-Performance Event Processing

Since performance is one of the most important non-functional requirements of event
processing, it has been considered in several ways. JEPC provides efficient algorithms
and implementations for most essential tasks, includes a query optimizer and can be
easily distributed in many respects.

18

3.3 High-Performance Event Processing

3.3.1 Efficient Operator Implementations

The native EP provider of JEPC contains user-defined implementations of the basic
EPAs. For the filter and aggregation EPAs, we present novel algorithms and imple-
mentations that are superior to state-of-the-art algorithms and implementations. Fil-
tering is a simple but very important operation in event processing. Most applications
install a filter layer in front of the actual analysis of events. This is done for perfor-
mance reasons and naturally given in most cases, because query definitions usually
include filter conditions. Therefore, query indexes can be used to efficiently route in-
coming events directly to qualifying queries. We adopted the currently best perform-
ing query index and added several optimizations which further push the performance
of EP applications. Aggregation is a basic operation in every kind of data analytics
and event processing is no exception. With respect to the state-of-the-art algorithm
for aggregation over event streams with time-interval semantics, we present a new
algorithm that achieves a significantly better performance and scalability.

3.3.2 Novel Optimization Techniques

The foundation of JEPC queries is a temporal operator algebra. Therefore, we provide
a query optimizer that transforms operator plans on basis of algebraic equivalences
using rule-based and cost-based techniques. Besides the adoption of several efficient
and widely known techniques from the area of database systems, our query optimizer
also takes pattern matching EPAs into account. We introduce a novel transformation
that allows both the optimization of a single pattern matching query as well as the
optimization of an entire set of pattern matching queries.

3.3.3 Distributed Event Processing

Because challenging workloads require distributed event processing infrastructures,
JEPC applications can be distributed in any granularity. In particular, multiple in-
dividual JEPC instances can be distributed, entire EPNs can be distributed and also
single EPAs can be distributed individually. Since JEPC unifies different types of EP
providers under a common specification, a distributed JEPC infrastructure is allowed
to consist of different types of EP providers without any restrictions. We call such a
heterogenous infrastructure a federation. In a federation, we can take advantage of the
heterogeneity of EP, because different EP providers execute a concrete query with dif-
ferent performances in general. EPNs and EPAs can be distributed across a federation
so that they are executed by the best suited type of EP provider. JEPC includes a novel

19

3 Contributions of the Thesis

optimizer that distributes queries across a federation of different EP providers with
respect to not only load balancing, but also performance optimization. We show that
federated event processing infrastructures perform significantly better than the pure
parallelization of a single type of EP provider only.

3.4 Dynamic Event Processing

In order to address the special requirements of dynamic and context-sensitive applica-
tions, we propose a novel paradigm named dynamic event processing (DEP). Dynamic
event processing consists of two different components. Note that each of them can
also be used alone. First, continuous queries are made efficiently but safely updatable
on-the-fly in order to be able to react to changes in the context of an application. Sec-
ond, static and user-defined connections between the elements of a stream processing
application prevent them from being self-adaptive and are replaced by dynamic and
fine-grained connections which are automatically managed therefore.

The lack of update functionality for continuous queries makes the holistic manage-
ment of their life cycles impossible. We introduce an update method for continuous
queries that quickly enables an updated query definition by loading a new continuous
query having the updated definition with historical data items first and then safely
switches from the outdated continuous query to the new one. Because our method
depends on efficient recording and reloading of potentially massive data streams, we
also present the design and implementation of a high-performance stream store.

Regarding the problem of static and user-defined connections, we propose a hy-
brid approach that combines the high performance of fixed connections with a new
type of flexible publish/subscribe. In particular, we introduce the concept of auto-
matic matchmaking. Because of the high performance requirements, automatic match-
making still establishes fixed connections between the elements of a stream processing
application. But in contrast to state-of-the-art stream processing technology, all con-
nections are fine-grained and established automatically as well as dynamically when-
ever a data producer or data consumer is deployed or updated. This not only reduces
the effort of building and maintaining complex applications, but also enables the use
of stream processing technology in highly dynamic applications such as the ones from
the Internet of things. Furthermore, our proposed concept of matchmaking is able to
automatically handle semantic differences among the connected data producers and
data consumers in a declarative manner.

20

3.5 Temporal and Spatiotemporal Pattern Matching

3.5 Temporal and Spatiotemporal Pattern Matching

Because the sequence-based processing model of today’s pattern matching approaches
does not fully utilize the temporal nature of event processing, we present a novel
pattern matching EPA named TPStream for temporal pattern matching. TPStream is
for the detection of complex temporal patterns in event streams, but still able to detect
traditional sequential patterns. Therefore, it is an evolution of pattern matching rather
than a competing approach.

On the basis of TPStream, we present a general, simple and powerful way of ex-
tending EPAs by spatial functionality. In the special case of TPStream, this enables it
to process spatial data in order to detect spatiotemporal event patterns. The presented
procedure for extending an EPA by spatial functionality is not limited to TPStream
and can be easily applied to any other type of EPA making an entire EP system ca-
pable of interpreting and processing arbitrarily complex spatial data. Therefore, JEPC
provides a version of every basic EPA with full support of spatial data.

21

4
Outline of the Thesis

Outline
4.1 Introduction . 24

4.2 JEPC Core and JEPC Bridges . 24

4.3 JEPC Extensions . 25

23

4 Outline of the Thesis

4.1 Introduction

From an architectural point of view, the JEPC middleware consists of two main com-
ponents. The first component contains the JEPC core and JEPC bridges. Both are
necessary in every JEPC application. JEPC extensions are optional and belong to the
second main component. Consequently, the presentation of JEPC is divided into two
main parts one describing the JEPC core and JEPC bridges (Part II), the other describ-
ing the JEPC extensions (Part III). Besides the main parts, this thesis starts with an
introductory part (Part I) motivating the JEPC middleware and ends with Part IV that
summarizes the main findings and suggests future research directions.

JEPC Core

JEPC
Bridge

JEPC
Bridge

JEPC
Bridge

JEPC
Bridge

JEPC
Bridge

Raw EP
Provider

Raw EP
Provider

Raw EP
Provider

Raw EP
Provider

Raw EP
Provider

JEPC
Extension

JEPC
Extension

JEPC
Extension

JEPC
Extension

JEPC
Extension

Part II

Part III

Figure 4.1: Architecture of JEPC and thesis outline

4.2 JEPC Core and JEPC Bridges

Part II presents the core of JEPC which consists of the interfaces defining the API
and the specification of the query language. Also some of the available JEPC bridges
to different raw EP providers are presented. The combination of a raw EP provider
and its corresponding bridge constitute an implementation of the JEPC specification.
Figure 4.1 shows the set of all main elements of the core and their interaction. On top
of the JEPC core, end-users and developers can access a common event processing
API and query language that are independent of the raw EP provider beneath.

24

4.3 JEPC Extensions

4.3 JEPC Extensions

The core of JEPC offers a holistic API and query language for event processing and can
be used like any other EP provider to implement extensions to event processing tech-
nology. But the advantage of JEPC in contrast to raw EP providers is that extensions
on top benefit from JEPC in exactly the same way as applications on top. In particu-
lar, only one implementation of an extension is necessary to become compatible with
all by JEPC supported raw EP providers. Figure 4.1 illustrates the positions of JEPC
extensions in the overall architecture of JEPC. As in the case of applications, most ex-
tensions are purely on top of the core of JEPC. In certain cases it might be convenient
or necessary that parts of an extension are integrated into the JEPC core or into the
JEPC bridges (e.g., for performance reasons). This fact is also indicated in the figure.
Part III presents multiple JEPC extensions we developed with regard to the remaining
problems and challenges of EP technology listed in Chapter 2.

25

Part II

Core of the Middleware

27

5
Introduction

Outline
5.1 An Abstraction Layer for Event Processing . 30

5.2 Design Goals and Principles . 31

5.3 Remainder of the Part . 31

29

5 Introduction

5.1 An Abstraction Layer for Event Processing

This part presents the core of JEPC as well as multiple JEPC bridges to different SPEs,
standard database systems and native EPA implementations. The core of JEPC is a
virtual EP provider for EP applications from the user’s perspective. Similar to virtual
machines (e.g., CLR [Ric12], JVM [Lin14], LLVM [The14], Smalltalk VM [GR83]) that
make applications independent of the underlying platform (e.g., operating system,
computer architecture), the core of JEPC makes EP applications independent of the
underlying raw EP provider. The advantages of such an abstraction layer for event
processing are manifold. First, EP applications can be moved and shared between
different raw EP providers. Second, entire EP applications and collections of queries
(e.g., detection rules for specific attacks on computer systems) can be offered and sold
without being dependent on a concrete raw EP provider. Thus, an abstraction layer
overcomes the problem of vendor lock-in and helps to enlarge both user base and ac-
ceptance of event processing technology. Third, raw EP providers that have different
APIs, behaviors and query languages can cooperate in a federation. This is because
through the implementation of the abstraction layer raw EP providers are unified.
Fourth, extensions to event processing technology that are developed for a virtual EP
provider achieve exactly the same advantages as EP applications.

In the area of standard database systems, the success stories of ODBC [Gei95,
Mic15] and JDBC [And11, GUW08] clearly prove the importance and benefits of ab-
straction layers in data management. Even though there are a lot of parallels between
ODBC/JDBC and JEPC, the problems to solve are harder and more numerous in the
case of event processing than in the case of standard database systems. This is because
standard database systems have a standard, namely SQL [SQL]. Among others, SQL
clearly specifies a database query language in terms of syntax and, more importantly,
semantics. This specification is respected by all standard database systems so that
queries can be directly forwarded to database systems. In contrast, raw EP providers
differ dramatically in not only APIs, but also query languages. As a consequence,
an abstraction layer for event processing must specify a common query language be-
sides a common API. While it is relatively easy to unify the APIs of data management
systems of the same type, the unification of different query languages is a challeng-
ing problem. Therefore, an abstraction layer for event processing must incorporate
substantially more aspects than its counterparts for database systems.

30

5.2 Design Goals and Principles

5.2 Design Goals and Principles

JEPC as a whole and particularly the core of JEPC strictly follow a minimalistic design
principle. The core of JEPC specifies and provides only functionality that is essen-
tial for EP and that cannot be (efficiently) provided by composing already existing
functionality. This is mostly due to the process of unification. An abstraction layer
for different and heterogenous raw EP providers can only support functionality that
is explicitly or implicitly provided by all of them. Special functionality that is only
supported by few raw EP providers is not part of the JEPC specification therefore.
Furthermore, the more functionality part of the JEPC specification is the more likely
additional raw EP providers cannot be supported at all or only at high cost. Lastly, a
minimalistic JEPC core is maintainable, easy to learn and simple to use. Nevertheless,
we want the JEPC specification to be based on a sound theoretical foundation and to
comprise all essential functionality for EP so that it can substitute raw EP providers in
almost all applications including business-critical applications.

5.3 Remainder of the Part

The rest of this part is structured as follows. Chapter 6 specifies the data model and the
semantics of JEPC queries. Chapter 7 presents the API and the query language of the
JEPC core. Chapter 8 gives insights into the development of available JEPC bridges
to different SPEs. Chapter 9 describes a special JEPC bridge to JDBC that allows the
connectivity to all standard database systems. Another special JEPC bridge to native
EPA implementations is illustrated in Chapter 10. Its implementations of the filter and
aggregation EPAs are presented in Chapter 11 and Chapter 12 respectively. Chapter 13
concludes this part.

31

6
Theoretical Foundations

Outline
6.1 Introduction . 34

6.2 Event Streams . 34

6.3 Event Processing Algebra . 37

33

6 Theoretical Foundations

6.1 Introduction

In this chapter, we specify the semantics of JEPC queries in the form of a well-founded
temporal operator algebra which allows declarative query languages and graphical
query composers to be built on top. Our event processing algebra is mainly based on
the snapshot-reducible data stream algebra [KS09]. Snapshot-reducible means that the
algebra interprets a data stream as a sequence of snapshots and defines operators so
that they produce exactly the same output for each snapshot as its counterparts in the
extended relational algebra [Cod70, DGK82]. This approach not only carries over the
widely known and accepted relational algebra to event streams, but also makes JEPC
queries compatible with standard databases. For example, recorded event streams can
be queried via standard databases to reproduce the output of JEPC queries. However,
since pattern matching is not part of the relational algebra and operates on a sequence
of events rather than on a sequence of snapshots, we have to define it in addition and
must seamlessly integrate it into our event processing algebra.

6.2 Event Streams

Sequences are a natural data model to represent event streams [LWZ11] because they
occur in that form in practice. Then, an event stream E is a potentially infinite sequence
of events. Each event is a pair (p, t) consisting of a payload p and a timestamp t.
All payloads of an event stream are from the same domain. Timestamps are from a
discrete and totally ordered time domain. The meaning of an event is that p happened
at the instant of time t. All events of an event stream are ordered by their timestamps
and for events with identical timestamps there is no order defined.

Besides the representation of event streams as sequences, the snapshot-reducible
data stream algebra introduces another representation on the basis of multisets. This
representation can be derived from every event stream E by counting all identical

t t + 1 t + 2 t + 3 t + 4

Figure 6.1: Event stream as a sequence of snapshots

34

6.2 Event Streams

events (p, t) and aggregating them into a single logical event (p, t, n). The additional
number n denotes the total count of all identical events (p, t). For an event stream E,
the corresponding logical event stream EL can be produced via the function ηL:

EL = ηL(E) :=
{
(p, t, n)

∣∣ n = |(p, t) ∈ E| ∧ n > 0
}

A logical event stream can be best interpreted as a temporally ordered sequence of
snapshots. For each point in time there is exactly one multiset containing all valid
events. Because there is no order defined on the elements of a set, there is also no order
within single instants of time. Therefore, every snapshot is identical to a traditional
non-temporal database table. The snapshot of a logical event stream EL for a point in
time t can be obtained via the function τ:

τt(EL) :=
{
(p, n) | (p, t′, n) ∈ EL ∧ t′ = t

}
Figure 6.1 illustrates the interpretation of an event stream as a sequence of snapshots.
It shows five snapshots in total along the timeline. The first snapshot at time instant t
contains three different events (diamond, triangle, and square) each appearing exactly
one time. Snapshots such as the second at time instant t + 1 may also be empty. Fur-
thermore, it might be possible that an event is contained in multiple successive snap-
shots. For instance, the event circle is valid at the instants of time t + 2, t + 3 and t + 4.
In this case, its valid time can also be encoded as the closed time interval [t + 2 : t + 4]
or as the half-open time interval [t + 2 : t + 5) respectively. We use time intervals in
our implementation, because it is a more compact representation of long-living events
and allows for more efficient processing (see Chapter 7 for details).

Note that simultaneous events are allowed to be in any order without affecting
the output of operators. According to Lamport’s happend-before relation [Lam78],
simultaneous events have no total temporal order because none of them happened
before the others. While every event stream E can be easily transformed into its logi-
cal representation EL via ηL, the inverse transformation η can only be clearly defined
for the specific case where the logical event stream has no snapshots that contain more
than one event (i.e., the event stream has no simultaneous events at all). But because
the snapshot-reducible algebra is defined on logical event streams and some opera-
tors such as the pattern matching operator require strict event sequences, we need an
inverse transformation η for logical event streams that is total:

< (p, t), (p′, t′), . . . >=E
ηL

**
EL

η
ii = {(pi, ti, ni)}i=1,2,3,...

35

6 Theoretical Foundations

t EL T1 T2

101 (A,101,1) (A,101,1) (A,101,1)
102 (B,102,1), (C,102,1) (B,102,1) (C,102,1)
103
104 (D,104,1) (D,104,1) (D,104,1)

Table 6.1: Universes of a logical event stream

To solve the problem, we define that operators requiring event sequences handle si-
multaneous events as alternatives. Then, for each point in time there can exist at most
one event in a sequence. Whenever two events happened at the same time instant t,
then there are two different interpretations called universes in the following. One of
the events happened in some universe T1 at time instant t and the other event hap-
pened in a different universe T2 at time instant t. This approach has clear semantics
and is implemented by some existing systems [Dem07, web]. Table 6.1 explains the
concept of universes by an example. The logical event stream shown in the second
column has simultaneous events with payloads B and C at the point in time 102. Two
different event sequences T1 and T2 that are both totally ordered can be derived from
the logical event stream. They are shown in the righthand columns and differ at time
instant 102. One event sequence contains the event with payload B and the other
contains the event with payload C. For a logical event stream EL the corresponding
multiset containing all universes T of EL can be created via the function ηU :

EU = ηU(EL) :=
{
(T, n)

∣∣∣∣ ∃X ⊆ EL :
(

X =
{
(p1, t1, n1), (p2, t2, n2), . . . , (pk, tk, nk)

}
∧ ∀i ∈ [1 : k) :

(
ti < ti+1 ∧ ∀t′ ∈ (ti : ti+1) : 6 ∃(p′, t′, n′) ∈ EL)

∧ ∀t′ < t1 : 6 ∃(p′, t′, n′) ∈ EL ∧ ∀t′ > tk : 6 ∃(p′, t′, n′) ∈ EL)
∧ T =

{
(p, t, 1)

∣∣(p, t, n̂) ∈ X
}
∧ n = ∏

(p,t,n̂)∈X
n̂
}

A universe T in ηU(EL) is a totally ordered sequence and consists only of events that
are also contained in EL. Furthermore, all events in T have unique timestamps and T
has no holes. A hole exists if and only if there is at least one event (p′, t′, n′) in EL but
no event in T at the instant of time t′. Because a universe T can be derivable multiple
times from EL, the number n denotes the multiplicity of T. Note that the index k is
only used to indicate the last timestamp in EL. This index can be arbitrarily large in
case of an unbounded event stream.

36

6.3 Event Processing Algebra

6.3 Event Processing Algebra

This section presents the operator algebra that specifies the semantics of JEPC queries.
Each basic type of EPA is represented by its own operator. Because all basic types of
EPAs are part of an algebra, they can be composed arbitrarily to EPNs.

6.3.1 Parameters

Every basic type of EPA is customizable by users via parameters. Therefore, there
are also specifications for Boolean expressions (BE), aggregates and event patterns
needed. These parameters are introduced first.

6.3.1.1 Boolean Expressions

The algebra BE = (C, V, P, O) describes all Boolean expressions. Each component
of the algebra is explained in Table 6.2. Of course, BEs can consist of constant val-
ues such as numbers and strings. Besides constants, there are variables that have no
fixed values. The values of variables must be set before evaluating a BE. Predicates
are Boolean-valued functions that can be applied to constants and variables. To create
more complex expressions, BEs can be connected with the help of operators. Addi-
tionally, we define the set of all terms T as T := C ∪V. The syntax of a Boolean
expression ϕ ∈ BE is defined inductively as follows:

• ϕ = p(a, b), with p ∈ P, (a, b) ∈ T×T

• ϕ = ψ ◦ χ, with ◦ ∈ O, (ψ,χ) ∈ BE × BE

Each binary predicate on two terms is a syntactically correct BE and the application of
the operators to BEs results in a new BE. To define the semantics of BEs, we need the
notion of an interpretation. An interpretation f exchanges each variable for a constant
value and maps constant values to themselves so that each predicate on terms can be

Component Symbol Examples / Definition

Constants C “ABC”, 1000, 1/4 ∗ 42, . . .
Variables V X, Y, Card_No, Amount, . . .
Predicates P P := {<,≤,=, 6=,≥,>}
Operators O O := {∧,∨}

Table 6.2: Components of Boolean expressions

37

6 Theoretical Foundations

evaluated to either TRUE or FALSE. Because BEs are always evaluated in the context of
an event (p, t), we use the notion f (p, t) later in this chapter. An interpretation f (p, t)
exchanges each variable (that must be identical to the name of an event attribute) for
the value of the associated event attribute of a given event. Now, the semantics of a
Boolean expression ϕ ∈ BE can be defined with respect to the syntax:

• ϕ f = p(x, y) :⇔ p(x f , y f)

• ϕ f = ψ ∧ χ :⇔ ψ f and χ f

• ϕ f = ψ ∨ χ :⇔ ψ f or χ f

6.3.1.2 Aggregates

Aggregates are functions that reduce a set of events with payload from the same do-
main to exactly one new event whose payload can be from another domain. All ag-
gregates are summarized in the set A:

A := {max, min, avg, stddev, count, sum}

These standard aggregates (maximum, minimum, average, standard derivation, count
and sum) are supported by JEPC.

6.3.1.3 Patterns

A pattern is a regular expression over symbols that specifies a (potentially infinite) set
of totally ordered symbol sequences. Symbols are emitted by events on the basis of
user-defined conditions. Each symbol definition consists of a condition in the form of
a Boolean expression ϕ ∈ BE and an optional binding of global variables:

Symbol ← svar1←X,var2←Y,...[ϕ f (p,t,var1,var2,...)]

The optional binding of global variables (var1, var2, . . .) is used to hold globally at-
tribute values (X, Y, . . .) of the event that emits the corresponding symbol. Within a
symbol condition ϕ variables can be attributes of the payload, the timestamp and all
initialized global variables. Whenever a symbol is reused later in a pattern, its condi-
tion and variable bindings must not be repeated. The following grammar describes all
legal patterns P over symbols:

P← ∅ | Symbol | PP | (Symbol|Symbol) | Symbol∗ | Symbol+ | Symbol{n ∈N}

38

6.3 Event Processing Algebra

The empty pattern as well as a single symbol are legal patterns. Patterns are allowed
to be concatenated in order to create sequences. Two symbols can be alternatives.
This means that only one of the symbols must occur. Finally, the Kleene star, the
Kleene plus, and the exact count operators can be applied to a symbol. The Kleene
star operator means that a symbol is allowed to occur any number of times in a row.
The Kleene plus operator is equal but forces the symbol to occur at least once. The
exact count operator requires that the symbol occurs exactly n times in a row.

For example, a simple fraud detection on a stream of credit card transaction events
can be implemented by searching for the pattern Pf raud. Each credit card transaction
event consists of the credit card number (card_no) and the amount (amount):

Pf raud := acard←card_no[amount > 1, 000]

b[card_no 6= card]∗c[card_no = card ∧ amount > 1, 000]b∗cb∗c

b∗d[card_no = card ∧ amount > 1, 000]

The pattern Pf raud defines all event sequences in which the same credit card was used
five times in a row with an amount greater than 1,000 each time. In a fraudulent
sequence, the first transaction event emits the symbol a. At this point, the credit card
number is assigned to the global variable card. After the symbol a, the pattern b∗c
must occur exactly three times. Symbol c in the pattern represents the next fraudulent
use of the credit card (i.e., the same credit card was used with an amount greater than
1,000 again) and any number of transaction events for other credit cards are allowed to
be mixed in (symbol b with the Kleene star). The pattern ends with the fifth fraudulent
transaction event (symbol d). Before the last fraudulent transaction event occurs, any
number of transaction events for other credit cards are again allowed to be mixed in
by reusing the symbol b with the Kleene star.

t EL ωtime
3 (EL)

101
102 (A,102,1) (A,102,1)
103 (A,103,1)
104 (B,104,7) (A,104,1), (B,104,7)
105 (B,105,7)
106 (B,106,7)
107

Table 6.3: Time window example

39

6 Theoretical Foundations

6.3.2 Windows

Windows are required for increasing the valid time of events in order to control the
states of stateful operators [Krä07, PS10]. In particular, they allow to express continu-
ous queries that take into account all events within a user-defined range of time or a
user-defined number of the most recent events.

6.3.2.1 Time Window

The time window operator ωtime extends the valid time of each logical event (p, t, n)
of its input event stream by any range of time. A user-defined parameter w controls
the size of the extension. At each instant of time in the half-open interval [t : t + w)

the input event occurs additionally n times in the output stream:

ωtime
w (EL) :=

{
(p, t′, n′)

∣∣∣∣ ∃X ⊆ EL : X =
{
(p, t, n) ∈ EL |

max{t′ − w + 1, 0} ≤ t ≤ t′
}
∧ X 6= ∅ ∧ n′ = ∑

(p,t,n)∈X
n
}

For example, to continuously evaluate an aggregate over the x most recent time in-
stants of an event stream, a time window of size x must be applied before the aggre-
gation operator. Table 6.3 shows a time window in action. The event stream given in
the second column consists of the event A at the point in time 102 and seven times of
the event B at the point in time 104. In the third column, the output of a time window
operator with w = 3 is shown. Each event of the input event stream occurs in the
output not only at the original point in time, but also at the two subsequent ones.

6.3.2.2 Count Window

The count window operator ωcount extends the valid time of each incoming logical
event (p, t, n) such that exactly the N most recent events are valid at every point in
time. Therefore, the size of the extension is not fixed as in the case of time windows:

ωcount
N (EL) :=

{
(p, t′, n′) | ∃X ⊆ EL : X = {(p, t, n) ∈ EL |

max(γ(t′, EL)− N + 1, 1) ≤ γ(t, EL) ≤ γ(t′, EL)} ∧ X 6= ∅

∧ n′ = ∑
(p,t,n)∈X

n

}
, with γ(v, EL) :=

∣∣∣{(p, u, n) ∈ EL|u ≤ v
}∣∣∣

40

6.3 Event Processing Algebra

t EL ωcount
2 (EL)

101
102 (A,102,1) (A,102,1)
103 (B,103,1) (A,103,1), (B,103,1)
104 (C,104,1) (B,104,1), (C,104,1)
105 (B,105,1), (C,105,1)
106 (U,106,1) (C,106,1), (U,106,1)
107 (V,107,1) (U,107,1), (V,107,1)

Table 6.4: Count window example

Supposing that an aggregate shall be continuously evaluated not over the x most re-
cent time instants but over the x most recent events of an event stream, a count win-
dow with N = x instead of a time window must be applied before the aggregation
operator. Table 6.4 shows the output of a count window with N = 2 in the third col-
umn for an input event stream given in the second column. At every point in time,
exactly the two most recent events of the input stream occur in the output stream.

6.3.2.3 Partitioned Window

The partitioned window operator ωpartition first partitions an event stream via a func-
tion β and then applies a time or count window to each partition separately. Its output
stream is the union of the output streams of all separately applied windows. The func-
tion π is for obtaining all events belonging to the same partition:

ω
partition
β,N (EL) :=

k⋃
i=1

ωtime/count
N (πi(β(EL)))

A partitioned window only makes sense in combination with count windows. In com-
bination with time windows a partitioned window has no effect [Krä07].

6.3.2.4 Reduction

The reduction operator ω−1 reduces an event with arbitrary valid time to its very first
occurrence. To be more precise, the first occurrence of every individual event in a
logical event stream is preserved while all subsequent occurrences of that event are
removed. In case the reduction operator is applied directly after a window operator,
the effect of the window is eliminated. The following equations hold in particular:

ω−1(ωtime(EL)) = ω−1(ωcount(EL)) = ω−1(ωpartition(EL)) = EL

41

6 Theoretical Foundations

t EL ωtime
3 (EL)

101 (A,101,1) (A,101,1)
102 (A,102,1)
103 (A,103,1)
104 (A,104,1) (A,104,1)
105 (A,105,1)
106 (A,106,1)

Table 6.5: Event occlusion effect

Note that ω−1 can be applied to every logical event stream and not only to the output
streams of window operators. In our implementation that encodes the valid time of an
event as a time interval, ω−1 simply shrinks the time intervals of incoming events so
that every time interval covers only its first time instant afterwards. Because a logical
event stream does not allow to recover individual events due to the event occlusion
effect, either the data model for logical event streams must be extended by provenance
or ω−1 cannot be defined formally. We decided to leave ω−1 abstract, because it is in-
tuitively understandable and implementable without the need for provenance. Thus,
the extension of the logical data model by provenance would be an overkill.

Table 6.5 demonstrates the event occlusion effect. The second column shows two
individual events having the same payload. In the third column, the resulting event
stream after the application of a time window of size 3 is shown. Without exact knowl-
edge about the applied window, it cannot be decided how many individual events
there are (the possibilities range from a single individual event up to six individual
events). In our implementation that is based on the time interval approach, individual
events are preserved so that ω−1 is applicable to every event stream.

6.3.3 Event Processing Agents

In the following, we define the elementary EPAs filter, correlator, aggregator and pat-
tern matcher as operators of the algebra. All these basic types of EPAs take logical
event streams as inputs and create one logical event stream as output. The EPAs filter,
correlator and aggregator are specified to be snapshot-reducible to their non-temporal
counterparts in the extended relational algebra. For the EPA pattern matcher, the in-
coming logical event stream must be transformed into a sequence of events.

42

6.3 Event Processing Algebra

t EL σp>40∧p<45(EL)

101 (40,101,1), (41,101,1) (41,101,1)
102 (42,102,1), (43,102,1) (42,102,1), (43,102,1)
103 (44,103,1), (45,103,1) (44,103,1)

Table 6.6: Filter example

6.3.3.1 Filter

The filter σ forwards an incoming event if and only if it fulfills a Boolean expression
ϕ ∈ BE . Attributes of the payload and the timestamp can be used as variables in ϕ:

σϕ(EL) :=
{
(p, t, n)

∣∣ (p, t, n) ∈ EL ∧ ϕ f (p,t)

}
For example, the filter σp>40∧p<45(EL) selects all events of an event stream with integer
numbers as payload whose payloads are in (40 : 45). Table 6.6 shows the output of
this filter in the third column for an input event stream given in the second column.

6.3.3.2 Correlator

The correlator ./ forwards a joined event of the Cartesian product of two arbitrary
event streams EL

1 and EL
2 (i.e., the payloads of a pair of events are combined and their

counters are multiplied) if and only if it fulfills a Boolean expression ϕ ∈ BE and the
original events have identical timestamps. All attributes and the timestamp of the
joined event can be used as variables in the Boolean expression ϕ:

./ϕ (EL
1 , EL

2) :=
{
(p1 ◦ p2, t, n1 ∗ n2)

∣∣
(
(p1, t, n1), (p2, t, n2)

)
∈ EL

1 × EL
2 ∧ ϕ f (p1◦p2,t)

}
As an example, consider the logical event streams EL

1 and EL
2 with integer numbers as

payloads shown in Table 6.7. The third column gives the output event stream of the
correlator ./EL

1 .p>EL
2 .p (ωtime

2 (EL
1), ωtime

3 (EL
2)). An event of EL

1 is joined with an event
of EL

2 if both events have identical timestamps and the corresponding event of EL
1 has

an integer number as payload that is greater than the integer number of the payload
of the event belonging to EL

2 . Before the input event streams enter the correlator, time
windows of sizes two and three are applied to EL

1 and EL
2 respectively.

43

6 Theoretical Foundations

t EL
1 EL

2 ./EL
1 .p>EL

2 .p (ωtime
2 (EL

1), ωtime
3 (EL

2))

101
102 (39,102,1) (40,102,2)
103 (42,103,8) (44,103,7) (42◦40,103,16)
104 (42◦40,104,16)
105

Table 6.7: Correlator example

t EL αavg(p)(ω
time
2 (EL))

101 (40,101,1), (41,101,1) (40.5,101,1)
102 (42,102,1), (43,102,1) (41.5,102,1)
103 (44,103,1), (45,103,1) (43.5,103,1)

Table 6.8: Aggregator example

6.3.3.3 Aggregator

The aggregator α evaluates an aggregate agg ∈ A on each snapshot of a logical event
stream that is not empty:

αagg(EL) :=
{
(p′, t, 1)

∣∣ τt(EL) 6= ∅ ∧ p′ = agg
(
τt(EL)

)}
In addition, an aggregate agg can be evaluated separately for each single group of
events with identical values of the attributes A1, A2, . . . , An:

αA1,A2,...,An,agg(EL) :=
⋃

e∈EL

αagg
(
σA1=e.A1∧A2=e.A2∧...∧An=e.An(EL)

)
For example, the aggregator αavg(p)(ω

time
2 (EL)) computes the average value within a

time window of size 2 over an event stream with integer numbers as payload. This ag-
gregator applied to an example event stream is shown in Table 6.8. The first snapshot
at t = 101 consists of two events having the payloads 40 and 41 so that the average
value is 40.5. Because of the time window, the two succeeding snapshots consist of
four events each. At t = 102 the events having the payloads 40, 41, 42, 43 are valid
and at t = 103 the events having the payloads 42, 43, 44, 45 are valid. Therefore, the
average values are 41.5 at t = 102 and 43.5 at t = 103.

6.3.3.4 Pattern Matcher

The pattern matcher ρ detects sequential event patterns in event streams. To find a
pattern P within a time window of size w over a logical event stream EL, all universes

44

6.3 Event Processing Algebra

contained in the window are derived first. Then, for each universe T its corresponding
symbol stream is created. For each event (p, t, 1) in a universe T, all emitted symbols
s1, . . . , sk according to the symbol definitions in P form its symbol stream. The corre-
sponding symbol stream of a universe T is created via the transformation ηS:

ηS((T, n)) := { (s, t, 1) | (p, t, 1) ∈ T ∧ p emits s }

A symbol stream contains as many symbol events for an event in T as symbols are
emitted by that event. If an event in T emits no symbols at all, then the symbol stream
contains the empty symbol � to signal that there is an event. A symbol stream is again
a logical event stream. It has multiple symbol events at a point in time in general.
Therefore, universes contained in a symbol stream must be derived in order to obtain
final symbol sequences. Then, pattern matching can be performed on each of those
symbol sequence separately. The final output of ρ is the multiset union of the outputs
of all applied pattern matching instances:

ρP,w(EL) :=
{
(m, t, n̂ ∗ n1)

∣∣
∃X ⊆ EL : X = { (p, t′, n) ∈ ω−1(EL) | max{t− w + 1, 0} ≤ t′ ≤ t}

∧ ∃Y : Y =
⋃

(T1,n1)∈ηU(X)

(⋃
(T2,n2)∈ηU(ηS((T1,n1)))

matchesP((T2, n2))

)
∧ (m, t, n̂) ∈ Y

}
The function matches produces exactly one output event for each successful match. A
successful match requires a finite symbol sequence S that matches the pattern P. The
timestamp of the output event is set to the timestamp of the last symbol event in S,
because the pattern occurred completely at this instant of time:

matchesP((< (s1, t1, 1), (s2, t2, 1), . . . , (sx, tx, 1) >, n)) :={
(m, tx, n)

∣∣ ∃i ∈N :
(
i < x ∧ κP(< (si, ti, 1), . . . , (sx, tx, 1) >) = m ∧m 6= ∅

)}
The payload m of each output event is created by a second parameter return. This
parameter defines all attributes of m and specifies how their values are set. The value
of an attribute in m can be set to either a global variable of P or to any constant value.
For a symbol event sequence, the function κ returns the final payload of the output
event in case of a successful match:

κP(S) :=

return if S matches P

∅ otherwise

45

6 Theoretical Foundations

Input Stream

17 106
45 105

p t
42 101
42 102
43 103
44 104

Symbol Stream

105

b
104

c

a

106

101

103

a

104

105

t

a

105

c

a

102
103

104

b

a

p

a

b

Output Stream
t

(42,43,44)

(43,44,45)

p

104

105

Figure 6.2: Pattern matcher example

The function κ ignores all Kleene operators that are applied to the first and last symbol
in P. In the case of a Kleene star, the symbol is removed completely from the begin-
ning or ending of the pattern. And in the case of a Kleene plus, only the operator is
removed. This ensures that every match is reported only once and only for the shortest
of all sequences that match and contain the symbol events (si, ti), . . . , (sx, tx). Based
on the potentially rewritten pattern definition and a sequence of symbol events, the
problem has been reduced to an ordinary regular expression matching task. Thus, the
semantics of “matches” is the same as in regular expression matching.

Exactly as the aggregator, a pattern matcher can be used in combination with par-
titioning according to event attributes A1, A2, . . . , An:

ρA1,A2,...,An,P,w(EL) :=
⋃

e∈EL

ρP,w
(
σA1=e.A1∧A2=e.A2∧...∧An=e.An(EL)

)
Let us consider a concrete example based on the following configuration of parameters
of the pattern matcher for an event stream with integer numbers as payload:

• w := 3

• P := avar1←p[TRUE]bvar2←p[p > var1]cvar3←p[p > var2]

• return := (var1, var2, var3)

The pattern P defines the symbol sequence abc. At the first symbol a, the attribute p
of the corresponding event is bound to the global variable var1. The second symbol b
is correlated with a, because the payload of its corresponding event must be greater
than the value of var1. Symbol c is defined in the same way as b, but correlated with

46

6.3 Event Processing Algebra

symbol b instead of symbol a.1 Therefore, the pattern defines all event sequences of
size three having constantly increasing payloads. The output event consists of the
values of all global variables and gives the exact sequence that has been detected.
Figure 6.2 shows this configuration in action. The left-hand table gives an example
event stream. In the table at the center, the corresponding symbol stream can be seen.
Finally, the results are presented in the right-hand table.

Summary

In this chapter, we formally specify the semantics of JEPC queries. At first, we present
a data model for event streams that models an event stream as a sequence of snap-
shots. On basis of the data model, we define an operator algebra that includes ele-
mentary operators for event filtering, event aggregation, event correlation and event
pattern matching as well as window operators that allow for the evaluation of JEPC
queries over arbitrarily large but finite sections of event streams.

1Due to transitivity of >, symbol c is also implicitly correlated with symbol a.

47

7
Design of the JEPC Core

Outline
7.1 Introduction . 50

7.2 Time, Events and Event Streams . 50

7.3 Event Processing Agents and Networks . 52

7.4 Output Processors . 60

7.5 Event Processing Providers . 61

7.6 JEPC Query Language . 62

49

7 Design of the JEPC Core

7.1 Introduction

While the previous chapter formally specifies the semantics of JEPC queries on basis
of an operator algebra, this chapter presents the main API of JEPC for creating and
maintaining EP applications running JEPC queries.

7.2 Time, Events and Event Streams

According to the JEPC semantics, timestamps are from a discrete and totally ordered
time domain. Our implementation uses 64-bit integer numbers for the timestamps of
events and has multiple different representations of events. We first name and define
the more natural representation of events.

Definition 1 (External Event). An event in the form of a pair (p, t) having some payload p
and a timestamp t is called an external event. Such external events occur in the outside world
of JEPC and can be directly injected into JEPC.

External events follow the intuitive interpretation of an event and are usually repre-
sented as such pairs outside of JEPC. However, events are represented and processed
in the form of triples inside JEPC.

Definition 2 (Internal Event). An event in the form of a triple (p, ts, te) having some
payload p as well as two timestamps ts and te with te > ts is called an internal event. The
meaning of the timestamps is that the payload is valid from ts (inclusive) to te (exclusive).
Alternatively, the valid time can also be encoded as a half-open time interval [ts : te).

Recall that the valid time of an individual event can be extended by the window op-
erators. The naïve method of processing an internal event with payload p being valid
in [ts : te) is to process exactly one event instance (p, t) for each timestamp t in [ts : te).
Because every instance must be processed separately and causes costs, JEPC uses a
more compact representation internally. In total, there are two different approaches.
In the positive-negative approach (PNA) [ABW03, Ham03] two event instances (p, t)
must be processed for each individual event. The first instance has ts as timestamp and
signals the beginning of the valid time of the event. And the second instance has te as
timestamp signaling the ending of its valid time. In the time interval approach [KS05,
Krä07] the valid time is encoded as a time interval so that only one event instance must
be processed for each individual event. Obviously, internal events of JEPC implement
the time interval approach. We preferred it in our implementation, because it has been
proven to be more efficient than the PNA [Krä07].

50

7.2 Time, Events and Event Streams

Definition 3 (Chronon). A chronon [Ari86, CR87] is the smallest segment of the time line
and, thus, the atomic unit of time. Since the time domain of JEPC is discrete, chronons help to
represent the continuity of the real time line.

Because external events are injected into JEPC but only internal events can be pro-
cessed by JEPC, an external event must be somehow transformed into an internal
event directly after its injection. Therefore, every external event (p, t) is mapped to
the equivalent internal event (p, t, t + 1). Time intervals of size one are called chronons
(see Definition 3) that are the continuous equivalents of discrete points in time.

1 Attribute[] serverEventSchema = new Attribute[] {

2 new Attribute("serverID", DataType.SHORT), // identification of server

3 new Attribute("cpuUser", DataType.FLOAT), // CPU utilization by users

4 new Attribute("cpuSystem", DataType.FLOAT), // CPU utilization by system

5 new Attribute("memory", DataType.FLOAT), // memory utilization

6 new Attribute("disk", DataType.FLOAT), // disk utilization

7 new Attribute("packetsIn", DataType.INTEGER), // network packets per second in

8 new Attribute("packetsOut", DataType.INTEGER) // network packets per second out

9 };

Listing 7.1: Schema definition in JEPC

1 Object[] serverEvent = new Object[] {

2 42, // identification of server

3 0.34f, // CPU utilization by users

4 0.16f, // CPU utilization by system

5 0.68f, // memory utilization

6 0.51f, // disk utilization

7 8755, // network packets per second in

8 9697 // network packets per second out

9 };

Listing 7.2: Payload of an event in JEPC

In JEPC, each event stream has a relational schema and the payload of a corresponding
event is simply a tuple. An event stream schema is represented as a list of attributes.
Each attribute has a name that must be unique within a schema and a data type. List-
ing 7.1 shows a valid schema definition for a stream of measurements each keeping
the current utilization of a server machine. Note that the temporal dimension is not
specified. For external event streams an additional attribute keeping the timestamps
is automatically added. Analogues, two additional attributes for the start and end
timestamps are automatically added in the case of internal event streams.

51

7 Design of the JEPC Core

JEPC data type Corresponding Java data type

DataType.BYTE java.lang.Byte

DataType.SHORT java.lang.Short

DataType.INTEGER java.lang.Integer

DataType.LONG java.lang.Long

DataType.FLOAT java.lang.Float

DataType.DOUBLE java.lang.Double

DataType.STRING java.lang.String

DataType.GEOMETRY java.lang.String

Table 7.1: JEPC data types

Table 7.1 shows the available JEPC data types that all correspond to Java data types.
The JEPC data type GEOMETRY is also for keeping Java strings. However, GEOMETRY
indicates that the attribute values are geometries being encoded as WKT (well-known-
text) strings. For more details of this extra data type that is for supporting spatial
features in JEPC see Section 15.5 on page 213.

The payload of an event is represented as a list of attribute values. Of course, the
structure of the payload must conform to the associated schema. Listing 7.2 shows a
syntactically correct payload conforming to the schema of Listing 7.1.

7.3 Event Processing Agents and Networks

Queries can be defined directly as operator graphs in JEPC. All basic types of EPAs
as well as their parameters are modeled as simple Java classes and EPA objects can be
arbitrarily composed to EPNs. In the following, we explain the creation of EPAs and
EPNs in detail. Parameters are introduced when they are used for the first time.

1 Stream(String streamName, Window window) : EPA

Listing 7.3: Signature of Stream

The EPA Stream is for accessing arbitrary event streams. Listing 7.3 shows its most
general signature. The parameter streamName is mandatory and specifies the name
of the event stream to access. Window operators can be applied to external event
streams as first operator to extend the valid times of incoming events. For this pur-
pose, the optional parameter window can be used to specify a window to apply. Ac-
cording to the operator algebra, JEPC supports three different types of windows.

52

7.3 Event Processing Agents and Networks

1 // sliding windows

2 TimeWindow(long size) : Window

3 CountWindow(long size) : Window

4 PartitionedCountWindow(long size, String partitionAttribute,

5 String... partitionAttributes) : Window

6 // jumping windows

7 TimeWindow(long size, long jump) : Window

8 CountWindow(long size, long jump) : Window

9 PartitionedCountWindow(long size, long jump, String partitionAttribute,

10 String... partitionAttributes) : Window

Listing 7.4: Signatures of Window

The first three signatures in Listing 7.4 belong to the time-based, count-based and
partitioned count-based sliding windows. All types have a user-defined size that is
specified by the parameter size. For time-based sliding windows this parameter
gives the number of time instants a window covers and for the other two types this
parameter gives the number of events a window covers. In case of partitioned count-
based sliding windows, size is used for the count-based sliding windows that are
applied to the partitions. The partitioning is done according to user-defined event
attributes. These three window types constitute the class of sliding windows that slide
from time instant to time instant or from event to event respectively. They should be
used by default because they give the best possible response times of queries. Note
that the sliding windows exactly implement the operators ωtime, ωcount and ωpartitioned.

t t+1 t+2 t+3 t+4

a) Sliding time window of size 2 b) Sliding count window of size 2

Figure 7.1: Sliding windows

53

7 Design of the JEPC Core

a) Jumping time window of size 3 b) Jumping count window of size 3

JUMP

JUMP

JUMP

JUMP JUMP

JUMP

JUMP

Figure 7.2: Jumping windows

Figure 7.1 illustrates a time-based sliding window and a count-based sliding window,
each of size 2, applied to an example event stream given in the upper part. The time-
based sliding window slides from time instant to time instant, covers a fixed number
of time instants and contains a variable number of events. In contrast, the count-based
sliding window slides from event to event, covers a variable number of time instants
and contains a fixed number of events.

In some cases, it may be desired that a query reports its results with a lower fre-
quency (e.g., an aggregation EPA shall update its output only once every 15 seconds).
Therefore, JEPC provides an extended version of each type of sliding window. The
signatures of those so-called jumping windows [GÖ10] are shown in the lower part of
Listing 7.4 and have the additional parameter jump. In case of time-based windows,
this parameter specifies the period of time that must pass until a window is updated
for the next time. And in case of count-based windows, the parameter jump spec-
ifies the number of events that must occur until a window is updated for the next
time. Note that jumping windows are just slightly modified versions of the operators
ωtime, ωcount and ωpartitioned. The modified semantics is simply achieved by making the
granularity of the time domain coarser. Details are found in [Krä07].

Figure 7.2 shows a time-based jumping window and a count-based jumping win-
dow in action. The corresponding input event stream is given in the upper part of the
figure. Both jumping windows have the following configuration. The parameter size
is set to 3 and the parameter jump is set to 2. While the time-based jumping window
is updated after a period of two time instants has passed, the jumping count-based
window is updated after two events have occurred.

54

7.3 Event Processing Agents and Networks

Relationship Effect

jump = 1 Jumping window becomes a sliding window
jump < size Consecutive windows overlap
jump > size Gaps between consecutive windows
jump = size Consecutive windows meet (no gaps and no overlaps)

Table 7.2: Effects of window parameters

Note that the semantics of count-based windows is only clear provided that all events
have unique timestamps [Krä07]. Otherwise, the output might not be deterministic.
In our implementation of the count-based windows we decided therefore that simul-
taneous events are processed according to their order of insertion into JEPC. This fact
is illustrated in the figures where some snapshots contain multiple events.

Based on the relationship between size and jump different effects occur. Table 7.2
lists all possible relationships and the resulting effects. The case jump > size is im-
portant to mention because gaps between consecutive windows occur. Events that are
located in such a gap are not contained in any window and, thus, not processed.

All window operators are applied completely at the middleware layer by extend-
ing the time intervals of transformed external events accordingly. This ensures the
specified semantics of the windows and is completely independent of the window
types supported by raw EP providers as well as their semantics.

The core of JEPC abstracts from all basic types of EPAs via the interface EPA. With
respect to the JEPC algebra, we provide Java classes that represent the four elementary
EPAs. In addition, there are two extra types of EPAs for accessing external data. One
of these extra EPAs, the EPA Stream, has been already introduced.

1 Filter(String name, EPA input, BooleanExpression be) : EPA

Listing 7.5: Signature of Filter

The EPA Filter corresponds to the operator σ. Its signature is shown in Listing 7.5.
This EPA needs for instantiation a unique identification (name), another EPA (input)
as well as a Boolean expression which defines the filter condition (be). The EPA input

can be any other EPA. Its output event stream is used as input event stream for the
EPA Filter. For creating Boolean expressions, the core of JEPC provides also Java
classes. In particular, there are classes that represent the constant Boolean values TRUE
and FALSE, all supported predicates and all supported Boolean operations.

55

7 Design of the JEPC Core

1 EPA overloadedServers = new Filter(

2 "OverloadedServers", // identification

3 new Stream("Servers"), // input event stream

4 new And(// filter condition

5 new Greater("memory", 0.9f),

6 new Greater("cpuUser + cpuSystem", 0.95f),

7 new Greater("disk", 0.8f)

8)

9);

Listing 7.6: Example of Filter

Listing 7.6 shows an example of the EPA Filter on an external event stream
Servers having the schema of the example event stream from Section 7.2. Its purpose
is to select overloaded servers. A server is considered to be overladed if its memory
utilization is greater than 0.9 and its total CPU utilization (i.e., the sum of cpuUser
and cpuSystem) is greater than 0.95 and its disk utilization is greater than 0.8.

1 Aggregator(String name, EPA input, Aggregate... aggregates) : EPA

Listing 7.7: Signature of Aggregator

The EPA Aggregator corresponds to the operator α and has the signature shown
in Listing 7.7. Besides a unique identification (name) and another EPA (input), it
requires a list of aggregates (aggregates) being evaluated over the output event
stream of the EPA input. Again, we provide Java classes for all supported aggre-
gates. Grouping is supported in the form of an extra aggregate (Group). This group-
ing aggregate must be applied to each event attribute used for grouping.

1 EPA smoothedServers = new Aggregator(

2 "SmoothedServers",

3 new Stream("Servers", new PartitionedCountWindow(5, "serverID")),

4 new Average("memory", "avgMemory"),

5 new Average("cpuUser", "avgCpuUser"),

6 new Average("cpuSystem", "avgCpuSystem"),

7 new Average("disk", "avgDisk"),

8 new Group("serverID")

9);

Listing 7.8: Example of Aggregator

56

7.3 Event Processing Agents and Networks

Listing 7.8 presents an example of the EPA Aggregator. The shown query specifies a
window that contains the five most recent events from every monitored server. Then,
it computes the average values of the event attributes memory, cpuUser, cpuSystem,
and disk per server. The event attribute an aggregate refers to is set in its first argu-
ment. Since an aggregate (except Group that simply takes over the event attribute)
results in a completely new attribute of the output schema, the name of the associated
attribute is defined in the second argument. The data types of the resulting attributes
are automatically determined and set by JEPC. Note that the grouping by serverID

is necessary, because the window contains events from different servers.

1 PatternMatcher(String name, EPA input, long within, String partitionBy,

2 Pattern... pattern) : EPA

Listing 7.9: Signature of PatternMatcher

The EPA PatternMatcher corresponds to the operator ρ and has the signature
shown in Listing 7.9. Besides the usual parameters name and input, this EPA can
have an optional partitioning defined in the form of a comma-separated list of at-
tribute names (partitionBy). Furthermore, it requires a size of its time window
(within) and a pattern to search for (pattern). A pattern is simply a list of symbol
definitions. Each single symbol definition can set any number of global variables and
pattern operators can be applied to symbol definitions.

1 EPA diskCleaned = new PatternMatcher(

2 "DiskCleaned",

3 new Stream("Servers"),

4 60_000,

5 "serverID",

6 new Symbol("a", new Greater("disk", 0.9f), new Variable("peak", "disk")),

7 new KleeneStar(new Symbol("b", new And(new LessEqual("disk", "peak"),

8 new GreaterEqual("disk", 0.8f))),

9 new Symbol("c", new Less("disk", 0.8f), new Variable("finished", "disk"))

10);

Listing 7.10: Example of PatternMatcher

Listing 7.10 shows an example of the EPA PatternMatcher. The size of the time
window is set to 60,000 time instants, the input stream is partitioned by serverID

and the pattern being searched is ab∗c. Symbol a is emitted by all events reporting a
disk utilization greater than 0.9. Simultaneously, a global variable named peak is set

57

7 Design of the JEPC Core

to the current value of disk. Because of the applied Kleene Star, symbol b is emitted
by all subsequent events reporting a disk utilization less than or equal to the value of
peak and greater than or equal to 0.8. The pattern matches when the disk utilization
becomes less than 0.8. Then, a global variable named finished is set to the current
value of disk and an output event with peak and finished as payload is created.

1 Correlator(String name, EPA input1, String var1, EPA input2, String var2,

2 BooleanExpression be) : EPA

Listing 7.11: Signature of Correlator

The EPA Correlator has the signature shown in Listing 7.11 and corresponds to the
operator ./. Since ./ is a binary operator, the EPA Correlator consumes the output
streams of two other EPAs (input1 and input2). Both streams must be assigned
with different variables (var1 and var2), because they can have identically named
attributes or even be identical (self correlation). Lastly, the EPA needs an identification
(name) and a Boolean expression defining the correlation condition (be).

1 EPA increasedMemory = new Correlator(

2 "IncreasedMemory",

3 new Stream("Servers"), "servers",

4 smoothedServers, "averages",

5 new And(

6 new Equal("servers.serverID", "averages.serverID"),

7 new Greater("servers.memory * 0.8", "averages.avgMemory")

8)

9);

Listing 7.12: Example of Correlator

An example of the EPA Correlator is given in Listing 7.12. The shown query con-
sumes the external event stream Servers having the variable servers and the out-
put event stream of the previously defined query smoothedServers having the vari-
able averages. Combining these streams, the most recent values of a server are avail-
able together with the average values of most event attributes. The correlation condi-
tion specifies that only events belonging to the same server are correlated. In addition,
it requires that the current memory utilization scaled down by factor 0.8 is greater than
the average memory utilization. This example shows how to compose EPAs to EPNs
by connecting the output of one EPA to the input of another EPA. Figure 7.3 depicts a
graphical illustration of the EPN defined in Listing 7.12.

58

7.3 Event Processing Agents and Networks

Correlator

Stream

Boolean
Expression

Stream

Aggregator

Aggregates Window

Output

Figure 7.3: Event processing network

An instance of Correlator is allowed to have a special type of EPA named
Relation as one of its inputs. The EPA Relation is similar to the EPA Stream.
It also provides access to events that are added from the outside. But once added,
an event of a relation is valid forever. This is achieved by setting the time interval
to [−∞ : ∞) during its transformation into an internal event. Relations are meant
to represent context knowledge that is mostly static and usually stored in databases.
The EPA Relation caches such data in order to make it available in JEPC queries. A
relation can only be used as input for correlation EPAs and the other input must be
a stream. Then, live events from the stream can be extended (content enrichment) or
filtered on basis of data stored in the relation. For example, events from a fixed point
sensor containing some measurements and the sensor identification as payload can
be extended by the location being provided by a relation. Because also relations may
change occasionally, users can insert, delete and update events at any time.

Besides the presented EPAs, JEPC can be extended by user-defined EPAs (UEPAs)
that run at the middleware layer. An UEPA can consume any number of input event
streams and provides exactly one output event stream. Thus, it can be placed any-
where in EPNs. Its operation is defined by users in the form of arbitrary Java code.
A user-defined EPA must extend the abstract EPA UserDefinedEPA which contains
all necessary code for the execution by JEPC. User-defined EPAs can extend JEPC by
not only simple operators such as the set operators (e.g., union, difference), but also
complex and novel operators such as TPStream (see Chapter 15).

59

7 Design of the JEPC Core

The completely object-oriented representation of parameters, EPAs and EPNs leads to
several advantages. First, declarative query languages and graphical query composers
following the boxes-and-arrows principle can be directly used on top. The compila-
tion of declarative and graphical query definitions is straightforward, because EPN
definitions are operator graphs. Second, parameters, EPAs and EPNs can be easily
analyzed. This is essential for their translation into another representation (e.g., JEPC
bridges must translate EPAs and EPNs into the query languages of raw EP providers).
Third, parameters, EPAs and EPNs can be easily modified by algorithms. For instance,
a query optimizer can directly traverse and transform EPNs.

7.4 Output Processors

Output processors implement the concept of event sinks in JEPC. Any number of them
can be added to an arbitrary EPA in order to access its output event stream. Analogues
to Java listeners, an output processor is immediately notified when a new output event
is available. As in the case of user-defined EPAs, users can define arbitrary output
processors by extending the abstract class OutputProcessor.

1 OutputProcessor prettyPrinter = new OutputProcessor() {

2 @Override

3 public void process(String stream, Object[] event) {

4 Attribute[] schema = getInputSchema(stream);

5 for(int i = 0; i < event.length; i++)

6 System.out.print(schema[i].getAttributeName() + "=" + event[i] + " ");

7 System.out.print("\n");

8 }

9 };

Listing 7.13: Example of OutputProcessor

Listing 7.13 shows the definition of a simple output processor that writes every re-
ceived event to the standard output. The only method which must be implemented
by users is process. This method is called on every new event and gets not only the
event itself, but also the identification of the corresponding event stream. Therefore,
a universally defined output processor can be reused and added to multiple different
EPAs. Besides logging, possible reactions to new events range from updating visual-
izations to triggering actions (including complex analytics and decision-making).

60

7.5 Event Processing Providers

Method Description

REGISTERSTREAM(e, s) Registers a new event stream e having the schema s
UNREGISTERSTREAM(e) Unregisters the event stream e
CREATERELATION(r, s) Creates a new relation r having the schema s
DESTROYRELATION(r) Destroys the relation r
CREATEQUERY(q) Creates a new EPA q
DESTROYQUERY(q) Destroys the EPA q
ADDOUTPUTPROCESSOR(q, o) Adds the output processor o to the EPA q
REMOVEOUTPUTPROCESSOR(q, o) Removes the output processor o from the EPA q
PUSHEVENT(e, p, t) Pushes the event (p, t) into the event stream e
INSERTINTORELATION(r, p) Inserts the payload p into the relation r
DELETEFROMRELATION(r, p) Deletes the payload p from the relation r

Table 7.3: API of EP providers

7.5 Event Processing Providers

The interface EPProvider specifies the core API of JEPC that is the API of a virtual
EP provider. This interface is intended to be implemented in the form of JEPC bridges
by not only raw EP providers, but also other kinds of data management systems (e.g.,
standard database systems) and native implementations (e.g., for highly parallel com-
puting platforms such as GPUs and FPGAs, or for ordinary CPUs but implementing
tailor-made algorithms). Applications and extensions which are using only methods
of EPProvider become independent of concrete EP providers.

Table 7.3 shows an excerpt of the interface EPProvider that includes the most
important methods. The core API provides methods to register and unregister exter-
nal event streams. Via PUSHEVENT, external events are injected into registered event
streams. There are also methods for the management of relations and their contents.
Arbitrarily complex JEPC queries can be created using CREATEQUERY. Of course,
there is also a method for destroying existing EPAs. Lastly, output processors can be
added to and removed from existing EPAs via the core API.

The core API of JEPC can be accessed in two different ways. Java applications can
use JEPC directly as a library. For remote and platform-independent access, JEPC can
also be executed in a server mode. Then, its API is made available via HTTP by a REST
Web service [Fie00]. For defining the elements of a JEPC application such as EPAs and
schemas, a query language is provided. External events are injected in serialized form
directly via TCP and not via the Web service for performance reasons.

61

7 Design of the JEPC Core

translateFilter()
translateAggregator()

registerStream()
createQuery()

JEPC Bridge

method1()
method2()

Optional
Classes

Implementation of
EPProvider

Compiler for
EPAs

Optional
Methods

. . .
. . .

. . .

Figure 7.4: Typical structure of a JEPC bridge

Figure 7.4 illustrates the overall structure of a typical JEPC bridge. All JEPC bridges we
implemented (i.a., multiple JEPC bridges to different SPEs, a JEPC bridge to standard
database systems and a native CPU-based implementation of the JEPC specification)
have this overall structure. In total, there are three main parts as shown in the figure.
The first part is an implementation of the interface EPProvider. Here, the core API of
JEPC is mapped to the API of the target raw EP provider. The second part is a compiler
for JEPC queries. For each basic type of EPA there is a method that translates it into
the corresponding query language of the raw target EP provider under preservation of
semantics. We decided for a fine-grained translation of single EPAs. This is not only
the easiest way to create compilers for JEPC queries, but also the most flexible way
that allows to arbitrarily distribute EPAs (see Chapter 20 for details). The third part
consists of optional help methods which might be necessary or convenient. Lastly, a
JEPC bridge must not consist of a single Java class only. If the code base is large or
complex, parts of it can be separated out into additional Java classes.

7.6 JEPC Query Language

Despite the fact that the object-oriented representation of all elements of a JEPC ap-
plication leads to several advantages, it is not the best representation for end-users
and for remote access. Therefore, we provide a declarative query language named
JEPC-QL. Our query language is based on standard SQL [SQL] and offers extensions
for window operators as well as for pattern matching. In the following, we would like
to give a brief impression of it.

62

7.6 JEPC Query Language

1 (SELECT ∗

2 FROM Servers

3 WHERE memory > 0.9f AND cpuUser + cpuSystem > 0.95f AND disk > 0.8f

4) AS OverloadedServers

Listing 7.14: Filter in JEPC-QL

A markable difference to standard SQL is that every part of a query defining an EPA
requires a unique identification. This is because EPAs run continuously in contrast
to database queries that are ad-hoc. The identification is needed to destroy the cor-
responding EPA and to access its output stream (e.g., via output processors or other
EPAs). Listing 7.14 shows how to express the filter EPA defined in Listing 7.6.

1 (SELECT ∗

2 FROM Servers AS servers,

3 (SELECT AVG(memory) AS avgMemory, AVG(cpuUser) AS avgCpuUser,

4 AVG(cpuSystem) AS avgCpuSystem, AVG(disk) AS avgDisk

5 FROM Servers WINDOW(COUNT 5 EVENTS JUMP 1 EVENT PARTITION BY serverID)

6 GROUP BY serverID) AS averages

7 WHERE servers.serverID = averages.serverID

8 AND servers.memory ∗ 0.8 > averages.avgMemory

9) AS IncreasedMemory

Listing 7.15: EPN consisting of an Aggregator and a Correlator in JEPC-QL

Listing 7.15 shows the syntax for aggregation and correlation EPAs as well as for win-
dows. It also demonstrates how to define an entire EPN in one go. Note that EPNs
must not necessarily be specified as a whole. Existing EPAs can be accessed by using
their identification in the FROM clause. The subquery averages defines the aggre-
gator presented in Listing 7.8. All attributes used for grouping (only serverID in
this particular example) are automatically added to the output schema. In addition
to the syntax of standard SQL, external event streams in the FROM clause can have
an assigned window that is defined using the keyword WINDOW. In the subsequent
brackets, all parameters of the window are specified. First of all, its type must be spec-
ified by using either the keyword TIME or the keyword COUNT. The former defines a
time-based window while the latter defines a count-based window. Next, the size of
the window must be defined. In case of a count-based window, the size is defined in
number of events. And in case of a time-based window, the size is specified in the form
of a time expression. By default, JEPC interprets the length of a chronon as one mil-

63

7 Design of the JEPC Core

lisecond. Legal time expressions are for instance 200 MILISECONDS, or 1 SECOND,
or 45 MINUTES. Optionally, a jumping behavior can be achieved by using the key-
word JUMP followed by the number of events in case of a count-based window or a
time expression in case of a time-based window. If JUMP is not specified, it is auto-
matically set to 1 event or 1 millisecond respectively (in Listing 7.15 it is specified for
the sake of completeness). An optional partitioning can be defined by using the key-
word PARTITION BY followed by a list of attributes. Note that partitioning can also
be specified for time-based windows in JEPC-QL but it has no effect. The outer query
IncreasedMemory defines a correlation EPA that joins the output stream of the ag-
gregator and the external event stream Servers according to Listing 7.12. Note that
JEPC-QL supports multiway correlations. Our compiler automatically translates mul-
tiway correlations into a hierarchy (a left-deep tree to be exact) of multiple correlation
EPAs, decomposes the correlation condition and assigns the resulting parts to the cor-
relation EPAs such that the multiway correlation can be efficiently executed.

1 (SELECT ∗

2 FROM Servers

3 MATCH_RECOGNIZE_SEQUENTIAL (

4 MEASURES a.disk AS peak, c.disk AS finished

5 WITHIN 1 MINUTE

6 PARTITION BY serverID

7 PATTERN ab∗c

8 DEFINE a AS disk > 0.9f,

9 b AS disk <= peak AND disk >= 0.8f,

10 c AS disk < 0.8f

11)

12) AS DiskCleaned

Listing 7.16: PatternMatcher in JEPC-QL

The syntax for pattern matching EPAs has been adopted from match-recognize queries
(MRQ) [Zem07]. Listing 7.16 shows the JEPC-QL definition of the pattern matching
EPA presented in Listing 7.10. Sequential pattern matching EPAs are defined by us-
ing the keyword MATCH_RECOGNIZE_SEQUENTIAL.1 For each parameter of a pattern
matching EPA there is a corresponding clause in JEPC-QL. The size of the time win-
dow is specified in the WITHIN clause using a time expression. Partitioning is speci-
fied in the optional PARTITION BY clause by listing the partitioning attributes. In the

1JEPC also provides a novel type of EPA for temporal pattern matching (see Chapter 15 for details).
Temporal pattern matching EPAs have exactly the same JEPC-QL syntax but begin with the keyword
MATCH_RECOGNIZE_TEMPORAL.

64

7.6 JEPC Query Language

PATTERN clause the sequential pattern being searched is defined in the form of a reg-
ular expression over symbols. Note that pattern operators are applied in the PATTERN
clause as in the example above. Conditions of symbols used in the pattern are defined
in the DEFINE clause. If a used symbol is not defined here, its condition is automati-
cally set to TRUE which means that the symbol is emitted by every event. The binding
of global variables is done in the MEASURES clause.

Summary

This chapter presents the design of the core of the JEPC middleware. In particular, its
API is described and illustrated on basis of a comprehensive collection of examples.
The core API provides everything that is needed to create and maintain platform-
independent EP applications. It can be used directly from Java and via a declarative
query language from everywhere.

65

8
JEPC Bridges to Stream

Processing Engines

Outline
8.1 Introduction . 68

8.2 Implementation of the API . 68

8.3 Compiler for EPAs . 69

67

8 JEPC Bridges to Stream Processing Engines

8.1 Introduction

Today, general-purpose stream processing engines are widely used for EP in practice.
They are not only capable of fully supporting EP, but also usually offer functionality
that goes beyond EP. The development of multiple JEPC bridges to different stream
processing engines took some time. This is because a target SPE must be studied
extensively with respect to execution behavior and query semantics first. Then, an
efficient mapping of the JEPC specification must be found and implemented. Lastly,
unit tests that check test workloads for correct processing must be performed. Because
most of these tasks are creative and intellectual, no holistic approach to developing a
JEPC bridge to a stream processing engine can be given. Nevertheless, this chapter
presents some details of our solutions that very likely can be adopted by additional
JEPC bridges to other stream processing engines. In general, the mapping of the core
API of JEPC (i.e., implementing the interface EPProvider) is easy, because it is a
subset of the API of every modern SPE. The semantically correct translation of EPAs
into the query language of a target SPE is more challenging.

8.2 Implementation of the API

As already mentioned in the last section, mapping the core API of JEPC to the API of
a SPE is straightforward, because both are made for stream processing and require the
management of streams and continuous queries therefore. Due to its simplicity and
orientation towards existing systems, every method of the API of JEPC has an exact
or nearly exact counterpart in the API of a target SPE.

Also the architectural style of a target SPE does not matter. We implemented JEPC
bridges to the SPEs Esper [Esp] and webMethods Business Events [web] which follow
a library approach. Their corresponding JEPC bridges only need access to all libraries
and can then create and use their own instances of the associated target SPE. We also
implemented a JEPC bridge to the SPE Odysseus [App12] which implements a client-
server architecture. Its corresponding JEPC bridge requires a running server instance
and is fully responsible for the communication with the server in addition. For exam-
ple, events must be transferred in both directions. Because such a JEPC bridge has to
implement also an entire client therefore, the mapping of the core API requires more
effort and lines of code but is not more difficult than the mapping of the core API to
the API of SPE following the library approach.

68

8.3 Compiler for EPAs

8.3 Compiler for EPAs

Translating every basic EPA into the query language of a target SPE under preserva-
tion of semantics is challenging in general. Depending on the degree of mismatch
between the semantics of JEPC and the semantics of a target SPE, correct translations
might be complicated to achieve. However, all modern SPEs support filter, aggrega-
tion, join and sequential pattern matching queries. A roughly correct translation of
EPAs should be possible in every case therefore. For an exact alignment of the seman-
tics, it might be necessary that some tasks are performed within the JEPC bridge before
and after a translated EPA running within the target SPE. Figure 19.1a on page 292
illustrates the translation of an EPA shown in the upper part. A corresponding CQ
that exactly or approximately produces the results of the EPA runs within the target
SPE. In general, manipulations of the input streams or the output stream of this CQ
are necessary to meet the JEPC semantics. Among others, time intervals of events can
be modified, extra events can be added and unwanted events can be removed.

Since all window operators are applied within the middleware, only the basic
EPAs must be translated. A translation must process arbitrary internal event streams
correctly. In the following, we shortly discuss the translations of the basic EPAs.

8.3.1 Translation of the Snapshot-Reducible EPAs

We focus on the basic EPAs that are snapshot-reducible in this section. From a high-
level point of view, EPAs can be classified into stateless EPAs and stateful EPAs. In the
context of JEPC, the filter EPA is stateless and the aggregation and correlation EPAs
are stateful. Translating stateless EPAs correctly is simple in almost every case. Par-
ticularly the filter EPA of JEPC is easy to translate, because all modern SPEs provide a
mechanism for event filtering on basis of user-defined Boolean expressions.

In contrast, stateful EPAs are challenging to translate, because they have an as-
signed state that keeps all relevant events. There are SPEs such as Esper that have a
data model, execution behavior and semantics that totally mismatch the JEPC specifi-
cation. For example, Esper models every event stream as a totally ordered sequence of
external events (the order is according to the arrival order of events) and does not sup-
port internal events. A sliding window aggregation query produces for each event of
the input event stream exactly one output event (and not only for entire snapshots as
required by the JEPC specification). In the case of a high degree of mismatch between
the semantics of JEPC and a target SPE, it is recommended to manually manage the
state of stateful EPAs in order to achieve correct translations.

69

8 JEPC Bridges to Stream Processing Engines

Method

NEWSWEEPAREA(≤, fquery, fremove)
INSERT((p, ts, te))
REPLACE((p̂, t̂s, t̂e), (p, ts, te))
ITERATOR()
QUERY((p, ts, te))
EXTRACTELEMENTS((p, ts, te))
PURGEELEMENTS((p, ts, te))
SIZE()

Table 8.1: SweepArea

In [Krä07, KS09] so-called SweepAreas are proposed as data structures for the states of
stateful EPAs that process internal event streams. A SweepArea is an abstract data
type for keeping and managing a collection of internal events. Table 8.1 shows all
methods of a SweepArea. A new SweepArea is initialized with a total order relation≤
and two binary predicates fquery and fremove each requiring two events as arguments.
Events are added to a SweepArea via INSERT. It is also possible to replace a stored
event by another one using REPLACE. The method ITERATOR returns an iterator that
traverses all stored events in an order according to ≤. To select and obtain only cer-
tain events, the method QUERY can be used. Then, an event is only returned if it
and a reference event given by the caller satisfy fquery. A subset of all stored events is
returned and removed from the SweepArea by EXTRACTELEMENTS that returns and
removes a stored event if fremoved is satisfied for the event itself and a reference event
given by the caller. The method PURGEELEMENTS is similar but does not return qual-
ifying events. Lastly, SIZE is for obtaining the size of a SweepArea.

SweepAreas are intended for low-level implementations of stateful EPAs. This
comprises both the implementation of the state and the implementation of the opera-
tion. For the translations of stateful EPAs only the storage capabilities of SweepAreas
are needed. The operation is performed by a corresponding CQ of the target SPE.
Therefore, it is sufficient to simulate a lightweight version of SweepAreas within the
target SPE. In particular, only fremove, INSERT and PURGEELEMENTS are necessary
to fully control the content of a SweepArea. In case of Esper, we could easily sim-
ulate such a lightweight SweepArea by using only data structures and functionality
provided by Esper. Then, aggregation and correlation queries over our lightweight
SweepAreas result in correct results with respect to the JEPC semantics.

70

8.3 Compiler for EPAs

8.3.2 Translation of the Pattern Matching EPA

Although pattern matching is a complicated operation in general, sequential pattern
matching queries have quite similar semantics among different SPEs. Furthermore,
their semantics can often be manipulated via parameters. In the case of the most pop-
ular approaches to sequential pattern matching, namely SASE [WDR06, DIG07] and
MRQ [Zem07], users can choose from different semantics. Because SASE is imple-
mented by the SPE Odysseus and MRQ is implemented by the SPE Esper, we had
to develop translations of the pattern matching EPA for SASE and MRQ. For both
we identified parameter configurations so that the JEPC semantics is met in the case
of strict event sequences. Unfortunately, SASE as well as MRQ always force strict
event sequences by ordering input events according to their insertion order. This mis-
matches the JEPC semantics that interprets simultaneous events as alternatives.

We found a solution that works for both SASE and MRQ. Instead of mapping a
pattern matching EPA to exactly one sequential pattern matching query of the tar-
get SPE, we map it to a variable number of sequential pattern matching queries each
responsible for exactly one active universe currently being contained in the time win-
dow. Because a universe is a strict sequence of events, the JEPC semantics is met for
single universes. Therefore, the JEPC semantics is met for arbitrary event streams by
deriving all universes currently being contained in the time window, placing a se-
quential pattern matching query on each universe, and joining the output streams of
all those queries. The corresponding JEPC bridge must take care that new universes
and sequential pattern matching queries are created when events occurred simulta-
neously, that an existing universe is removed when the event by which it was started
leaves the time window, and that a new event is forwarded only to sequential pattern
matching queries being responsible for a universe the event belongs to.

Summary

In this section, we discuss the implementation of JEPC bridges to SPEs and present
techniques for the alignment of semantics. While the mapping of the API of JEPC
and the translation of filter EPAs are easy in general, the translations of the stateful
snapshot-reducible EPAs and of the pattern matching EPA are difficult if the seman-
tics substantially mismatch. We show how a lightweight version of the SweepArea can
be used to achieve correct semantics for the stateful snapshot-reducible EPAs. Further-
more, we present a translation of the pattern matching EPA to SASE and MRQ which
are popular and widely used approaches to sequential pattern matching.

71

9
JEPC Bridge to Standard

Database Systems

Outline
9.1 Introduction . 74

9.2 Implementation of the JEPC Bridge to JDBC . 75

9.3 Evaluation . 79

73

9 JEPC Bridge to Standard Database Systems

9.1 Introduction

The main purpose of JEPC is primarily the connectivity to high-performance raw EP
providers. But a JEPC bridge to standard database systems, whose performance can-
not be expected to be very good, is appealing to some applications. Many applications
are not dealing with enormous event streams. If there happen only a few dozens of
events every second, a standard database system can easily handle them. In addition,
a standard database system allows stateful EPAs to have states that are significantly
larger than the available main memory, because states are kept on external memory.
Lastly, a JEPC bridge to standard database systems leads to reduced integration effort
when event processing technology is used for the very first time. Nearly all IT infras-
tructures consist of one or more database systems. Instead of adding and integrating
a new kind of system, one of the existing database systems could perform the process-
ing of event streams. However, if the workload increases someday so that a standard
database system cannot handle it anymore, then switching to a high-performance EP
provider is immediately and seamlessly possible because of JEPC.

Our JEPC bridge to standard database systems [Glo13, Hoß13] implements an EP
provider purely on top of JDBC [And11, GUW08]. This allows the use of the JEPC
bridge with every standard database system for which a JDBC driver exists. Figure 9.1
illustrates how event processing is provided by a standard database systems via the
combination of JDBC and JEPC.

JEPC

Bridge Bridge Bridge Bridge

Esper Odysseus
webMethods

Business
Events

JDBC...

Driver

...

Uniform Event Processing

DB2 H2 Oracle PostgreSQL SQL Server

Driver Driver Driver Driver

Figure 9.1: Event processing via standard database systems

74

9.2 Implementation of the JEPC Bridge to JDBC

9.2 Implementation of the JEPC Bridge to JDBC

While the mapping of the core API of JEPC is easy in case of SPEs, it requires more ef-
fort in case of JDBC because standard database systems do not conform to the stream
processing paradigm. Queries must be kept within the JEPC bridge and manually
executed whenever a new relevant event is pushed. However, the translation of
the snapshot-reducible basic EPAs is straightforward, because their semantics is de-
rived from the semantics of standard database systems. In contrast, sequential pattern
matching is not supported by standard database systems. Therefore, we show how
sequential pattern matching can be implemented purely via standard SQL [SQL].

9.2.1 Management of Events in Database Tables

Standard database systems organize data in the form of tuples in static database ta-
bles. Tuples have no inherent temporal dimension. They are inserted into and re-
moved from database tables completely on demand. Because the payloads of events
are tuples, they can be directly stored in database tables. Furthermore, the temporal
dimension of events can be added by simply extending database tables by two new
columns keeping the start and end timestamps of events. This way, an event stream
can be stored in a database table. But storing entire event streams is neither required
nor convenient for the evaluation of EPAs. Therefore, the basic idea is to keep only
events which are relevant for correct evaluation of JEPC queries in database tables.
Consequently, expired events must be continuously removed as new events stream
in. On basis of the available end timestamps of events, expired events of a database
table can be easily selected and removed via a single SQL statement.

Since events can be managed in database tables, we have to clarify which and how
many database tables are needed. For each event stream (i.e., all externally registered
event streams as well as the output stream of every running EPA) the JEPC bridge
creates exactly one fixed table and a variable number of additional tables. The fixed
table, named inbox, keeps always the last event of the associated event stream. On
arrival of a new event, the corresponding inbox of an event stream is updated by
exchanging the event currently being stored for the new one. For each stateful EPA,
one or more tables are created in addition to the inboxes. Those additional tables are
used as the states of stateful EPAs and keep all relevant events of the associated input
event streams. A new event must be inserted into not only the inbox, but also all
associated tables being the states of running stateful EPAs.

75

9 JEPC Bridge to Standard Database Systems

9.2.2 Translation of the Snapshot-Reducible EPAs

According to the JEPC semantics, the basic EPAs filter, aggregator and correlator of
JEPC are snapshot-reducible to the selection, aggregation and join operators of the re-
lational algebra. This makes the translation of these basic EPAs into SQL statements
straightforward. The execution of the resulting SQL statements is performed as fol-
lows. A filter statement is executed on the inbox of its input event stream for each
arriving event. Aggregation statements are directly executed on the corresponding
state tables when time progresses. A correlation statement requires a more advanced
execution in order to avoid duplicates of output events. It is not correct to join all
corresponding state tables of a correlation EPA. In general, this also joins events that
already have been joined. Instead, the inbox of the input stream having a new event
must be joined with the state tables of all other input streams. Additionally to the
user-defined correlation condition, only events with intersecting time intervals can
successfully join. This is simply achieved by extending the correlation condition.

9.2.3 Translation of the Pattern Matching EPA

Because sequential pattern matching is not part of the relational algebra, there is no
operator corresponding to the pattern matching EPA. Therefore, we developed an ap-
proach which allows standard database systems to perform sequential pattern match-
ing purely on database tables using standard SQL. A slightly modified version of our
approach requiring an external automaton can be found in [Hoß13].

Recall that the pattern to detect is a regular expression over symbols. It is common
practice to use finite automata for regular expression matching [HMU00]. Figure 9.2
shows an automaton for detecting the pattern ab∗c+d over {a, b, c, d}. Automata are
implemented typically in the form of transition tables. For each combination of au-
tomaton state and symbol, a transition table keeps the next automaton state [HMU00].

a b c d

q0 q1 qe qe qe

q1 qe q2 q3 qe

q2 qe q2 q3 qe

q3 qe qe q3 q4

q4 qe qe qe qe

qe qe qe qe qe

Table 9.1: Transition table of example automaton (standard layout)

76

9.2 Implementation of the JEPC Bridge to JDBC

a b c d

c

b

a,b,c,d

a,b
,c,d

c

b,c,d

a,d a,d a,b

q0 q1 q2 q3 q4

qe

Figure 9.2: Finite automaton for regular expression matching

Table 9.1 shows the transition table of the automaton depicted in Figure 9.2. The
first row gives all symbols and the first column gives all automaton states. All other
cells contain the target automaton states. A transition table can be directly put into a
database system as a new database table. However, the usual layout of transition ta-
bles is beneficial for main memory but not for external memory because of the follow-
ing reasons. First, this layout cannot be efficiently indexed and lookups are expensive
therefore. Second, database systems read entire rows in general. The amount of data
that is read for a lookup increases with the number of symbols. Therefore, we propose
a layout which does not suffer from these disadvantages. In our proposed layout, each
row of a transition table is a triple (qx, s, qy). The element qx is the current automaton
state, s is the symbol and qy is the next automaton state.

The corresponding transition table of the automaton depicted in Figure 9.2 having
the new layout is shown in Table 9.2. Because also all symbols are now organized in a
column, we can create a compound index on [SourceState, Symbol]. Then, lookups for
a given state and symbol can be done efficiently via the index. Furthermore, rows are
only of size three and all transitions to the error state qe must not be stored. Whenever
a lookup fails, the next state is qe by default. Lookups for an automaton with 1,000
states and 1,000 symbols were more than four times faster using a transition table
with the new layout than with the usual layout in PostgreSQL [Pos].

77

9 JEPC Bridge to Standard Database Systems

Source State Symbol Target State

q0 a q1

q1 b q2

q1 c q3

q2 b q2

q2 c q3

q3 c q3

q3 d q4

Table 9.2: Transition table of example automaton (efficient layout for databases)

Table
State VarVarSymbolTimestamp Var

. . .
1 2 N

Figure 9.3: Schema of the AIT

Besides the transition table implementing the automaton, each pattern matching EPA
gets another database table named active instances table (AIT) where all active instances
are managed. Figure 9.3 shows the schema of the AIT. Each active instance is repre-
sented by exactly one row in the AIT. The column Symbol keeps the last matched
symbol of an active instance, the columns Var1, Var2, . . . , VarN store for each global
variable the current value, Timestamp gives the point in time when the active instance
started and State points to the current automaton state. An AIT always contains a
fixed row being in the initial automaton state. It is required for starting new active
instances. Whenever time progresses, the AIT is updated and not changed until time
progresses again. All updates (i.e., new active instances that started and existing ac-
tive instances that changed their state) within the same instant of time are logged in
a second table having the same schema as the AIT. This table is only temporary and
named buffer table (BT). The BT is needed to derive new universes on simultaneous
events and symbols. Immediately after time progressed, all updates are moved from
the BT into the AIT. Lastly, there is a third table having also the schema of the AIT
(but its first column is named NewState). This table, named Transitions, logs the tran-
sitions of active instances. The meaning of its columns is as follows. NewState and
Timestamp keep the new state and the time instant of the transition. Symbol stores the
current symbol and the other columns keep the new values of global variables.

78

9.3 Evaluation

1 INSERT INTO Transitions

2 SELECT TransitionTable.TargetState, TransitionTable.Symbol,

3 Inbox.ts, AIT.Var1, . . ., AIT.VarN

4 FROM Inbox, AIT, TransitionTable

5 WHERE AIT.State = TransitionTable.SourceState

6 AND Inbox.ts - AIT.Timestamp <= Within
7 AND ((TransitionTable.Symbol = "a" AND ϕa)

8 OR (TransitionTable.Symbol = "b" AND ϕb)

9 . . .
10 OR (TransitionTable.Symbol = "z" AND ϕz))

Listing 9.1: Computing automaton transitions on new events via SQL

Listing 9.1 shows the query that is executed for a pattern matching EPA when a
new event arrives at the inbox of its input event stream. The query joins the new
event, the AIT and the transition table of the automaton (TransistionTable) on
AIT.State = TransitionTable.SourceState. This creates for each active in-
stance all possible transitions. The query also checks whether an active instance has
expired (Inbox.ts - AIT.Timestamp <= Within). Lastly, the corresponding con-
dition ϕx belonging to the symbol x of a possible transition must be fulfilled. Symbol
conditions can be checked here, because the new event as well as the values of all
global variables are available. The result set of the query includes all successful transi-
tions and is saved in the table Transitions. This table contains now active instances
with potentially outdated values of global variables. Therefore, a SQL UPDATE state-
ment sets all affected global variables to the new values using the event in the inbox.
Then, the content of Transitions is moved into the BT and an output event is cre-
ated for each active instance that reached a final state.

9.3 Evaluation

We evaluated the JEPC bridge to JDBC on a machine with an i7-2600 CPU, 8 GiB main
memory and an extra magnetic disk (WD1002FAEX) which was exclusively available
for our experiments. JEPC was executed in a HotSpot JVM (1.2.0_13) and used the
open source database systems H2 (1.3.172) [H2] and PostgreSQL (9.2.4) [Pos]. Con-
nections to PostgreSQL were established through a JDBC type 4 driver. The test events
had three randomly chosen 32-bit integer numbers as payload (a, b and c). Thus, every
event had a size of 28 bytes (including two timestamps). All processed event streams
contained exactly 10 test events per time instant.

79

9 JEPC Bridge to Standard Database Systems

2000 4000 6000 8000 10000

10
0

1k
10

k
10

0k

Aggregator
Pattern Matcher

Correlator

Window Size

E
ve

nt
s

/ S
ec

on
d

Figure 9.4: Performance of basic EPAs using H2

At first, we measured the maximum event throughput of each basic EPA by running
a single instance of it. The filter EPA checked the attribute a for equality with a fixed
number, the aggregation EPA computed the average value of the attribute a within a
time-based sliding window, and the correlation EPA joined two test event streams E1

and E2 on E1.a = E2.b. In front of the correlation EPA, we applied equally-sized time-
based sliding windows to the input streams. The pattern matching EPA was config-
ured to detect three increasing numbers in a row for the attribute a. In this experiment,
we tested different sizes of the time windows. Because there were ten events per time
instant, the total number of events within each time window was ten times its size.
For example, a time window of size 10,000 time instants contained always 100,000
events. Figure 9.4 shows the maximum throughputs using H2. As expected, the ab-
solute numbers were noticeably lower in comparison to the maximum throughputs of
SPEs. Note that the y-axis has a logarithmic scale, because the throughputs decreased
significantly as the window sizes increased. However, the pattern matching EPA was
not affected by the size of its window. This was because an event sequence with a
fixed length of three events was searched via an automaton. The stateless filter EPA
achieved a maximum throughput of about 135,000 events per second.

After we exchanged H2 for PostgreSQL, we got quite different numbers. Figure 9.5
plots the results of the same experiment using PostreSQL. The filter EPA achieved a
maximum throughput of about 4,100 events per second. While the EPAs scaled better
with the window size in comparison to H2, the absolute numbers were lower. The
database system H2 clearly outperformed PostgreSQL for the tested range of window

80

9.3 Evaluation

2000 4000 6000 8000 10000

10
0

1k
10

k
10

0k

Aggregator
Pattern Matcher

Correlator

Window Size

E
ve

nt
s

/ S
ec

on
d

Figure 9.5: Performance of basic EPAs using PostgreSQL

sizes. However, this was not caused by the database systems themselves. PostgreSQL
was simply limited by communication. Its JDBC driver communicates with an exter-
nal server process over a network protocol. Note that our JEPC bridge to JDBC leads
to a lot of communication. In particular, every single input event of an EPA is sent
from JEPC to the database system followed by a series of SQL statements that per-
form the execution of EPAs. In addition, all output events must be sent back from the
database system to JEPC. The database system H2 did not suffer from communication
overhead, because it directly implements JDBC. But the communication costs became
less influencing when the load in the database system increased (e.g., in case of EPAs
having huge states). For example, the correlation EPA of this experiment processed
512 events per second for a window size of 30,000 using PostgreSQL, but it processed
only 416 events per second using H2. As a rough guide, H2 should be preferred for
query workloads which are not computing-intensive and a tenured database system
such as PostgreSQL should be preferred in the other case.

Because real-world query workloads consist of more than a single EPA, we mea-
sured the overall performance for query workloads containing multiple EPAs and
changed their sizes in the next experiment. In each tested query workload the types
of EPAs were uniformly distributed. This means that a query workload containing
x EPAs in total consisted of x/4 filter EPAs, x/4 aggregation EPAs, x/4 correlation
EPAs and x/4 pattern matching EPAs. The EPAs were configured as in the previous
experiment, but parameters were slightly varied so that no two EPAs were identical
to each other. On average, the size of time windows was 100. Figure 9.6 shows the

81

9 JEPC Bridge to Standard Database Systems

4 8 12 16 20 32 44 56 68 80 92 100

10
10

0
1k

10
k

H2
PostgreSQL

Total Number of Running EPAs

E
ve

nt
s

/ S
ec

on
d

Figure 9.6: Performance of multiple running EPAs (small windows)

4 8 12 16 20 24

0
50

10
0

15
0

20
0

25
0

30
0

35
0

H2
PostgreSQL

Total Number of Running EPAs

E
ve

nt
s

/ S
ec

on
d

Figure 9.7: Performance of multiple running EPAs (large windows)

results for both database systems and different counts of running EPAs. The absolute
numbers show that H2 could easily process hundreds of events per second. For many
EP applications this performance is sufficient. Again, the performance got worse by
multiple times after we exchanged H2 for PostgreSQL. As in the previous experiment,
this indicates that the communication costs dominated the computation costs. When
the computation costs became higher, then the difference between H2 and PostgreSQL
reduced until PostgreSQL even outperformed H2. Figure 9.7 shows the results of the
same experiment but for an average time window size of 15,000. In the case of 12 or
more running EPAs, PostgreSQL was superior to H2.

82

9.3 Evaluation

Summary

This chapter presents a JEPC bridge that implements the JEPC specification on top of
JDBC and is compatible with all standard database systems therefore. The states of
EPAs are maintained in database tables on which standard SQL statements perform
the execution of the basic EPAs including the pattern matching EPA. An experimental
evaluation shows that a standard database system is able to run dozens of EPAs in EP
applications dealing with hundreds of new events per second.

83

10
JEPC Bridge to Native EPA

Implementations

Outline
10.1 Introduction . 86

10.2 Outline . 86

85

10 JEPC Bridge to Native EPA Implementations

10.1 Introduction

Besides JEPC bridges to different SPEs and standard database systems, we also de-
veloped a special JEPC bridge that has no target raw EP provider. Instead, this JEPC
bridge, named native EP provider, is able to execute the basic EPAs by itself, because it
contains implementations of them. The main advantages of such native implementa-
tions are that the JEPC specification can be directly implemented without the need for
alignment of semantics and that EPAs can be executed using the best performing algo-
rithms and implementations. Thus, it can be guaranteed that the native EP provider
achieves high performance in every situation.

The following two chapters present our native implementations of the filter and
aggregation EPAs in detail. Filtering is an important task in EP and extensively used in
real-world applications to reduce enormous event streams to only the relevant events.
Therefore, EPNs start with filter EPAs very often. The native EP provider indexes
large sets of JEPC queries on basis of the BE-tree [SJ11, SJ13] which is currently the
best performing query index. We extend the original BE-tree by several optimizations
that result in significant performance improvements in EP applications.

Aggregation is an integral part of any kind of data analytics and widely used in
EP applications therefore. The only proposed algorithm that implements the seman-
tics of JEPC [Krä07, KS09] has linear time complexity. In challenging applications,
it has unsatisfactorily performance therefore. We present a novel algorithm that has
logarithmic time complexity and achieves a significantly better performance.

The native EP provider should not be the only direct implementation of the JEPC
specification. In the future, we plan to develop parallel native implementations of the
basic EPAs (intra-operator parallelization) that fully utilize graphics cards as well as
modern multi-core and many-core CPUs.

10.2 Outline

Chapter 11 presents our improved version of the BE-tree that implements the filter
EPA in the native EP provider. In Chapter 12, we introduce a faster algorithm for
sliding-window aggregation over event streams with time-interval semantics that im-
plements the aggregation EPA in the native EP provider.

86

11
An Efficient Index for Large Sets

of Continuous Queries

Outline
11.1 Introduction . 88

11.2 Preliminaries . 90

11.3 BE-Tree . 91

11.4 Shortcomings in Event Processing Applications 103

11.5 BE+-Tree . 110

11.6 Implementation . 122

11.7 Handling Dynamic Sets of Continuous Queries 125

11.8 Evaluation . 126

11.9 Related Work . 153

87

11 An Efficient Index for Large Sets of Continuous Queries

11.1 Introduction

In database systems, index structures such as B-trees [BM72] and R-trees [Gut84] (to
name the most commonly used index structures in today’s database systems) are used
to index large sets of persistent data items in order to speed up query execution. The
general idea of every index structure is to look up all relevant data items instead of
naïvely processing all data items including every irrelevant data item. In many cases,
only few data items are relevant for determining the result of a query. Then, index
structures can reduce the time needed for query execution by several orders of magni-
tude [GUW08]. Additionally, most index structures perform well even for very large
databases. For example, the size of the web search engine index of Google increased
from about 25 million unique webpages in 1998 to about one trillion unique webpages
in 2008 [Jes]. However, the web search engine of Google was still able to look up all
relevant webpages for a given set of keywords within a fraction of a second.

Because the roles of data items and queries are interchanged in the stream pro-
cessing paradigm, queries are persistent and, thus, can be indexed. The problem of
indexing CQs via their filter conditions has gained much attention in the past, because
filter conditions specify which data items are relevant (analogous to filter conditions
of ad-hoc queries in database systems) and have a wide application in many types
of CQs. Therefore, the problem of indexing CQs reduces to the problem of indexing
Boolean expressions and their atoms, the predicates. Filter conditions are commonly
used not only in systems for event processing, but also in systems for publish/sub-
scribe, information filtering, data stream management and many others. For instance,
subscriptions can be indexed in publish/subscribe systems and rules can be indexed
in rule-based intrusion detection systems (IDS).

While database indexes return for a given ad-hoc query a set of data items, query
indexes return for a given new data item a set of continuous queries that must be
executed for the new data item. For example, assume that there are eight continuous
queries running as shown in the lower part of Figure 11.1. Furthermore, assume that
each of the continuous queries processes only data items having a certain content (e.g.,
the price must be between 10 and 20 and the color must be “yellow”). Without an index,
all eight continuous queries must be executed for every single data item that comes
in (analogous to full table scans in databases) [Agu99, YG94]. Just as full table scans
that scale linearly with the total number of data items, the naïve execution of all CQs
scales linearly with the total number of CQs. For instance, if the total number of CQs
doubles, then the effort for processing a single data item doubles too (assuming that

88

11.1 Introduction

Query
Index

CQ CQ CQ CQ CQ CQ CQ CQ

CQ

CQ

Data
Item Lookup Result

1 2 3 4 5 6 7 8

3

7

Figure 11.1: Query index

the execution costs are the same for each CQ). In the presence of a query index, a
lookup can be performed for every new data item in order to obtain all continuous
queries that must be executed. For example, the illustrated data item is relevant only
for the queries CQ3 and CQ7 in Figure 11.1. Thus, it is correct and less costly to execute
only CQ3 and CQ7 instead of all continuous queries. Similar to their counterparts
in database systems, also query indexes scale well in general and are essential for
applications dealing with large sets of continuous queries.

The BE-tree [SJ11, SJ13] is a recently presented dynamic query index being supe-
rior to all static and dynamic query indexes proposed so far. It addresses explicitly
high-dimensional and discrete spaces. Additionally, it is intended to be used in highly
dynamic application domains in which index updates occur as often as or even more
often than new data items. This is true for many application domains such as pub-
lish/subscribe. For example, an e-commerce system with products as data items can
allow customers to keep informed of new products according to their interests via
user-defined subscriptions [SJ11, SJ13, ZCT14]. In this case, new data items are rare,
subscriptions change very often (every new customer leads to a set of new subscrip-
tions and existing customers constantly update their subscriptions), data items have
NULL values for most attributes [CBN07], and the cardinalities of attribute domains are
low. For applications having all these properties the BE-tree is perfectly suited. How-
ever, none of the properties is true for event processing applications. In this chapter,
we focus on improving the BE-tree for a certain class of stream processing applica-
tions. Our modified BE-tree, named BE+-tree, is optimized for EP applications and all
stream processing applications that have properties similar to EP.

89

11 An Efficient Index for Large Sets of Continuous Queries

11.2 Preliminaries

Almost all query indexes are for Boolean expressions in conjunctive form. A Boolean
expression in conjunctive form consists of any number of predicates that are all con-
nected by the logical ∧ operator. Furthermore, each predicate must refer to exactly
one data attribute and specify all relevant values for it (all data attributes span the
space, i.e., each data attribute corresponds to one dimension). In other words, every
predicate must restrict the domain of exactly one data attribute to a subset of val-
ues in the domain. Note that the described form of predicates is special, because one
operand must be a data attribute and the other must be a fixed subset of values in the
attribute domain. Obviously, predicates with only data attributes as operands (e.g.,
width = height, with height and with being numeric data attributes) cannot be sup-
ported by an index and must be evaluated for each data item individually.

Definition 4 (Indexable Predicate). An indexable predicate pattr,V(x) is a Boolean-valued
function having a fixed data attribute attr and a fixed set of constant values V being the
parameters of the predicate. For every value x in the domain of attr, an indexable predicate
evaluates to either TRUE or FALSE.

Definition 4 requires a predicate to restrict one data attribute to a set of constant val-
ues for being indexable. Note that JEPC natively supports the indexable predicates
<attr,{v}, ≤attr,{v}, =attr,{v}, 6=attr,{v}, ≥attr,{v} and >attr,{v}.

Definition 5 (Indexable Boolean Expression). An indexable Boolean expression is a
Boolean expression having the form

∧
i=1,2,...,n

(
pi). Every predicate pi is an indexable predi-

cate and for each data attribute there is at most one predicate.

According to Definition 5, a Boolean expression is indexable only if all its predicates
are indexable and connected by logical ∧ operators. Furthermore, every data attribute
may not be restricted by more than one predicate.

Complex Boolean expressions being not in conjunctive form can be decomposed
into a set of Boolean expressions being in conjunctive form (see Section 11.6.2).
Through rewriting, a conjunctive subexpression containing multiple predicates for a
data attribute can often be reduced (e.g., <price,{25} ∧ <price,{50} reduces to <price,{25}).
The additional rewriting rules presented in the following are generally applicable
and essential in the case of JEPC that only supports a limited set of predicates na-
tively. They replace subexpressions used to express one of the unsupported predicates
between, ∈ or 6∈ by the corresponding unsupported predicate. Our implementation
automatically applies all these rewriting rules before indexing.

90

11.3 BE-Tree

Unsupported predicate Substitution expression

betweenattr,{v1,v2} ≥attr,{min(v1,v2)} ∧ ≤attr,{max(v1,v2)}
∈attr,{v1,v2,...,vn}

∨
i=1,2,...,n (=attr,{vi})

6∈attr,{v1,v2,...,vn}
∧

i=1,2,...,n (6=attr,{vi})

Table 11.1: Substitution of unsupported predicates

The predicates between, ∈ and 6∈ are supported by our native EP provider but not
by JEPC. However, they can be substituted by the expressions shown in the sec-
ond column of Table 11.1. Before indexing, the native EP provider searches for
substitution expressions in a Boolean expression and exchanges them for the corre-
sponding predicates that are not part of the JEPC specification. For example, the
valid but non-indexable Boolean expression <price,{25} ∧ ≥weight,{100} ∧ ≤weight,{200}
∧ (=size,{32} ∨ =size,{42} ∨ =size,{55}) becomes the indexable Boolean expression
<price,{25} ∧ betweenweight,{100,200}∧ ∈size,{32,42,55} after applying the rules of Table 11.1.

11.3 BE-Tree

The BE-tree is a tree data structure for indexing a set of indexable Boolean expressions.
Its internal structure consists of different types of nodes. This makes the BE-tree more
complex in comparison to tree data structures that have a homogenous internal struc-
ture such as, for example, the B-tree and the R-tree.

11.3.1 Predicate Mapping

For the purpose of indexing a set of indexable predicates that refer to the same data
attribute in a uniform way (i.e., independent of the types of predicates), the BE-tree
maps every predicate pattr,V(x) to a single one-dimensional interval that covers all
values x in the domain of attr for which the predicate evaluates to TRUE. Table 11.2
shows for each type of indexable predicate its corresponding mapping to an interval
(let vmin be the minimum value in the attribute domain and vmax be the maximum
value in the attribute domain). Note that a resulting interval may also cover values for
which the corresponding predicate evaluates to FALSE. In some cases, even the entire
attribute domain may be covered (e.g., 6=attr,{v} and 6∈attr,{v1,v2,...,vn}). The mapping of
indexable predicates to intervals leads to the advantage that all types of indexable
predicates can be indexed in the same way and together in a single data structure.

91

11 An Efficient Index for Large Sets of Continuous Queries

Indexable Predicate Interval

<attr,{v} [vmin : v− 1]
≤attr,{v} [vmin : v]
=attr,{v} [v : v]
6=attr,{v} [vmin : vmax]

≥attr,{v} [v : vmax]

>attr,{v} [v + 1 : vmax]

betweenattr,{v1,v2} [min{v1, v2} : max{v1, v2}]
∈attr,{v1,v2,...,vn} [min{v1, v2, . . . , vn} : max{v1, v2, . . . , vn}]
6∈attr,{v1,v2,...,vn} [vmin : vmax]

Table 11.2: Mapping of indexable predicates to intervals

11.3.2 Structure of BE-Tree

A BE-tree is an unbalanced n-ary tree data structure that is supposed to reside com-
pletely and permanently in main memory. All indexed Boolean expressions are stored
in the leaf nodes. There are two different types of internal nodes that route to the
leaf nodes. So-called partition nodes are used to partition the space. Per partition, all
indexed Boolean expressions are clustered via so-called cluster nodes. In a BE-tree, par-
tition nodes and cluster nodes alternate along a path. In particular, every partition
node is followed by one or more cluster nodes and every cluster node is followed by
any number of partition nodes. Along every path, no two partition nodes refer to the
same data attribute. Thus, every path can have at most as many partition nodes as
there are data attributes. As a consequence, the maximum possible height of a BE-tree
is limited by the total number of data attributes. All partition nodes and all cluster
nodes that have the same parent node are maintained in a directory.

Cluster
Directory

attr

Figure 11.2: Partition node

92

11.3 BE-Tree

Partition
Directory Leaf

[v1 : v2]

Figure 11.3: Cluster node

A partition node (p-node for short) is associated with exactly one data attribute (i.e., one
dimension of space). All Boolean expressions stored in the subtree of a p-node have an
indexable predicate on the associated data attribute. Every p-node is followed by at
least one cluster node. The cluster nodes of a p-node are organized in a single cluster
directory that is the only child node of a p-node. Figure 11.2 illustrates a p-node. The
shown p-node is associated with the data attribute attr and has a pointer to its cluster
directory that manages all subsequent cluster nodes.

Each cluster node (c-node for short) in a BE-tree (except the root node that is always
a c-node) has an assigned one-dimensional interval and is associated with the data
attribute of its parent p-node. The interval of a c-node represents a range of values
in the domain of the associated data attribute. All Boolean expressions stored in the
subtree of a c-node have an indexable predicate which restricts the associated attribute
domain to a set of values that is completely covered by the interval of the c-node.
Every c-node is followed by exactly one leaf node as well as any number of p-nodes
that are organized in a single partition directory. Figure 11.3 illustrates a c-node. It
shows a c-node with its assigned interval [v1 : v2] covering all values between v1 and
v2. Also, the subsequent leaf node and partition directory are shown.

Every path from the root node of a BE-tree to a leaf node is always an alternating
sequence of p-nodes and c-nodes. Leaf nodes (l-nodes for short) in a BE-tree store the
indexed Boolean expression that belong to the preceding partitions and clusters. A
stored Boolean expression is directly associated with the query it belongs to. Each
l-node in a BE-tree has the following property.

Definition 6 (Leaf Node Property). Every leaf node in a BE-tree stores at most maxcap

Boolean expressions in total. Otherwise, a leaf node is considered to be overflowing. A leaf node
is exceptionally allowed to overflow permanently if and only if there is no further clustering
possible and there is no or no suitable data attribute for partitioning available.

93

11 An Efficient Index for Large Sets of Continuous Queries

The maximum capacity maxcap of l-nodes is a constant and user-defined parameter of
the BE-tree. Overflowing l-nodes must be split by further clustering or partitioning
in order to eliminate the overflow. There are two exceptional cases where a (reason-
able) partitioning of an overflowing l-node that cannot be further clustered may not be
possible. First, all data attributes have already been used for partitioning on the path
from the root node to the overflowing l-node. Second, there are data attributes left for
partitioning, but only those that are rarely used in the stored Boolean expressions (i.e.,
all available data attributes have low popularity). In the first case further partitioning
is simply not possible and in the second case further partitioning would not improve
the matching performance of the BE-tree.

A partition directory (p-directory for short) is just a map for efficiently looking up p-
nodes. It maps each data attribute that is used for partitioning the neighboring l-node
to its corresponding p-node. Figure 11.4 illustrates a p-directory.

Every cluster directory (c-directory for short) is a grid-based index for one-
dimensional intervals. Each cell of a c-directory covers a certain range of values of
the associated data attribute and represents a cluster. A cell also points to a c-node
that keeps all Boolean expressions of the cluster. Figure 11.5 shows a c-directory in
detail. The root cell covers always the entire domain of the associated data attribute
(see Definition 7). In a c-directory, the next level is created by cutting one or more cells
at the current level into halves. This process can be recursively repeated until the cells
cannot be further split. Cells that cannot be split anymore are called atomic cells. The
grid of a c-directory is expanded dynamically on demand. All cells of a grid that do
not have child cells are called leaf cells independent of whether they are atomic cells.
C-directories are used to index the predicates of indexable Boolean expressions and
allow for efficient lookup operations.

p-node p-node p-nodep-node

attrv attrw attrx attry. . .

. . .

Figure 11.4: Partition directory

94

11.3 BE-Tree

c-node

c-node c-node

c-node

c-node

c-node

c-node

[vmin : vmax]

[vmin : vmax
2] (vmax

2 : vmax]

[vmin : vmax
4] (vmax

4 : vmax
2] (vmax

2 : 3 vmax
4](3 vmax

4 : vmax]

.

Figure 11.5: Cluster directory

Definition 7 (C-Directory Property). The root cell of every c-directory in a BE-tree covers
the entire domain of its associated data attribute. This ensures the support of insertions of
indexable predicates at any time.

A new c-directory consists only of an empty root cell that covers the entire domain.
Every interval being inserted must be always put into the smallest cell that encloses
it (see Definition 8). By inserting an additional interval, a cell of a c-directory may
overflow (i.e., the l-node of the corresponding c-node overflows). An overflowing cell
that is a non-atomic leaf cell can be cut into halves to allow for pushing down some of
its stored intervals. Note that the grid of a c-directory is unbalanced in general.

Definition 8 (C-Directory Insertion Property). An interval must be inserted into the small-
est cell of a c-directory that encloses it. This is the cell that encloses the interval and has no
child cells at all or no child cell that encloses the interval.

Definition 8 leads to an algorithm to insert Boolean expressions into c-directories. Al-
gorithm 1 shows the details. The algorithm requires a Boolean expression being in-
serted and a cell of a c-directory. Initially, it is called with the root cell. A Boolean
expression being inserted into a c-directory must have an indexable predicate on the
associated data attribute. Then, that predicate is mapped to an interval according to
Table 11.2. The resulting interval represents the Boolean expression and is used for in-
sertion. Thus, the method ENCLOSES checks whether a cell encloses the corresponding

95

11 An Efficient Index for Large Sets of Continuous Queries

interval that represents the Boolean expression. The algorithm traverses recursively
the c-directory until the correct cell has been found.

Lookups are performed similarly in c-directories as Algorithm 2 shows. The algo-
rithm needs a data item for which all qualifying Boolean expressions are looked up, a
cell of a c-directory and a set to which all qualifying Boolean expressions are added.
Initially, the algorithm is called with the root cell of a c-directory. The data item is
represented by its value of the data attribute the c-directory is associated with. Then,
the algorithm recursively traverses the c-directory and visits all cells that cover the
data item. The cluster node of each visited cell qualifies and must be checked further
(the algorithm MATCHBETREE is presented later in this chapter). Note that lookups
in c-directories are limited to a single path.

Algorithm 1: INSERTCDIRECTORY(be, cell)
Input: Boolean Expression: be, C-Directory Cell: cell
Output: C-Node: cNode

1 if cell.le f tChild 6= NULL then
2 if cell.le f tChild.ENCLOSES(be) then
3 C-Node cNode← INSERTCDIRECTORY(be, cell.le f tChild);
4 return cNode;

5 if cell.rightChild 6= NULL then
6 if cell.rightChild.ENCLOSES(be) then
7 C-Node cNode← INSERTCDIRECTORY(be, cell.rightChild);
8 return cNode;

9 return cell.cNode;

Algorithm 2: MATCHCDIRECTORY(dataItem, cell, resultSet)
Input: Data Item: dataItem, C-Directory Cell: cell, Set of Boolean Expressions: resultSet

1 if cell.ENCLOSES(dataItem) then
2 MATCHBETREE(dataItem, cell.cNode, resultSet);
3 if cell.le f tChild 6= NULL then
4 MATCHCDIRECTORY(dataItem, cell.le f tChild, resultSet);

5 if cell.rightChild 6= NULL then
6 MATCHCDIRECTORY(dataItem, cell.rightChild, resultSet);

96

11.3 BE-Tree

11.3.3 Local Reorganization

During insertion of indexable Boolean expressions, l-nodes might overflow and re-
quire the BE-tree to be reorganized. The reorganization of a BE-tree comprises two
phases that are executed one another but as an atomic unit. In the first phase the space
is partitioned and in the second phase the space is clustered.

11.3.3.1 Space Partitioning

Space partitioning is performed for a single c-node having an overflowing l-node. Al-
gorithm 3 shows the steps of space partitioning in detail. To resolve the overflow, a
data attribute for splitting the overflowing l-node is selected and all stored Boolean
expressions which have a predicate on that data attribute (RESTRICTS) are moved
into a new partition. This procedure is repeatedly performed until the l-node is no
longer overflowing or no further partitioning is possible. The algorithm GETPARTI-
TIONINGATTRIBUTE returns for a l-node (thus, a set of Boolean expressions) the best
data attribute for partitioning. Therefore, each available data attribute is scored and
the available data attribute with the highest score is selected. It might be possible
that there is no suitable data attribute available for partitioning. Then, GETPARTI-
TIONINGATTRIBUTE returns NULL. In this case, the space partitioning stops and the
l-node remains overflowing (see Definition 6). The exact meanings of the terms avail-
able and suitable are given in Definition 9.

Algorithm 3: SPACEPARTITIONING(cNode, path)
Input: C-Node: cNode, Set of Attributes: path

1 while SIZEOF(cNode.lNode) > maxcap do
2 Attribute attr← GETPARTITIONINGATTRIBUTE(cNode.lNode, path);
3 if attr = NULL then
4 return;

5 P-Node pNode← cNode.pDirectory.NEWPARTITION(attr);
6 for Boolean Expression be ∈ cNode.lNode do
7 if be.RESTRICTS(attr) then
8 C-Node targetNode← INSERTCDIRECTORY(be, pNode.cDirectory.root)

cNode.lNode.REMOVE(be);
9 targetNode.lNode.ADD(be);

10 SPACECLUSTERING(pNode.cDirectory.root, path ∪ {attr});

97

11 An Efficient Index for Large Sets of Continuous Queries

Definition 9 (Space Partitioning Property). A split attribute used for space partitioning
must be a data attribute that is available and suitable. A data attribute is available if and
only if it has not already been chosen as split attribute on the path from the root node to the
overflowing l-node. This ensures that every data attribute occurs on every path in a BE-tree
at most once. A data attribute is suitable if and only if there are at least minsupport Boolean
expressions with a predicate on it in the overflowing l-node. This ensures that a new partition
always starts with a certain amount of Boolean expressions.

According to the space partitioning property, a data attribute that has already been
used to partition the space cannot be used as split attribute again. This is, because
all Boolean expressions in the overflowing l-node have an indexable predicate on it
and, thus, all Boolean expressions would be moved into the new partition. Moreover,
the space partitioning property ensures this way that infinite loops do not occur dur-
ing space partitioning. A data attribute used for space partitioning must also have a
minimum support among all Boolean expressions of the overflowing l-node. In par-
ticular, a split attribute must be restricted by at least minsupport Boolean expressions of
the overflowing l-node. The parameter minsupport is constant and user-defined.

If there is a data attribute which can be used for space partitioning, Algorithm 3
creates a new p-node for that data attribute (line 5) and moves all Boolean expressions
of the overflowing l-node with a predicate on the selected data attribute into the new
partition (lines 6–9). This means, all qualifying Boolean expressions are inserted into
the root cell (that is the only existing cell in new partitions) of the c-directory of the
new partition. Then, space clustering is performed for the c-directory. This ensures
not only that a potential overflow of the root cell is eliminated, but also that space
partitioning is directly followed by space clustering.

Up to now, we explained the conditions a data attribute must fulfill for being con-
sidered as split attribute. In the following, we discuss the scoring of data attributes.
Intuitively, the partitioning of a set of Boolean expressions by some data attribute is
the better, the more often that data attribute is used by predicates of the Boolean ex-
pressions (popularity) and the more selective the corresponding predicates are (selec-
tivity) [SJ11, SJ13, YG94]. Data attributes with high popularity and low selectivity can
be used to identify large sets of Boolean expressions (i.e., continuous queries) that do
not match a given data item with high probability. Therefore, data attributes with the
highest popularity and lowest selectivity should be used for partitioning to optimize
the matching performance of the BE-tree. For scoring data attributes with respect
to popularity and selectivity, the original BE-tree uses a scoring function that takes
into account the actual value distributions of data attributes. Thus, it is an online ap-

98

11.3 BE-Tree

proach that requires monitoring at runtime. This online approach allows the BE-tree
to be adaptive to changing data stream characteristics. In particular, the online scor-
ing function monitors false positive evaluations in order to estimate the selectivity of
attributes. We do not use the original online scoring function, because it requires mon-
itoring of the input data stream that imposes overhead at runtime. Furthermore, the
behavior of the online scoring function is hard to predict. For all these reasons, we
developed a simpler offline scoring function for our BE+-tree. To achieve comparabil-
ity in benchmarks, we decided to use our simpler offline scoring function also for the
original BE-tree. Our offline scoring function also takes into account popularity and
selectivity of an attribute but estimates the selectivity via a heuristic as it is done often
by query compilers of database systems [Sel79]. Algorithm 4 shows our offline scoring
function in detail. It returns for a data attribute and a set of Boolean expressions the
corresponding score. For each predicate on the given attribute contained in the set of
Boolean expressions the score is increased. The constant value that is added depends
on the selectivity which is determined by the relative selectivity of the operator of a
predicate for uniformly distributed values. Because both popularity and selectivity
influence the score, it is an appropriate function for scoring data attributes.

Algorithm 4: GETSCORE(attr, booleanExpressions)
Input: Attribute: attr, Set of Boolean Expressions: booleanExpressions
Output: Number: score

1 Number score← 0;
2 for Boolean Expression be ∈ booleanExpressions do
3 for Predicate predicate ∈ be do
4 if predicate.attribute = attr then
5 if predicate.operator ∈ {=} then
6 score← score + 10000;

7 else if predicate.operator ∈ {between,∈} then
8 score← score + 1000;

9 else if predicate.operator ∈ {<,≤,≥,>} then
10 score← score + 10;

11 else
12 score← score + 1;

13 return score;

99

11 An Efficient Index for Large Sets of Continuous Queries

11.3.3.2 Space Clustering

Space clustering is the second phase of local reorganization and handles an overflow-
ing l-node by splitting its corresponding cluster (i.e., the c-directory cell of its parent
c-node) and trying to move enough Boolean expressions into the new clusters. To en-
sure the strict execution order of the two reorganization phases, space clustering must
always be performed first (see Definition 10). This is respected by the algorithms of
the BE-tree. Algorithm 5 shows the details of the space clustering phase.

Definition 10 (Space Clustering Property). Space partitioning is considered for splitting
an overflowing leaf node only if further clustering is not possible (i.e., the corresponding cell
in the c-directory is atomic or has already been split) or further clustering cannot eliminate the
overflow (i.e., not enough Boolean expressions can be moved into the new clusters). In other
words, to eliminate the overflow of a leaf node, it must first be tried to split the overflowing leaf
node by performing space clustering.

Algorithm 5: SPACECLUSTERING(cell, path)
Input: C-Directory Cell: cell, Set of Attributes: path

1 if SIZEOF(cell.cNode.lNode) ≤ maxcap then
2 return;

3 if (not ISLEAF(cell) or ISATOMIC(cell)) then
4 SPACEPARTITIONING(cell.cNode, path);

5 else
6 Endpoint middle← cell.GETMINVALUE()/2 + cell.GETMAXVALUE()/2;
7 cell.le f tChild← NEWCELL([cell.GETMINVALUE() : middle]);
8 cell.rightChild← NEWCELL([middle + 1 : cell.GETMAXVALUE()]);
9 for Boolean Expression be ∈ cell.cNode.lNode do

10 if cell.le f tChild.ENCLOSES(be) then
11 cell.le f tChild.cNode.lNode.ADD(be);
12 cell.cNode.lNode.REMOVE(be);

13 if cell.rightChild.ENCLOSES(be) then
14 cell.rightChild.cNode.lNode.ADD(be);
15 cell.cNode.lNode.REMOVE(be);

16 SPACEPARTITIONING(cell.cNode, path);
17 SPACECLUSTERING(cell.le f tChild, path);
18 SPACECLUSTERING(cell.rightChild, path);

100

11.3 BE-Tree

Space clustering can be performed only for overflowing cells (lines 1–2) that are nei-
ther atomic (cannot be split any further) nor already have been split. In all other cases,
the algorithm switches to space partitioning (lines 3–4). If space clustering can be
performed, it splits the overflowing cell (lines 6–8). Every Boolean expression of the
overflowing cell that is enclosed by one of the new child cells is pushed down to the
next level of the c-directory (lines 9–15). As a result, the Boolean expressions of the
overflowing cell are distributed across the original cell (all Boolean expressions that
cannot be moved remain in the original cell) and its two child cells. Then, the reorga-
nization switches back to space partitioning for the original cell while space clustering
is continued for the new child cells (lines 16–18).

11.3.4 Insert, Delete and Match

The basic operations of a query index are insertion and deletion of indexable Boolean
expressions as well as performing lookups for data items. In this section, we present
the insertion and lookup operations of the original BE-tree. A Boolean expression is
deleted from a BE-tree by simply removing it from its l-node.

11.3.4.1 Insert

New BE-trees start empty consisting of the root node only. The root node is always
a c-node that is not associated with a data attribute and a range of values. Initially,
it has an empty l-node and an empty p-directory. Boolean expressions being inserted
are pushed down as long as there are matching partitions. They are finally stored in
the l-node of the last c-node that does not have a matching partition in its p-directory.
Because l-nodes can store at most maxcap Boolean expressions, l-nodes may overflow
eventually and trigger the creation of new clusters and partitions.

An indexable Boolean expressions be is inserted into a BE-tree via Algorithm 6 that
is initially called with the root node (parameter cNode). At first, the best partition in
the p-directory is determined. For each data attribute on that the indexable Boolean
expression has a predicate and that has not been used on the path so far, the parti-
tion is looked up. Because there can be multiple partitions into which the indexable
Boolean expression could be inserted, the partition with the highest score is selected
(lines 1–9). Note that there might be no partition at all. In this case, the indexable
Boolean expression is stored in the l-node of the current c-node (lines 10–15). In all
other cases, the insertion of the indexable Boolean expression is continued for the cor-
responding cluster of the selected partition (lines 17–19).

101

11 An Efficient Index for Large Sets of Continuous Queries

Algorithm 6: INSERTBETREE(be, cNode, cDirectory, path)
Input: Boolean Expression: be, C-Node: cNode, C-Directory: cDirectory, Set of

Attributes: path

1 P-Node bestPartition← NULL;
2 Number bestScore←−∞;
3 for Predicate predicate ∈ be do
4 if predicate.attribute 6∈ path then
5 P-Node pNode← cNode.pDirectory.LOOKUP(predicate.attribute);
6 if pNode 6= NULL then
7 if pNode.score > bestScore then
8 bestScore← pNode.score;
9 bestPartition← pNode;

10 if bestPartition = NULL then
11 cNode.lNode.ADD(f);
12 if cDirectory 6= NULL then
13 SPACECLUSTERING(cDirectory.root, path);

14 else
15 SPACEPARTITIONING(cNode, path);

16 else
17 C-Node cNodeInsert← INSERTCDIRECTORY(be, bestPartition.cDirectory.root);
18 INSERTBETREE(be, cNodeInsert, bestPartition.cDirectory,

path ∪ {bestPartition.attribute});
19 UPDATESCORE(bestPartition);

11.3.4.2 Match

Data items can be interpreted as Boolean expressions in conjunctive form. Each
element (attribute, value) of a data item maps to an indexable equality predicate
=attribute,{value} with the attribute name and the attribute value of the data item as
operands. Therefore, data items are indexable Boolean expressions and the lookup
operation shown in Algorithm 7 is similar to the insertion operation. The algorithm
starts initially at the root node (parameter cNode). While a data item traverses through
a BE-tree, every matching partition of visited p-directories must be searched for re-
sults. Thus, this operation is not limited to a single path in a BE-tree. Recall that
within every c-directory the lookup operation is limited to a single path and all cells
on that path must be visited (see Algorithm 2).

102

11.4 Shortcomings in Event Processing Applications

Algorithm 7: MATCHBETREE(dataItem, cNode, resultSet)
Input: Data Item: dataItem, C-Node: cNode, Set of Boolean Expressions: resultSet

1 resultSet.ADDALL(cNode.lNode.LOOKUP(dataItem));
2 for Predicate predicate ∈ dataItem do
3 P-Node pNode← cNode.pDirectory.LOOKUP(predicate.attribute);
4 if pNode 6= NULL then
5 MATCHCDIRECTORY(dataItem, pNode.cDirectory.root, resultSet)

11.4 Shortcomings in Event Processing Applications

In this section, we study the use of the BE-tree in event processing applications. At
first, we present an example application that is used throughout this section and in our
evaluation. The example application consists of an event stream with 100 attributes
A0, A1, . . . , A99 each of type 32-bit integer number. Note that the total number of at-
tributes is high for an EP application but quite low for the BE-tree that has been de-
signed for spaces with hundreds of dimensions. Also note that the attribute domains
have large cardinalities (232 to be precise). This also conflicts some assumptions made
by the BE-tree. In the evaluation of the original BE-tree (see [SJ11, SJ13]), attribute
domains had cardinalities of at most 50 in all experiments except one. The only exper-
iment with larger domain cardinalities tested attribute domains with cardinalities up
to 150,000. On basis of the example event stream, we define a list of 10,000 continuous
queries queryi (i = 0, . . . , 9999) having the following filter conditions:

queryi := betweenattr1(i),{v1,v2} ∧ betweenattr2(i),{v3,v4}

Each filter condition is in conjunctive form and consists of two indexable between
predicates. A between predicate allows to exactly control the size and position of the
mapped one-dimensional interval being indexed in c-directories (see Table 11.2). The
attribute of the first between predicate is set as follows:

attr1(i) := Aj, with j = (i mod 3)

In other words, the filter conditions iterate in a round-robin fashion over the first three
attributes A0, A1 and A2 of the event stream. The attribute of the second between
predicate is set as follows:

attr2(i) := Aj, with j = 3 + (bi/100cmod 99)

103

11 An Efficient Index for Large Sets of Continuous Queries

The filter conditions of the first 100 queries have A3 as attribute for the second pred-
icate, the filter conditions of the next 100 queries have A4, the filter conditions of the
next 100 queries have A5, and so on. The values of v1 and v3 are uniformly drawn
from the range [0 : 1, 000, 000] and the values of v2 and v4 are set to v1 + 1, 000, 000 and
v3 + 1, 000, 000 respectively. As a result, every between predicate maps to an interval
that has a size of 1,000,000 and is completely in [0 : 2, 000, 000].

11.4.1 Globally Non-Optimal Space Partitioning

The BE-tree is a dynamic index structure that can be updated at runtime. It makes
no assumptions about frequencies of data items and index updates. Thus, index up-
dates with high frequency must be supported. The BE-tree achieves this by fast local
reorganization. Space clustering affects only single partitions and is deterministic (see
Definition 8). Consequently, local reorganization is sufficient to achieve an optimal
space clustering of each partition. In contrast, space partitioning affects the entire
BE-tree and is not deterministic. But to achieve fast adaption, space partitioning is
also performed only locally by splitting overflowing leaf nodes. A globally optimal
space partitioning (according to the scoring function) is not achieved by locally opti-
mal space partitioning in general. In fact, the global space partitioning depends on the
insertion order of indexable Boolean expressions. To handle this problem, the original
BE-tree proposes a self-adjustment technique. In this approach, leaf nodes are con-
tinuously scored. If the score of a leaf node drops below some threshold, then a leaf
node is entirely or partly deleted and all affected indexable Boolean expressions are
reinserted. The problems of this approach are as follows. First, it requires additional
monitoring at runtime (insertions, deletions and matches of each l-node must be mon-
itored in detail) which contradicts the strict performance requirements of EP. Second,
there are no guarantees whether and when a globally optimal partitioning is achieved.
Third, the reinsertion might happen in a suboptimal insertion order again.

The problem of the space partitioning of the BE-tree comes to light when the
queries queryi are inserted into a BE-tree ordered by the index i. Let maxcap be set
to three and minsupport be set to one. The first four filter conditions being inserted are:

query0 = betweenA0,{v1,v2} ∧ betweenA3,{v3,v4}

query1 = betweenA1,{v̂1,v̂2} ∧ betweenA3,{v̂3,v̂4}

query2 = betweenA2,{v̄1,v̄2} ∧ betweenA3,{v̄3,v̄4}

query3 = betweenA0,{ṽ1,ṽ2} ∧ betweenA3,{ṽ3,ṽ4}

104

11.4 Shortcomings in Event Processing Applications

After the insertion of the first four filter conditions in an empty BE-tree, the l-node of
the root node overflows and must be split. Because all indexable predicates have the
same selectivity, the popularity of the attributes becomes the only criteria determining
the split attribute. Attribute A3 is most popular among the first four filter conditions
and chosen as split attribute therefore. During the insertion of the remaining filter
conditions, the l-node of the root node must be split several times subsequently. Due
to the characteristics of the filter conditions and their order, the exact same situation
arises again and again so that at the end the attributes Ai with i = 3, . . . , 99 are used
to split the topmost l-node. At the second level, the space must be further partitioned,
because each partition gets 100 filter conditions in total. Here, possible split attributes
are limited to A0, A1 and A2. Since each filter condition consists of exactly two in-
dexable predicates, the height of the BE-tree is limited to three levels and, thus, all
l-nodes at the third level cannot be further partitioned (see Definition 6). The final
space partitioning is illustrated in Figure 11.6 (p-nodes are not shown).

c

l

c-directory

c c c
lll

c

l

c

l

c

l

c-directory c-directory c-directory

c-directory c-directory c.directory

A3 A4 A5 A99. . .

. . .

A0 A1 A2 A0 A1 A2 A0 A1 A2

... . . .

... . . .
... . . .

Figure 11.6: Suboptimal space partitioning

105

11 An Efficient Index for Large Sets of Continuous Queries

The illustrated BE-tree is poorly partitioned. This is because A0, A1 and A2 are the
most popular attributes among all filter conditions and, thus, the best attributes for
partitioning at the root level. Analogues, the attributes Ai with i = 3, . . . , 99 are less
popular among all filter conditions and no good split attributes therefore. A globally
optimal space partitioning (according to the scoring function) would use the attributes
A0, A1 and A2 for partitioning at the first level which is the most important one and
the attributes Ai with i = 3, . . . , 99 for partitioning at the second level. This glob-
ally optimal space partitioning is depicted in Figure 11.7 (p-nodes are not shown). A
data item must now be probed against only three big partitions instead of 97 small
partitions as a first step. Whenever a data item does not match any filter condition
with respect to one (two, or three) of the popular attributes A0, A1 and A2, one (two,
or three) thirds of all continuous queries can be skipped at the topmost level. This
substantially saves false positive computations and speeds up matching time. In our
experiments, the performances of the two BE-trees differed by many times.

c

l

c-directory c-directory c-directory

c
l

c
l

c

l

c

l

c

l

c-directory c-directory c-directory c-directory

c
l

A0 A1 A2

... . . .

A3 A4 A5 A99. . . A3 A4 A5 A99. . .

A3 A4 A5 A99. . .

. . .

... . . .

... . . .

Figure 11.7: Globally optimal space partitioning

106

11.4 Shortcomings in Event Processing Applications

11.4.2 Inefficient Clustering

The strength of the BE-tree lies not only in the space partitioning, but also in the space
clustering [Fab01]. In fact, our evaluation (see Section 11.8) reveals that for real-world
EP applications space clustering is a much more important issue than space partition-
ing, because a random insertion order of filter conditions leads almost never to a worst
case space partitioning. In contrast to the space partitioning, the shortcomings of the
space clustering of the BE-tree lead to significantly decreased matching performance
in not only synthetic EP applications, but also real-world EP applications. In our ex-
ample EP application of this section, the c-directories are affected from all shortcom-
ings we present and discuss in the following. Figure 11.8 shows how the c-directories
of the BE-tree are structured in the case of our example EP application.

[−231 : 231)

[−231 : 0) [0 : 231)

[0 : 230) [230 : 231)

[0 : 229) [229 : 230)

[0 : 228) [228 : 229)

[0 : 227) [227 : 228)

[0 : 226) [226 : 227)

[0 : 225) [225 : 226)

[0 : 224) [224 : 225)

[0 : 223) [223 : 224)

[0 : 222) [222 : 223)

[0 : 221) [221 : 222)

[0 : 220) [220 : 221)

Figure 11.8: Inefficient cluster directory

107

11 An Efficient Index for Large Sets of Continuous Queries

Note that in Figure 11.8 the relative sizes and the arrangement of the c-directory cells
are not correct for the sake of presentability. However, every c-directory cell is labeled
with its exact and correct endpoints and connected via dashed lines with its child
cells and parent cell to highlight the relationships. The shortcomings of the shown
c-directory structure are discussed in the following paragraphs.

11.4.2.1 Oversized Coverage

As already mentioned earlier, attributes have domains with relatively large cardinal-
ities in event processing. But based on the semantics of concrete applications, only
small parts of the attribute domains are covered by events and, if carefully specified,
by filter conditions in general. For instance, if an attribute of type 32-bit integer num-
ber models the temperature of an outdoor sensor, the price of a product in a supermar-
ket, or the altitude of a moving object on earth, then only values close to zero are used.
Therefore, the corresponding intervals of all indexable predicates likely cover only a
small range of values in the domain. This is particularly true for our example EP ap-
plication. As a consequence, all Boolean expressions are stored in a smaller subgrid
so that every c-directory has an unnecessarily large number of levels. In our example
EP application, each Boolean expression is stored in one of the cells [0 : 221), [0 : 220)

and [220 : 221). Every event with a value covered by or close to the subgrid where all
non-empty clusters are located (irrespective wether or not it matches) must traverse
through a high number of empty grid cells.

11.4.2.2 Steadily Empty Cells

When a non-atomic leaf cell of a c-directory overflows for the first time, it is split
and all Boolean expressions of the overflowing cell as well as all Boolean expressions
being inserted in the future that fit into one of the new child cells are stored there.
However, it is possible that a child cell never receives any Boolean expression. In our
example EP application, there is one steadily empty child cell after almost every split.
In Figure 11.8, this is true for the c-directory cells [−231 : 0), [230 : 231), [229 : 230),
[228 : 229), [227 : 228), [226 : 227), [225 : 226), [224 : 225), [223 : 224), [222 : 223) and
[221 : 222). Although these c-directory cells are steadily empty, they were still created
(with an associated c-node) and linked to the corresponding parent cell. For every
event with a value in the range of a steadily empty c-directory cell an empty cluster
must unnecessarily be checked.

108

11.4 Shortcomings in Event Processing Applications

11.4.2.3 Stuck Intervals

The space clustering of the BE-tree may lead to inefficient assignments of Boolean
expressions to clusters and not fully exploit the inherent selectivity of indexable pred-
icates therefore. This problem increases the rate of false positives and has the follow-
ing simple root cause. An overflowing cell of a cluster directory is cut into halves.
The middle of a split cell becomes the right endpoint of its left child cell and the left
endpoint of its right child cell. Every interval that covers the middle of a cell gets
stuck there forever. Stuck intervals can be quite different from each other in terms of
size and position. Assume two intervals being stuck in the same cell (e.g., the first
and last intervals in Figure 11.9). One interval covers the left half of the cell almost
completely and the right half only a little bit. The other interval covers the right half
almost completely and the left half only a little bit. Besides the fact that the selectivity
of the associated predicates is exploited poorly, the intervals are different from each
other and have only a very small value range in common. But according to the space
clustering of the BE-tree, both intervals are assigned to the same cluster.

[0 : 221)

[0 : 220) [220 : 221)

Figure 11.9: Stuck intervals

Figure 11.9 illustrates the situation in every c-directory of the BE-tree for our example
EP application. Recall that all intervals have a size of 1,000,000 and are uniformly dis-
tributed within the range [0 : 2, 000, 000]. Hence, the figure depicts the subgrid that
stores all Boolean expressions. Above the subgrid, the figure shows seven intervals
of our example EP application that fit into the topmost cell. This cell is split because
seven filter conditions exceed the maximum capacity. However, all intervals are stuck
and cannot be moved into the child cells therefore. Every incoming event whose cor-
responding attribute value is covered by the subgrid successfully matches all these
intervals despite the fact that only few of them are likely true positives.

109

11 An Efficient Index for Large Sets of Continuous Queries

11.5 BE+-Tree

The problems that are presented and discussed in the previous section on basis of an
example EP application are partly due to the fact that the BE-tree is a fully dynamic
index structure supporting fast index updates at runtime. Most of the problems may
have a strong negative effect on the matching performance which is the top priority
in EP applications and many other kinds of stream processing applications. Typically,
index updates occur with significantly lower frequency than events in EP applications
[Agu99] and many EP applications even require no index updates at all.

Query workload Index update rate : data rate Recommended query index

Static No index updates BE+-tree
Almost static Index update rate� Data rate BE+-tree
Dynamic Everything else BE-tree

Table 11.3: Application classes

Every stream processing application that potentially benefits from a query index falls
into exactly one of the three classes listed in Table 11.3. Our classification is based on
the index update rate and the data rate. If there are no index updates at runtime (i.e.,
all CQs are known in advance), then a stream processing application is classified as
static and if there are index updates but at a significant lower rate than the data rate,
a stream processing application is classified as almost static. Lastly, all stream process-
ing applications that are neither static nor almost static are classified as dynamic. Event
processing applications are static or almost static. In high-performance EP applications
hundreds of thousands of new events occur every second and even non-static EP ap-
plications have update rates that by no means come close to these data rates.

The BE-tree supports fast index updates at the cost of maximum matching perfor-
mance. For all stream processing applications of the class dynamic fast index updates
are at least as important as fast processing of data items. Therefore, the BE-tree is
the currently best suited query index for those stream processing applications. How-
ever, for stream processing applications of the other classes (fast) index updates are
dispensable. Index updates are infrequent or do not occur at all and high matching
performance is of utmost importance so that higher update costs are acceptable. Re-
call that query indexes in general and the BE-tree in particular are main memory data
structures whose creation costs are orders of magnitudes lower than the creation costs
of index structures for external memory. Altogether, this allows us to recreate an entire
query index on updates in order to achieve high matching performance.

110

11.5 BE+-Tree

In this section, we introduce a modified version of the BE-tree named BE+-tree that
provides several optimizations to avoid the problems the original BE-tree suffers from.
The overall structure of a BE+-tree is still the structure of a BE-tree and existing imple-
mentations of the BE-tree can be easily extended therefore. Furthermore, a BE+-tree
can have all properties of the original BE-tree. Based on the applied optimization tech-
niques, the dynamic property might get lost in a BE+-tree. However, index updates
are still supported in every configuration of the BE+-tree (see Section 11.7).

11.5.1 Bulk Loading of BE-Trees

In the following, we assume a fixed set of continuous queries for that a new query
index must be created from scratch. Therefore, BE+-trees are created using a tailor-
made bulk loading technique in contrast to original BE-trees that must be created via
query-by-query insertion.1

11.5.1.1 Optimization of Space Partitioning

Since all Boolean expressions are known in advance, we can create a BE-tree so that it
is globally optimally partitioned (according to the used scoring function). In case of
the BE+-tree, the optimal space partitioning is simply achieved via bulk loading of c-
nodes. Every c-node is the root node of a (sub-)tree. If we put all Boolean expressions
of a (sub-)tree into a new c-node and apply the scoring function, the globally best split
attribute is returned. This step can be repeated in order to create entire and optimally
partitioned (sub-)trees.

Algorithm 8 shows the bulk loading of c-nodes. Besides a set containing all in-
dexable Boolean expressions to insert and an empty c-node being loaded, another set
containing all attributes that were already used for partitioning must be given. The
algorithm repeatedly partitions the set of indexable Boolean expressions until its size
is equal to or less than the user-defined maximum capacity of l-nodes maxcap (line 1).
During partitioning, always the best attribute among all remaining indexable Boolean
expressions is selected (lines 2–4). The space partitioning property (Definition 9) is
completely respected by reusing GETPARTITIONINGATTRIBUTE of the original BE-
tree. This means, all attributes already used for partitioning (contained in the set path)
and attributes which do not have the user defined minimum support minsupport are ex-
cluded. Therefore, the partitioning stops when there are no (more) suitable attributes
available. Analogous to the space partitioning of the original BE-tree, every partition

1Note that BE+-trees having the dynamic property also support query-by-query insertions.

111

11 An Efficient Index for Large Sets of Continuous Queries

Algorithm 8: LOADCNODE(Q, cNode, path)
Input: Set of Boolean Expressions: Q, C-Node: cNode, Set of Attributes: path

1 while SIZEOF(Q) > maxcap do
2 Attribute attr← GETPARTITIONINGATTRIBUTE(Q, path);
3 if attr = NULL then
4 break;

5 Set of Boolean Expressions Q′ ← ∅;
6 foreach Boolean Expression be ∈ Q do
7 if be.RESTRICTS(attr) then
8 Q.REMOVE(be);
9 Q′.ADD(be);

10 P-Node pNode← cNode.pDirectory.NEWPARTITION(attr);
11 LOADPNODE(Q′, pNode, path ∪ {pNode.attribute});

12 cNode.lNode.ADDALL(Q);

results in a new p-node that is added to the p-directory of the c-node being loaded.
Then, all indexable Boolean expressions of a new partition are moved from the input
set into the new partition also in the form of a bulk operation (lines 5–11). For creat-
ing the new p-node another bulk loading algorithm of the BE+-tree (LOADPNODE)
that we present in the next section is used. After the partitioning has stopped, all
remaining indexable Boolean expressions are put into the l-node of the c-node being
loaded (line 12). Every l-node created via the algorithm respects the leaf node property
(Defintion 6). This means that a leaf node of a BE+-tree is allowed to overflow only if
there is no suitable attribute for partitioning available. The creation of a new BE+-tree
starts via Algorithm 8 called with an empty c-node, the entire set of indexable Boolean
expressions and an empty set for path.

11.5.1.2 Optimization of C-Directories

According to Definition 7, the root cell of a new cluster directory must cover the en-
tire domain of its associated attribute. As a consequence, every arbitrarily expanded
cluster directory entirely covers its associated attribute domain too and leads to the
problems of oversized coverage (see Section 11.4.2.1) and of steadily empty cells (see
Section 11.4.2.2). The BE+-tree allows to avoid the problem of oversized coverage via
the user-defined parameter GRID_TIGHTENING. Algorithm 9 shows how this param-
eter affects the creation of new c-directories.

112

11.5 BE+-Tree

Algorithm 9: LOADPNODE(Q, pNode, path)
Input: Set of Boolean Expressions: Q, P-Node: pNode, Set of Attributes: path

1 if ISENABLED(GRID_TIGHTENING) then
2 Endpoint le f t← GETDOMAIN(pNode.attribute).GETMAXVALUE();
3 Endpoint right← GETDOMAIN(pNode.attribute).GETMINVALUE();
4 for Boolean Expression be ∈ Q do
5 if be.GETLEFTENDPOINT(pNode.attribute) < le f t then
6 le f t← be.GETLEFTENDPOINT(pNode.attribute);

7 if be.GETRIGHTENDPOINT(pNode.attribute) > right then
8 right← be.GETRIGHTENDPOINT(pNode.attribute);

9 pNode.cDirectory.root← [le f t : right];

10 else
11 Endpoint le f t← GETDOMAIN(pNode.attribute).GETMINVALUE();
12 Endpoint right← GETDOMAIN(pNode.attribute).GETMAXVALUE();
13 pNode.cDirectory.root← [le f t : right];

14 LOADCDIRECTORY(Q, pNode.cDirectoy.root, path, pNode.attribute);

If the parameter GRID_TIGHTENING is disabled, the algorithm creates for each new
partition a c-directory that covers the entire domain of the associated attribute exactly
as the original BE-tree (lines 10–13). As a consequence, Definition 7 is respected so
that the resulting BE+-tree has the dynamic property and, thus, is a completely valid
BE-tree. But if the parameter GRID_TIGHTENING is enabled, the algorithm creates c-
directories having tightened grids that are of minimal size (lines 1–9). This means that
the grid of each c-directory minimally covers the corresponding intervals of all pred-
icates. For this purpose, the algorithm computes the minimum and maximum end-
points among the corresponding intervals of all predicates and creates a c-directory
with a root cell that only covers all values between these endpoints. Note that the
tightening of grids violates Definition 7 and leads to the loss of the dynamic property.
Tightened grids prevent the insertion of new indexable Boolean expressions into an
existing BE+-tree for the following reason. Let the domain of an attribute start with
some value x1 and end with some greater value x2. A tightened grid covering a range
[x′1 : x′2] with x1 < x′1 < x′2 < x2 does not cover the ranges [x1 : x′1) and (x′2 : x2]

of the attribute domain. Each predicate whose corresponding interval overlaps or
falls completely into a range uncovered by the grid cannot be inserted. According to
Definition 8 there exists no cell to which it could be added.

113

11 An Efficient Index for Large Sets of Continuous Queries

Algorithm 10: LOADCDIRECTORY(Q, cell, path, attr)
Input: Set of Boolean Expressions: Q, C-Directory Cell: cell, Set of Attributes: path,

Attribute: attr

1 if SIZEOF(Q) > maxcap then
2 Number counter← 0;
3 Endpoint minValue← cell.GETMINVALUE();
4 Endpoint maxValue← cell.GETMAXVALUE();
5 Endpoint middle← minValue/2 + maxValue/2;
6 if not ISATOMIC(cell) then
7 if ISENABLED(GRID_TIGHTENING) then
8 counter← CHECKSPLIT(Q, cell);

9 else
10 counter← minsupport;

11 if counter ≥ minsupport then
12 Set of Boolean Expressions Ql ← QUERY(Q, attr, [minValue : middle]);
13 Set of Boolean Expressions Qr ← QUERY(Q, attr, [middle + 1 : maxValue]);
14 Q← (Q \Ql) \ Qr;
15 if ISENABLED(SPLIT_INTERVALS) then
16 SPLITINTERVALS(Q, Ql , Qr, middle, attr);

17 if SIZEOF(Ql) > 0 or not ISENABLED(AVOID_EMPTY_CELLS) then
18 cell.le f tChild← NEWCELL([minValue : middle]);
19 LOADCDIRECTORY(Ql , cell.le f tChild, path, attr);

20 if SIZEOF(Qr) > 0 or not ISENABLED(AVOID_EMPTY_CELLS) then
21 cell.rightChild← NEWCELL([middle + 1 : maxValue]);
22 LOADCDIRECTORY(Qr, cell.rightChild, path, attr);

23 if SIZEOF(Q) > 0 then
24 LOADCNODE(Q, cell.cNode, path)

After the creation of a new c-directory, Algorithm 9 is called to bulk load it in a top-
down fashion. This is done according to Definition 10 that requires overflowing nodes
to be further clustered before space partitioning is allowed to be performed. That re-
quirement is important also for BE+-trees to balance the space partitioning and space
clustering phases. Whether to split a non-atomic and overflowing cell is determined
by counter in the algorithm. If GRID_TIGHTENING is disabled, then counter is im-
mediately set to minsupport so that a split is performed definitely (line 10). This imple-
ments exactly the behavior of the original BE-tree. A consequence is that new cells

114

11.5 BE+-Tree

are created into which possibly no or only few Boolean expressions can be pushed
down. For empty or almost empty clusters it can be expected that future insertions
will fill them up. But this assumption is not true if GRID_TIGHTENING is enabled.
Then, empty or almost empty clusters will remain in their state because there are no
future insertions at all. Therefore, a split is performed in case of a non-dynamic BE+-
tree if and only if there are enough Boolean expressions that can be pushed down
(line 8). The algorithm CHECKSPLIT simply counts all Boolean expressions that can be
pushed down if the current cell is split (CHECKSPLIT also takes into account all pos-
sible interval splits, see the following section for details). Basically, a new parameter
that specifies the threshold would be necessary. But instead of introducing another
parameter, we reuse the existing parameter minsupport. This parameter is appropriate,
because it already defines the minimum size of new partitions.

The split of a cell during bulk loading is performed as follows (lines 11–22). From
the entire set of Boolean expressions to add two new sets are derived. One of the new
sets contains all Boolean expressions that can be pushed down into the left child cell
and the other contains all Boolean expressions that can be pushed down into the right
child cell. For obtaining those Boolean expressions, the algorithm QUERY is used. It
takes a set of Boolean expressions, the corresponding attribute as well as a range of
values and returns a new set containing all Boolean expressions of the input set that
completely fall into the given range of values. All Boolean expressions that can be
pushed down are removed from the original set. The parameter SPLIT_INTERVALS
is for the handling of stuck intervals and discussed in the following section. Finally,
the cell can be split by creating the left and the right child cells. For the child cells,
bulk loading is recursively performed using the sets Ql and Qr respectively. Both
child cells or one of them might be completely empty. This happens if no Boolean ex-
pressions can be pushed down at all or if all Boolean expressions that can be pushed
down are inserted into the same child cell (as it is true for almost all child cells in
the c-directories of the example EP application). Empty cells can be avoided by en-
abling the parameter AVOID_EMPTY_CELLS. Then, empty cells are not created and
the corresponding pointers of the parent cells remain set to NULL. There are no inva-
sive consequences (except better matching performance) if there are no insertions in
the future. However, an empty cell that has not been created can always be created on
demand when the very first Boolean expression is inserted. At the end, the algorithm
inserts all remaining Boolean expressions of the input set into the cell currently being
processed via bulk loading of its cluster node (lines 23–24).

115

11 An Efficient Index for Large Sets of Continuous Queries

11.5.2 Handling of Stuck Intervals

The problem of stuck hypercubes is well-known for grid indexes that split cells into
equally sized subcells (e.g., quad trees [FB74]), particularly if they are used to index
high-dimensional data. Here, the curse of dimensionality [Bis06, Sco92] leads for uni-
formly and independently distributed data to the phenomenon that the number of
stuck hypercubes rapidly grows as the number of dimensions increases. This results
in the serious problem that an increasing amount of hypercubes cannot be pushed
down into subcells, because they cover the borders of the grid. To overcome this prob-
lem, the GESS approach [DS01] proposes to split hypercubes that cover the borders
of the grid so that the resulting parts can be further pushed down. Obviously, this
introduces redundancy because a hypercube that has been split occurs in the form of
copies in multiple cells. Performing every split that is possible may lead to a high de-
gree of redundancy and not every split improves the index performance. Therefore,
splits should be performed in a controlled way.

The c-directories of BE-trees are grid indexes in only one-dimensional space so that
the curse of dimensionality has no impact. However, there are other factors that lead to
stuck intervals. With respect to the mapping of predicates to intervals (see Table 11.2),
there are several types of predicates that are mapped to large intervals in general. For
example, the open-ended predicates <, ≤, ≥, > may cover a large part of the domain.
Also, the predicates between and ∈ can result in an interval of any size.2 Furthermore,
the distribution of intervals within a cell (e.g., normal distribution) might encourage
intervals to get stuck. The BE+-tree allows to split stuck intervals and to control which
and how many intervals are split. In Algorithm 10, the call of a method for splitting
intervals is already integrated (line 15). We present this method in the following.

Algorithm 11 shows how and which stuck intervals are split if the user-defined
parameter SPLIT_INTERVALS is enabled. The loop checks every Boolean expression
whether it should be split and performs the split if necessary. Of course, the split tech-
nique is only applicable to stuck intervals (line 2). Then, the final decision whether to
split a stuck interval is controlled by three user-defined parameters. The total number
of splits that can be performed for a Boolean expression can be limited both locally and
globally. The global limit is specified by the parameter TOTAL_SPLIT_LIMIT. Dur-
ing insertion, a Boolean expression is allowed to be split at most as many times as the
parameter defines (line 4). Before the bulk loading of a new tree starts, a global split
counter for each Boolean expression is set to zero and never reset. Every single split of

2Because the corresponding intervals of the predicates 6= and 6∈ always cover the entire domain, they
are best stored in the root cell and excluded from our listing of affected predicates therefore.

116

11.5 BE+-Tree

Algorithm 11: SPLITINTERVALS(Q, Ql , Qr, middle, attr)
Input: Set of Boolean Expressions: Q, Ql , Qr, Endpoint: middle, Attribute: attr

1 for Boolean Expression be ∈ Q do
2 if be.ENCLOSES(middle) then
3 if be.GETLOCALSPLITCOUNT() < GRID_SPLIT_LIMIT then
4 if be.GETTOTALSPLITCOUNT() < TOTAL_SPLIT_LIMIT then
5 lc← middle− ((middle− cell.GETMINVALUE())∗SPLIT_FACTOR);
6 rc← middle + ((cell.GETMAXVALUE()−middle)∗SPLIT_FACTOR);
7 if lc ≤ be.GETLEFTENDPOINT(attr) or

rc ≥ be.GETRIGHTENDPOINT(attr) then
8 bel ← COPYANDADJUST(be, attr,

[be.GETLEFTENDPOINT(attr) : middle]);
9 Ql .ADD(bel);

10 ber ← COPYANDADJUST(be, attr,
[middle + 1 : be.GETRIGHTENDPOINT(attr)]);

11 Qr.ADD(ber);
12 Q.REMOVE(be);
13 bel .INCREMENTSPLITCOUNTERS();
14 ber.INCREMENTSPLITCOUNTERS();

a Boolean expression increments its global split counter. The local limit is specified by
the parameter GRID_SPLIT_LIMIT and restricts the total number of splits that can be
performed within a single c-directory. Before the bulk loading of a c-directory starts,
a local split counter for every Boolean expression is set to zero. For each split that
is performed for a Boolean expression during bulk loading of a c-directory, its local
split counter is incremented. If a Boolean expression is allowed to be split according
to the local and global split limits, a third and final condition is checked. In lines 5–6,
the degree of coverage is computed for both the left child cell and the right child cell.
The differences in the innermost brackets give the sizes of the entire ranges of the left
and right child cells. These sizes are scaled down by a third user-defined parame-
ter SPLIT_FACTOR that must be set to a value in [0 : 1]. Figure 11.10 illustrates the
meaning of the parameter SPLIT_FACTOR (denoted by SF in the figure). It is used
to place the endpoints rc and lc. These endpoints have always an equal distance to
middle. The parameter SF is used to control the size of the distance. If SF is increased
then the distance increases. Analogues, if SF is decreased then the distance decreases.
In line 7, the endpoints rc and lc are used to only split stuck intervals that have their

117

11 An Efficient Index for Large Sets of Continuous Queries

left endpoint between lc and middle, or their right endpoint between middle and rc,
or both. In other words, this requires that the size of at least one overlapping part
does not exceed a certain threshold. With the help of this parameter, it is possible to
perform only splits that have a significantly positive effect on the performance. This
issue is discussed intensively in the next paragraphs. But before, we finish the pre-
sentation of Algorithm 11 by describing the split of intervals (lines 8–14). At first, two
copies bel and ber of the corresponding Boolean expression be are created via COPY-
ANDADJUST. This algorithm creates an exact copy of be, adjusts the interval of the
corresponding predicate on the attribute associated with the c-directory and returns
the adjusted copy. Then, the copies are added to the sets Ql and Qr which keep all
Boolean expressions for the bulk loading of the child cells. Lastly, be is removed from
the original set and the split counters of both copies are incremented.

middle cell.GETMAXVALUE()cell.GETMINVALUE() rclc

l := middle− cell.GETMINVALUE()

l ∗ SF

r := cell.GETMAXVALUE()−middle

r ∗ SF

Figure 11.10: Parameter split factor

Each stuck interval is always considered as a matching candidate for every data item
that visits its cell. The larger the uncovered range of an interval is, the more likely the
interval is a false positive match for visiting data items. Thus, stuck intervals which
do not cover a large range should be split in order to reduce false positives and to
improve the matching performance.

d1 d2 d3 d4 d5 d6 d7 d8

Figure 11.11: Tiny stuck interval

118

11.5 BE+-Tree

Figure 11.11 shows a stuck interval that is a perfect candidate for being split. It covers
only small ranges of both halves while two large ranges are uncovered. Assume for
example that Boolean expressions must be looked up for the data items d1, d2, . . ., d8.
The arrows in the figure indicate the positions of the data items. Because the stuck
interval is located in the topmost cell, it matches every shown data item. However,
only in case of the data items d4 and d5 this is a correct result. In case of the other data
items (i.e., 75 % of all shown data items) the stuck interval is a false positive.

d1 d2 d3 d4 d5 d6 d7 d8

Figure 11.12: Split interval

To improve the matching performance, the stuck interval should be split, because the
resulting parts could be pushed down into cells located several levels below the top-
most cell. Figure 11.12 shows the situation after the interval has been split and the
parts have been pushed down as far as possible. Now, the interval still matches the
data items d4 and d5, but in case of the other data items it is no false positive anymore.

Figure 11.13: Huge stuck interval

As already stated, not every possible split of a stuck interval improves the matching
performance. In general, if there are no large ranges being uncovered by a stuck in-
terval, then the interval is already in the best cell. Figure 11.13 shows a stuck interval
which should not be split, because the resulting parts could only be pushed down to
the next level at which they would get stuck again. If an interval is pushed down
only to the next level, the matching performance is not influenced at all. This is be-

119

11 An Efficient Index for Large Sets of Continuous Queries

cause every data item that visits some cell also visits one of its two child cells (see
Algorithm 2). Therefore, every data item that visits the topmost cell in Figure 11.13
would still consider the interval as a match regardless whether it is a true positive or a
false positive. Based on this observation, we can conclude that all values higher than
0.5 for SPLIT_FACTOR have no additional positive effects in general, but increase the
degree of redundancy. Therefore, SPLIT_FACTOR should be set to a value between 0
and 0.5 in order to reduce false positives. A value of 0.5 ensures that at least one part
after a split can be pushed down by at least two levels. If SPLIT_FACTOR is decreased
further, the number of levels one part can be definitively pushed down increases.

Theorem 1. Let i be any positive integer number. If the value of SPLIT_FACTOR is less
than or equal to 1

2i−1 , then it is guaranteed that at least one part can be pushed down by at least
i levels after every split of a stuck interval.

Proof. The theorem is proven by mathematical induction. For i = 1, every stuck inter-
val that satisfies the split factor condition can be pushed down at least to the next level.
The base case of the induction is i = 2. For i = 2, the split factor condition requires
that at least one part of a stuck interval is at most of half the size of a child cell. This
part gets not stuck if it is pushed down to the next level. This is because the part is at
most half the size of the child cell and one of its endpoints is identical to one endpoint
of the child cell so that the middle of the child cell is not covered. Consequently, the
part can be further pushed down by at least one more level. For the induction step, we
can assume that for a split factor of 1

2i−1 one part of every stuck interval can be pushed
down by at least i levels. If i is now increased by exactly one, the maximum allowed
size of at least one part is divided by 2. Then, the exact same argumentation as in the
case i = 2 can be reused to conclude that for i = i′ + 1 at least one part can be pushed
down by at least one more level than in case of i′.

Note that there are some special situations in which a higher value for SPLIT_FACTOR
can improve the matching performance. Values between 0.5 and 1.0 could be chosen if
many cascading interval splits are possible. This means, an interval is recursively split
several times in order to push it down by multiple levels. Of course, this requires that
there are multiple splits per grid and in total allowed. Furthermore, the distribution of
data items is of utmost importance. Cascading splits are beneficial only if a high rate
of data items falls into the small uncovered ranges of the cell an interval initially got
stuck. Therefore, values greater than 0.5 for SPLIT_FACTOR are only recommended
for applications with the special characteristics described above.

120

11.5 BE+-Tree

Since each split duplicates the corresponding Boolean expression so that two elements
instead of one must be stored, it is important to know the relationship between the
number of splits and the number of copies. In the following, we derive a formula for
the (theoretical) upper bound of the maximum total number of Boolean expressions a
BE+-tree with interval splits enabled must store in the worst case. The first theorem
gives the maximum total number of splits of a single Boolean expression.

Theorem 2. The maximum possible total number of interval splits maxsplits that can be per-
formed for a single Boolean expression is:

maxsplits = min {TOTAL_SPLIT_LIMIT, #attributes ∗ GRID_SPLIT_LIMIT}

Proof. Obviously, maxsplits is limited by TOTAL_SPLIT_LIMIT. For each performed
interval split, a counter per Boolean expression is incremented by one. This counter
is never reset and interval splits are performed only if this counter has a value
less than or equal to TOTAL_SPLIT_LIMIT. But it is possible that there is a lower
limit due to GRID_SPLIT_LIMIT. A Boolean expression and every copy of it can
appear in at most #attributes many c-directories (see Definition 9). Within each c-
directory, GRID_SPLIT_LIMIT limits the number of interval splits that are allowed
per Boolean expression. If the product of #attributes and GRID_SPLIT_LIMIT is less
than TOTAL_SPLIT_LIMIT, then this value defines the maximum possible number
of interval splits. Otherwise, the limit is defined by TOTAL_SPLIT_LIMIT.

Note that Theorem 2 assumes that every Boolean expression can potentially be split
maxsplits times (i.e., it must get stuck and satisfy the split factor condition extremely of-
ten). Based on maxsplits, the maximum possible number of copies of a single individual
Boolean expression can be determined.

Theorem 3. The maximum possible total number of copies maxcopies of a single individual
Boolean expression in a BE+-tree is:

maxcopies = 2maxsplits

Proof. Every interval split replaces a copy of a Boolean expression by two new ones.
According to Algorithm 11, each copy gets its own counters which are only incre-
mented when the copy itself is split (and not when other copies are split). Those
counters are initialized with the values of the original copy at the time of the split and
incremented by one. In the worst case, a single counted interval split can result in the
doubling of all copies at the same level of a c-directory. This behavior is described by
the function 2x while the maximum number of doublings x is limited by maxsplits.

121

11 An Efficient Index for Large Sets of Continuous Queries

Our evaluation shows that maxsplits is a theoretical upper bound that is higher than the
average number of splits of a Boolean expression in practice. Consequently, maxcopies

is much higher than the average number of copies of Boolean expressions because of
its exponential growth. Therefore, the formula is not appropriate for getting good esti-
mations in practice. But it shows that the number of copies can grow rapidly when the
number of splits increases. Therefore, it is important to control the number of splits,
because otherwise the number of copies and the size of the corresponding BE+-tree
might escalate. The worst case size of a BE+-tree is given by the product of maxcopies

and the total number of input Boolean expressions (#expressions).

Corollary 1. The maximum possible total number of copies of Boolean expressions maxsize a
BE+-tree with interval splits enabled must store is:

maxsize = #expressions ∗maxcopies

The upper bound maxsize is virtually never reached in practice. This is not only be-
cause maxcopies is almost always overestimated, but also because of Algorithm 8. Due
to space partitioning and space clustering, a set of Boolean expressions is succes-
sively divided into smaller sets during bulk loading. As soon as such a set becomes
smaller than maxcap, it is directly stored in a l-node at an internal level (see line 1
in Algorithm 8). For instance, every interval could be split and actually was split in
the first experiment in Section 11.8.2. The theoretical maximum number of splits per
Boolean expression was 20 according to Theorem 2, because there were 20 attributes
and only one split was allowed per c-directory (the total split limit was set to 100). But
in the resulting BE+-tree, the average number of splits was about 6.4 that is signifi-
cantly lower than the worst case estimation (despite the fact that we used a synthetic
query workload that was intended to maximize interval splits). Only a tiny fraction
of all Boolean expressions was split 20 times. Most Boolean expressions were stored
in l-nodes at internal levels and split significantly less times than stated by maxsplits.

11.6 Implementation

We implemented both the original BE-tree and the BE+-tree as query index for the
native EP provider of JEPC. In fact, both implementations are based on the same data
structures. Only the algorithms to create and maintain query indexes differ. The BE-
tree and particularly the BE+-tree have many parameters that can be used to configure
the algorithms. However, it is also possible to create an instance of the native EP
provider without specifying any parameters. Then, a default configuration is used.

122

11.6 Implementation

1 public class FilterIndexConfiguration {

2 // available evaluators

3 public static enum EVALUATOR { CONJUNCTIVE, DNF, COMPLEX }

4 // general parameters

5 public int maxCap = 16;

6 public int minSupport = 8;

7 public EVALUATOR evaluator = CONJUNCTIVE;

8 // BE+-tree-specific parameters

9 public boolean bulkLoading = false;

10 public boolean avoidEmptyCells = true;

11 public boolean gridTightening = true;

12 public boolean splitIntervals = true;

13 public int totalSplitLimit = 100;

14 public int gridSplitLimit = 1;

15 public double splitFactor = 0.0001;

16 }

Listing 11.1: Default configuration of the query index of the native EP provider

Listing 11.1 shows the Java class FilterIndexConfiguration that represents the
configuration of the query index. It is globally valid for an instance of the native
EP provider. The first three parameters maxCap, minSupport and evaluator

are shared by the BE-tree and the BE+-tree. In particular, the parameter maxCap
represents maxcap with default value 16 and the parameter minSupport represents
minsupport with default value 8. The parameter evaluator is explained in Sec-
tion 11.6.2. All other parameters are used only by the BE+-tree. Which type of
query index is used is determined by the parameter bulkLoading. If it is enabled,
all indexes are BE+-trees. Otherwise, all indexes are BE-trees. Via the parameters
avoidEmptyCells, gridTightening and splitIntervals all by the BE+-tree
provided optimizations can be individually enabled and disabled. The parameter
avoidEmptyCells is for the optimization that prevents the creation of empty c-
directory cells. If gridTightening is enabled, then c-directories are tightened at the
cost of the dynamic property. The parameter splitIntervals determines whether
stuck intervals should be split. Lastly, the three parameters totalSplitLimit,
gridSplitLimit as well as splitFactor are used by the interval split technique
and self-explaining. Users are allowed to create their own configurations. In case the
BE+-tree is used, new filter EPAs are maintained in lists until they are moved via bulk
loading into the corresponding indexes. To ensure semantical correctness, incoming
events are forwarded to the corresponding index and to every corresponding filter
EPA that has not been indexed yet.

123

11 An Efficient Index for Large Sets of Continuous Queries

11.6.1 Optimization of Boolean Expressions

For the sake of optimal performance and wide support of the query index, Boolean
expressions are rewritten before indexing in our implementation. Some of the obli-
gatorily applied rules are presented in Table 11.1. Every pair of indexable predicates
with reversed half-open operators and referring to the same data attribute is replaced
by a single indexable between predicate. If there are multiple indexable = predicates
referring to the same data attribute, then they are replaced by a single indexable ∈
predicate. Analogous, multiple indexable 6= predicates referring to the same data at-
tribute are replaced by a single indexable 6∈ predicate. In addition, our optimizer for
Boolean expressions is able to detect expressions or subexpressions that will always or
never evaluate to TRUE. Such (sub-)expressions are replaced by the Boolean constants
TRUE and FALSE respectively. Lastly, our optimizer detects subexpressions that are
completely covered by other subexpressions and removes them (e.g., betweenattr,{−5,4}
is completely covered by betweenattr,{−8,6}).

11.6.2 Indexing of Arbitrary Boolean Expressions

Boolean expressions can consist of both indexable and non-indexable predicates.
Moreover, predicates can be connected via any logical connector in Boolean expres-
sions. But the BE-tree and the BE+-tree support only indexable Boolean expressions.
However, our implementation extracts non-indexable predicates. If a non-indexable
predicate refers to no data attribute, it is evaluated and replaced by the constant re-
sult (i.e., either TRUE or FALSE) and if it refers to two data attributes, it is evaluated
for each incoming event separately. All remaining predicates of a Boolean expres-
sion are indexable. Such Boolean expressions are handled according to the config-
ured mode (parameter evaluator). In our implementation, there are three different
modes available. In the mode CONJUNCTIVE, only Boolean expressions in conjunc-
tive form are indexed. All others are not indexed and evaluated for every incoming
event. In the mode DNF, the native EP provider indexes Boolean expressions that are
in disjunctive normal form (DNF). At each logical ∨ operator, a Boolean expression in
DNF is split so that the result is a collection of Boolean expressions in conjunctive form
[YG94]. Those Boolean expressions are all in an appropriate form for being indexed.
The third mode is named COMPLEX. In this mode, arbitrarily complex Boolean ex-
pressions can be handled. Based on several rewriting and processing rules, a Boolean
expression is decomposed into a set of subexpressions. All elements of the set that can
be indexed are indexed and all others are evaluated on per event basis.

124

11.7 Handling Dynamic Sets of Continuous Queries

11.7 Handling Dynamic Sets of Continuous Queries

In general, the BE+-tree is a static index structure that cannot be updated. Thus, an
updated set of Boolean expressions requires the entire recreation of the correspond-
ing BE+-tree. Our experiments proved that the creation of even large BE+-trees needs
only a few seconds. The BE+-tree is a main memory data structure and can be created
very fast in comparison to the creation times of data structures that reside on external
memory. Moreover, the creation of a BE+-tree from scratch is significantly faster than
the creation of a BE-tree from scratch. This is because BE+-trees are created efficiently
via bulk loading while BE-trees are created via costly query-by-query insertion. For
applications with relatively low update rates such as, for example, EP applications
the BE+-tree is usable without any restrictions and recommended because of its better
matching performance. However, the recreation of a BE+-tree is a blocking opera-
tion. This means, the processing of data items must be paused until the recreation has
finished. This blocking behavior might not be acceptable in some applications.

Since filter operators are stateless, it is easily possible to update BE+-trees with-
out blocking the processing of data items. Our idea is to maintain a second BE+-tree
for each data stream. This way one BE+-tree can be created concurrently in the back-
ground while the other is used for lookup operations. Note that the active BE+-tree is
always up-to-date because of its insertion list that maintains all recently added filter
operators. As soon as the creation of the other BE+-tree in the background finishes,
lookup operations can be answered by the new tree. Because there is no state that
must be migrated, the handover can happen between any two data items without los-
ing semantical correctness. This approach is similar to the double buffer technique
[Bis94] known from computer graphics. Here, interactive images are rendered using
two buffers. One buffer keeps the last frame to be shown on a screen and the other is
used for drawing the next frame in the background. When the next frame is complete,
the buffers interchange their roles. Thus, there are only complete images displayed.
Flicker and tearing do not occur. But in contrast to the double buffer technique, our
double tree approach must not be performed continuously in order to save computing
resources. Depending on the application, the creation of a new tree in the background
can be triggered after a certain amount of data items has been processed or after a
certain amount of new filter operators has been added.

125

11 An Efficient Index for Large Sets of Continuous Queries

11.8 Evaluation

In this section, we present our evaluation of the BE+-tree that comprised a comprehen-
sive set of experiments and benchmarks. The setups of the experiments and bench-
marks consisted of synthetic filter EPAs and synthetic events (we made intensive use
of our evaluation framework, see Appendix A for details). Only this way all param-
eters could be fully controlled. But even using synthetic workloads, it was still quite
hard to create setups with certain parameter settings. Particularly the setting of the
matching rate was difficult to be kept constant because it is influenced by almost all
other parameters of an experiment. This problem already occurred in the evalua-
tion of the BE-tree [SJ11, SJ13]. Furthermore, we used BE-trees as well as BE+-trees
via the native EP provider of JEPC. Therefore, our results give the real performance
of the index structures built into a stream processing engine. The use of the native
EP provider also led to the fact that all experiments were purely single-threaded (see
Chapter 20 for parallelization in the context of JEPC). Nevertheless, because lookups
require only read operations, the BE-tree and the BE+-tree could also process multiple
events in parallel without any problems. All experiments and benchmarks were done
on a commodity machine with an Intel i7-2600 CPU and 8 GiB of main memory run-
ning 64-bit Oracle Java HotSpot VM (1.7.0_13). Because the parameter space is large
due to numerous parameters (especially in the case of the BE+-tree), we had to run
a lot of experiments and benchmarks. In this section, we report and discuss only the
most interesting ones. For the original BE-tree, we could reproduce all results from its
evaluation in [SJ11, SJ13]. This not only is a strong point for the original work, but also
verifies that our implementation is consistent with the original one.

11.8.1 Globally Optimal Partitioning, Grid Tightening and Avoid-

ance of Empty Cells

BE+-trees are created via bulk loading by default. Then, a globally optimal space par-
titioning is always achieved. The tightening of grids, the avoidance of empty grid
cells, and the splitting of stuck intervals are optional optimization techniques and can
be enabled or disabled via parameters independently of each other. Because the in-
terval split technique has several parameters in addition, it is studied in depth in the
next subsection. Throughout this subsection, it has been disabled in every configura-
tion of the BE+-tree. For the remaining two optional optimization techniques there is
one configuration for every possible combination of them. Table 11.4 shows the four
different configurations of the BE+-tree used in the experiments of this subsection.

126

11.8 Evaluation

Parameter BE+-tree 1 BE+-tree 2 BE+-tree 3 BE+-tree 4

GRID_TIGHTENING FALSE TRUE FALSE TRUE

AVOID_EMPTY_CELLS FALSE FALSE TRUE TRUE

SPLIT_INTERVALS FALSE FALSE FALSE FALSE

Table 11.4: Used configurations of the BE+-tree

25 50 75 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

BE−tree
BE+−tree 1
BE+−tree 2

Total Number of Attributes

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.14: Effects of space partitioning and grid tightening

In the first experiments we ran, we used the event stream, the filter conditions and
the insertion order of our example EP application (see Section 11.4.1 for details). In
total, there were 20,000 filter EPAs. Each filter condition consisted of two between
predicates that followed the pattern of the example EP application. The predicates
were defined so that all intervals of a c-directory had a size of 1,000,000 and were
uniformly distributed within [0:2,000,000]. The other parameters were set as follows.
All events were uniformly distributed and the matching rate was kept constant at 1 %.
The parameters maxcap and minsupport were set to 16 and 8 respectively.

For the BE-tree as well as for the BE+-tree the resulting trees had the overall struc-
tures that are presented in Section 11.4.1. At the first level of the BE+-trees the space
was partitioned by the first three attributes of the event stream schema and at the
second level it was partitioned by all remaining attributes. In contrast, the partition-
ing of the BE-tree was precisely the opposite. Figure 11.14 shows the event matching
times of the original BE-tree and the first two configurations of the BE+-tree for dif-
ferent total numbers of attributes of the underlying event stream. The BE-tree and
BE+-tree 1 performed and scaled significantly differently. Recall that both only dif-

127

11 An Efficient Index for Large Sets of Continuous Queries

25 50 75 100 ∅

BE+-tree 1 0.0015735 0.0015344 0.0016313 0.0016032 0.0015856
BE+-tree 2 0.0008566 0.0007336 0.0006798 0.0006609 0.0007327
BE+-tree 3 0.0014411 0.0013110 0.0013952 0.0014793 0.0014067
BE+-tree 4 0.0008378 0.0006669 0.0006624 0.0006493 0.0007041

Table 11.5: Effect of the avoidance of empty grid cells

fered in space partitioning in this experiment. Already for 25 attributes the globally
optimal partitioning of BE+-tree 1 led to a matching performance that was about three
times better than the matching performance of the suboptimal partitioning of the BE-
tree. While the matching time of the BE+-tree did not change when the number of
attributes increased, the matching time of the BE-tree increased noticeably. For 100
attributes BE+-tree 1 performed about ten times better than the BE-tree.

Table 11.5 shows the average matching times in milliseconds per event for all
tested configurations of the BE+-tree and for different total numbers of attributes.
When the grid tightening optimization was enabled (BE+-tree 2), the performance of
BE+-tree 1 could be further improved by factor 2. Although the avoidance of empty
grid cells is more an implementation detail, its effect could be noticed. BE+-tree 3
had an average matching time that was 13 % better in comparison to BE+-tree 1.
When the avoidance of empty grid cells was used in combination with grid tightening
(BE+-tree 4), the matching time was 4 % better in comparison to grid tightening only
(BE+-tree 2). The reason why the improvement was less than 13 % this time is that grid
tightening influences the internal structure of c-directories. With grid tightening there
were simply less empty cells than without it. In fact, the tightening of grids influences
not only the avoidance of empty grid cells, but also the interval split technique.

With respect to the examined optimization techniques, the query workload and
the insertion order were chosen so that the potential of the optimization techniques
could be effectively demonstrated. While the grid tightening and interval split tech-
niques also significantly improve the performance of real-world EP applications, this
is not true for the space partitioning of the BE+-tree (see benchmarks in Section 11.8.3).
However, very disadvantageous insertion orders of Boolean expressions may occur in
practice, particularly if they are created automatically by machines following some
pattern (as in our setup). In such cases, the original BE-tree would perform poorly
and not scale well with an increasing number of attributes while the BE+-tree would
have an optimal space partitioning and, thus, perform and scale well.

128

11.8 Evaluation

Parameter Value Parameter Value

Total number of attributes 20 AVOID_EMPTY_CELLS TRUE

Total number of filter EPAs 20,000 GRID_TIGHTENING TRUE

Matching rate 1 % TOTAL_SPLIT_LIMIT 100
maxcap 16 GRID_SPLIT_LIMIT 1
minsupport 8 SPLIT_FACTOR 0.0001

Table 11.6: Default configuration used in experiments of interval split technique

11.8.2 Interval Splits

In this subsection, we present our evaluation of the interval split technique of the
BE+-tree. We studied not only the effects of this optimization technique, but also
how the different parameters influence the resulting BE+-trees and how to set them
properly. The default configuration of parameters is shown in Table 11.6. If not stated
otherwise, these are the values used in the experiments of this subsection.

By default, the test event stream consisted in total of 20 attributes each of type
32-bit integer number. The total number of filter EPAs was 20,000. With respect to
the corresponding query workload, our event generator emitted events so that 1 % of
them matched one or more filter conditions. For maxcap and minsupport, the default
values were 16 and 8 respectively. The BE+-tree optimization techniques which avoid
empty grid cells and tighten the grids of c-directories were enabled by default. Each
filter condition was allowed to be split at most 100 times in total and at most once per
cluster directory by default. Lastly, the default split factor was 0.0001.

For the first experiment, we generated a query workload including only filter con-
ditions that theoretically could be split maxsplit times in order to demonstrate the po-
tential of the interval split technique. In this extreme case scenario, the advantages as
well as the disadvantages of the interval split technique showed up at high scale. The
filter conditions were generated as follows. Every filter condition had one indexable
predicate defined for each event attribute. Only between predicates were used, because
they allow to generate predicates whose corresponding intervals can be arbitrarily set
with respect to size and position. The constant values of the predicates were gen-
erated so that the corresponding intervals covered one half of the attribute domain
completely, the middle of the attribute domain, and a very small range of the other
half. Intervals that covered the left half completely are called left-handed intervals and
intervals that covered the right half completely are called right-handed intervals. Our
generator created left-handed intervals and right-handed intervals each with proba-

129

11 An Efficient Index for Large Sets of Continuous Queries

Interval splits disabled Interval splits enabled Factor

Matching time 0.7608 ms/event 0.00308 ms/event 247
#Levels per c-directory 1 9.11 9.11
#Cells per #c-directory 1 14.76 14.76
Stored filter conditions 20,000 1,701,276 850
#p-nodes, #p-, #c-directories 20 43,830 2,191
#c-Nodes 21 646,740 28,119
#l-nodes (non-empty) 1 173,136 57,712

Table 11.7: Effects of interval split technique

bility of 50 %. This way, two notable effects were achieved. First, a set of intervals cov-
ered the entire domain so that grid tightening could not be performed. Second, at each
c-directory the set of input filter conditions was divided into two sets each containing
half of the filter conditions on average, when the interval split technique was enabled.
One resulting set contained all copies of filter conditions with left-handed intervals
for the associated attribute and the other set contained all copies of filter conditions
with right-handed intervals. The maximum size of the part of intervals that covered
only a small range of one half of the domain was determined by an additional param-
eter OverlapSize that defined the maximum distance from the middle of the domain.
Within the ranges (middle : middle+OverlapSize] and [middle−OverlapSize : middle)
respectively, the corresponding endpoints of intervals were uniformly distributed gen-
erated. Note that the intervals of this setup can be produced by almost all supported
indexable predicates. The only exceptions are the indexable predicates =, 6= and 6∈.
For example, applications that filter events on basis of thresholds which are close to
the middle of the domain (i.e., close to zero for numeric attribute domains) via the
half-open predicates <, ≤, ≥ and > produce such query workloads.

Table 11.7 shows the averaged results for multiple runs of the experiment with
OverlapSize set to 5,000. The first column gives the units of measurement. While the
second column shows the numbers for a BE+-tree that did not split intervals, the third
column shows the numbers for a BE+-tree that did. Although the BE+-trees only dif-
fered in whether to split intervals, the numbers of nearly every unit of measurement
differed by a large factor that is shown in the fourth column. The first row shows that
the interval split technique improved the matching time significantly by factor 247.
In the configuration without interval splits, there was absolutely no space clustering.
Every c-directory kept all filter conditions in its root cell. But in the setup with interval
splits, the c-directories had more than 9 levels and more than 14 non-empty grid cells

130

11.8 Evaluation

5k 100k 250k 500k

−
0.

2
0

0.
2

0.
4

0.
6

0.
8

1

Interval Splits Disabled
Interval Splits Enabled

Overlap Size

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.15: Effect of parameter OverlapSize on matching time

on average. As already theoretically discussed, the better performance through inter-
val splits comes with additional costs. The BE+-tree that did not split any intervals
stored exactly the 20,000 input filter conditions. In contrast, the BE+-tree with interval
splits enabled stored about 1.7 million filter conditions. Of course, this larger number
of filter conditions in combination with finer space clustering led to significant more
tree nodes and directories as shown by the other rows.

Taking this basic setup of the experiment as a starting point, we changed dif-
ferent parameters. First of all, we repeated the experiment for different values of
OverlapSize. Note that this led to exactly the same effects that would have been oc-
curred if we had changed the split factor instead. Figure 11.15 shows the results for
both configurations of the BE+-tree. With interval splits disabled, the average match-
ing time was constant at about 0.76 milliseconds per event. The parameter OverlapSize
had no effect, because in the chosen setup every interval covered the middle of the root
cell of every c-directory and got stuck there. Thus, exactly the same BE+-tree having
the same structure and performance was created for every value of OverlapSize. Con-
sequently, not only the matching time but also all other values in the second column
of Table 11.7 were constant. For the BE+-tree with interval splits enabled, the values
were not constant. Instead, the matching time increased slightly when OverlapSize
was increased. For example, at 250k the average matching time was 0.009699 mil-
liseconds per event (i.e., about three times higher than in the default setup) and at
500k it was already 0.090203 milliseconds per event (i.e., about 30 times higher than in
the default setup). However, the BE+-tree with interval splits enabled still performed
significantly better than the BE+-tree with interval splits disabled.

131

11 An Efficient Index for Large Sets of Continuous Queries

5k 100k 250k 500k

0
50

0k
1M

1.
5M

2M

Interval Splits Enabled

Overlap Size

S
to

re
d

F
ilt

er
 C

on
di

tio
ns

Figure 11.16: Effect of parameter OverlapSize on redundancy

For the BE+-tree with interval splits enabled, we also studied other properties than the
matching time under changing parameters. At first, we had a special focus on the total
number of stored filter conditions as well as on the resolution of the c-directories. Fig-
ure 11.16 shows the effect of OverlapSize on the redundancy. With increasing values
of OverlapSize the total number of stored filter conditions decreased noticeably. For
example, at 250k there were about 1.3 million filter conditions stored on average and
at 500k there were only about 250 thousand filter conditions stored on average. The
effect was due to the split factor condition. The higher the value of OverlapSize the
more stuck intervals were not split, because they violated the split factor condition.

5k 100k 250k 500k

5
6

7
8

9
10

Interval Splits Enabled

Overlap Size

C
−

D
ire

ct
or

y
D

ep
th

Figure 11.17: Effect of parameter OverlapSize on c-directory depth

132

11.8 Evaluation

Figure 11.17 shows the effect on the depth of c-directories. The average depth of the c-
directories decreased from about 9.5 levels to about 5.6 levels within the shown range
of values of OverlapSize. When OverlapSize was increased, the average depth of c-
directories decreased. Hence, the average matching time increased.

10 20 30

−
0.

25
0

0.
5

1
1.

25
1.

75

Interval Splits Disabled
Interval Splits Enabled

Total Number of Attributes

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.18: Effect of total number of attributes on matching time

In the next experiment, the total number of attributes was changed. Figure 11.18
shows that the matching time of the BE+-tree with interval splits disabled significantly
increased with an increasing number of attributes. To study this effect in more detail,
Table 11.8 shows the structure of the resulting BE+-trees.

10 Attributes 20 Attributes 30 Attributes

#c-Nodes 11 21 31
#p-Nodes 10 20 30
#c-Directories 10 20 30
#l-nodes (non-empty) 1 1 1

Table 11.8: Structures of BE+-trees with interval splits disabled

With interval splits disabled, a resulting BE+-tree was a totally linearly, fully expanded
chain of nodes and directories according to Table 11.8. For N attributes, there were
N + 1 c-nodes, N p-nodes, N c-directories and always exactly one l-node that was not
empty. Because every filter condition had predicates on all available attributes, every
partition contained all filter conditions. The same was true for cluster directories that
only consisted of exactly one cluster. Because the set of filter conditions was never di-
vided (neither through partitioning nor through clustering), the entire set was pushed

133

11 An Efficient Index for Large Sets of Continuous Queries

10 20 30

0
50

0k
1M

1.
5M

2M

Interval Splits Enabled

Total Number of Attributes

S
to

re
d

F
ilt

er
 C

on
di

tio
ns

Figure 11.19: Effect of total number of attributes on redundancy

down to the lowest possible level where all filter conditions were stored in a single
l-node. When the number of attributes increased, the height of the BE+-tree increased
too (in a linear fashion). Every event was routed from node to node until it finally
reached the leaf node which stored all filter conditions. Along its entire way through
the tree, absolutely no disqualifying filter conditions were detected.

The BE+-tree with interval splits enabled was also influenced by the total number
of attributes, but by far less than the BE+-tree with interval splits disabled. Particularly
when the number of attributes increased from 20 to 30, an increase in the matching
time could be observed (see Figure 11.18). But the reasons for this effect were different
from the reasons of the BE+-tree with interval splits disabled. Figure 11.19 shows that
the total number of attributes had nearly no impact on the redundancy. In particular,
the numbers of stored filter conditions were equal for 20 and 30 attributes. Due to
clustering all filter conditions could already been stored in l-nodes at internal levels so
that the lower levels of a tree were not created. Therefore, the resulting BE+-trees were
almost identical (independent of the number of attributes). Because at each level the
number of filter conditions was reduced by a factor of 2 during clustering, there are
theoretically only about 9.8 filter conditions per set at the 12th level. Because this was
below the defined l-node capacity maxcap, no further partitioning and clustering were
performed. In our experiment, we actually measured an average size of non-empty
l-nodes of 9.8 filter conditions. Therefore, the BE+-trees were only created up to the
12th level (theoretically there can be as many levels as there are attributes). When the
number of attributes increased, then the matching time increased too, because for the
additional attributes there were no new partitions and clusters created.

134

11.8 Evaluation

10k 20k 30k 40k

−
0.

25
0

0.
25

0.
5

0.
75

1
1.

25
1.

5

Interval Splits Disabled
Interval Splits Enabled

Total Number of Input Filter EPAs

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.20: Effect of total number of input filter EPAs on matching time

The last setup of this particular experiment comprised changing the total number of
filter EPAs. Figure 11.20 shows that the matching time scaled linearly with the total
number of filter EPAs in the case of the BE+-tree with interval splits disabled. This
result was no surprise, because the resulting trees were linear chains keeping all filter
conditions in a single leaf node at the lowest possible level. In the case of the BE+-
tree with interval splits enabled, there was no change of the event matching time.
This is due to the fact that the resulting trees were better clustered and, thus, widely
branched. This experiment showed how important it is for BE-trees and BE+-trees to
be able to partition and cluster the space. Moreover, the experiment proved that our
interval split technique can significantly improve the quality of space clustering.

As stated by the theoretical analysis, the total number of copies grows exponen-
tially with the number of interval splits in the worst case. However, because an inter-
val split has no negative impact on the matching time (every event being processed
visits only one cell at each level of a c-directory and, thus, sees at most one copy of a
filter condition), we can generally recommend to perform as many interval splits as
possible whenever memory consumption is not an issue. However, memory might be
quite limited in certain applications or there might be extremely many event streams
that require a query index. In total, there are three possibilities to reduce the number
of interval splits. First, the parameter GRID_SPLIT_LIMIT can be decreased. This is
an option if it is set to two or a greater value and if there are cascading splits possible.
Second, SPLIT_FACTOR can be decreased. If this parameter is decreased, some splits
might no longer be performed because the corresponding intervals violate the split

135

11 An Efficient Index for Large Sets of Continuous Queries

0 5 12 25 50 75 100

−
0.

2
0

0.
2

0.
4

0.
6

0.
8

1

Interval Splits Disabled
Interval Splits Enabled

Total Split Limit

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.21: Effect of total split limit on matching time

factor condition now. Third, the parameter TOTAL_SPLIT_LIMIT can be decreased.
This is always an option to reduce the number of interval splits and it is the only option
that is independent of the query workload. In the default configuration of the exper-
iment, GRID_SPLIT_LIMIT was already set to one and SPLIT_FACTOR was chosen
extremely small. Therefore, we decreased the parameter TOTAL_SPLIT_LIMIT in
order to reduce the number of performed interval splits.

The parameter TOTAL_SPLIT_LIMIT was set to 100 in the default configuration.
This value allowed many more interval splits than possible. Figure 11.21 clearly shows
that reducing the total split limit down to 12 had no effect on the matching time. As
explained on page 134, the sets of filter conditions became so small during bulk load-
ing that they could be stored completely in l-nodes at the 12th level. Therefore, every
additionally allowed interval split could not be performed and, thus, influence the re-
sulting tree. But from this point on, a further reduction of the total split limit led the
matching time increase rapidly. For a total split limit of zero, exactly the same tree was
created that would have been created if interval splits had been disabled. Of course,
then the performances of both configurations should be identical, which is shown by
the graphs. The graphs also reveal that the very first interval splits (that are located at
the topmost part of a tree) gave the highest improvement in performance. Therefore,
we recommend to enable the interval split technique also in case of limited memory.
But then the number of interval splits should be severely limited. We also studied the
redundancy in this experiment. Figure 11.22 shows that the redundancy increased in
the same way as the matching time decreased. The figure also verifies that no more
than 12 splits per filter condition were performed on average.

136

11.8 Evaluation

0 5 12 25 50 75 100

0
50

0k
1M

1.
5M

2M

Interval Splits Enabled

Total Split Limit

S
to

re
d

F
ilt

er
 C

on
di

tio
ns

Figure 11.22: Effect of total split limit on redundancy

Up to now, all experiments of this section had a specially prepared synthetic query
workload in order to investigate the interval split technique in an extreme case sce-
nario. In particular, every interval got stuck in the root cell and did not cover a large
range of the attribute domain. The experiments presented in the following had the
goal to simulate real-world applications by dealing with intervals whose positions
and sizes were randomly chosen. By default, a specific setup was as follows. Every
filter condition had an indexable between predicate on every available attribute. All
attributes were of the type 32-bit integer number. Again, we considered a set of filter
conditions that could not be divided via space partitioning, because every filter con-
dition restricted all event attributes. We explicitly wanted to study the effects of the
interval split technique only (for more realistic workloads see our benchmarks in Sec-
tion 11.8.3 which drew a random subset of all available attributes for the placement
of predicates). The constant values of the between predicates were derived from ran-
domly generated intervals. In particular, the sizes of those intervals were randomly
chosen from the range [2 : 231]. Note that the maximum possible interval size of 231 is
half the size of the 32-bit integer number domain. The positions of the intervals were
randomly distributed across the entire domain. As a consequence, grid tightening
was not possible at all or had only little effect. In total, there were three probability
distributions involved for generating the random intervals. First, the probability dis-
tribution for generating the sizes of intervals. Second, the probability distribution for
generating the positions of intervals. Third, the probability distribution for generating
the values of events. In our first setup, all generators used the normal distribution (i.e.,
the preset NORMAL; see Appendix A for detailed parameter settings).

137

11 An Efficient Index for Large Sets of Continuous Queries

0.0001 0.1000 0.2500 0.3750 0.5000 0.7500 1.0000

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Interval Splits Disabled
Interval Splits Enabled (GSL=1)
Interval Splits Enabled (GSL=2)
Interval Splits Enabled (GSL=3)

Split Factor

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.23: Effects of split factor and grid split limit on matching time

Figure 11.23 shows the matching performance for different split factors and different
grid split limits (GSL). As theoretically discussed, a split factor higher than 0.5 does
not speed up the matching time in general, because it is not guaranteed that every
split is able to push down at least one part by more than one level. The results clearly
show that at 0.5 the optimum was reached for the generated query workloads. Note
that this was true not only for single allowed splits per c-directory (GSL=1), but also
for multiple allowed splits per c-directory (GSL=2 and GSL=3). We also got the same
result for almost all other tested probability distributions. Therefore, a value higher
than 0.5 is definitively not recommended in general. In comparison to allowing one
split per c-directory, the performance only slightly improved when GSL was set to
two. And from GSL=2 to GSL=3 there was no further improvement at all.

Although the matching time was constant for a split factor higher than 0.5, the re-
dundancy substantially increased. Figure 11.24 shows the degree of redundancy for
each configuration of the experiment. As expected, a reduced matching time led to an
increased degree of redundancy. For all configurations with GSL=1 and for all config-
urations that had a split factor smaller than or equal to 0.5, the degree of redundancy
was relatively moderate, controllable and predictable. But for larger split factors it
escalated. For SPLIT_FACTOR set to 1.0 (i.e., every stuck interval was split if the split
limits had not been reached yet) and GRID_SPLIT_LIMIT set to 2 there were more
than 9 million filter conditions stored in a tree and for GRID_SPLIT_LIMIT set to 3
even more than 220 million. However, for split factors limited to the range [0 : 0.5]
redundancy and matching performance could be well balanced.

138

11.8 Evaluation

0.0001 0.1000 0.2500 0.3750 0.5000 0.7500 1.0000

0
1M

2.
5M

5M
7.

5M
10

M

Interval Splits Enabled (GSL=1)
Interval Splits Enabled (GSL=2)
Interval Splits Enabled (GSL=3)

Split Factor

S
to

re
d

F
ilt

er
 C

on
di

tio
ns

Figure 11.24: Effects of split factor and grid split limit on redundancy

0.0001 0.1000 0.2500 0.3750 0.5000 0.7500 1.0000

0
1

2
3

4
5

Interval Splits Disabled
Interval Splits Enabled (GSL=1)

Interval Splits Enabled (GSL=2)
Interval Splits Enabled (GSL=3)

Split Factor

C
−

D
ire

ct
or

y
D

ep
th

Figure 11.25: Effect of split factor on c-directory depth

For this particular setup of the experiment, we also report other results in the follow-
ing. All observed effects occurred not only for normally distributed workloads, but
also all other tested probability distributions. Because the intensities of the effects var-
ied only slightly, we discuss the effects only for this setup. Figure 11.25 shows the
average c-directory depths. Again, a higher degree of redundancy led to better devel-
oped grids. However, in the case of split factors greater than 0.5, the rapidly growing
redundancy only slightly increased the average depth of c-directories. The figure also
shows the average c-directory depths for BE-+-trees with interval splits disabled. In
contrast to the previous experiments, not all intervals got stuck in the root cell this

139

11 An Efficient Index for Large Sets of Continuous Queries

10 20 30

0.
00

00
0.

13
75

0.
27

50
0.

41
25

0.
55

00

Interval Splits Disabled
Interval Splits Enabled (GSL=1)
Interval Splits Enabled (GSL=2)
Interval Splits Enabled (GSL=3)

Total Number of Attributes

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.26: Effect of total number of attributes on matching time

time. On average, a c-directory had a depth of 1.32 levels. However, space clustering
was still quite limited. This shows that the BE-tree as well as the BE+-tree with in-
terval splits disabled are highly sensitive for normally distributed intervals, because
many intervals get stuck in the root cell. These results have not been reported before,
because normally distributed intervals were not considered in the original evaluation
of the BE-tree [SJ11, SJ13].

If we compare Figure 11.23 with Figure 11.24, again it becomes clear that the very
first interval splits resulted in the highest performance improvements. In order to
achieve the same intensity after the first few interval splits again, many more intervals
had to be split in addition. Fortunately, the bulk loading of BE+-trees is performed
top-down. This means, all interval splits are also performed top-town until the lowest
level or the maximum number of allowed interval splits has been reached. Therefore,
all allowed interval splits are always performed in the topmost part of a tree where
they have the highest beneficial impact.

Figure 11.26 plots the matching time as a function of the total number of attributes.
All configurations of the BE+-tree had a significantly increased matching time when
the number of attributes increased. This effect was due to the fact that there was
no space partitioning possible as being discussed on page 133. Figure 11.27 shows
the matching time for different total numbers of filter EPAs. Note that BE-trees scale
linearly with the total number of matched filter EPAs [SJ11, SJ13]. Thus, all shown
configurations scaled equally. But the configurations with interval splits enabled were
superior with respect to the absolute matching time.

140

11.8 Evaluation

10k 20k 30k 40k

0.
01

0
0.

02
5

0.
05

0
0.

07
5

Interval Splits Disabled
Interval Splits Enabled (GSL=1)
Interval Splits Enabled (GSL=2)
Interval Splits Enabled (GSL=3)

Total Number of Input Filter EPAs

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.27: Effect of total number of input filter EPAs on matching time

0.01% 1% 4% 7% 10%

0.
00

0.
15

0.
30

0.
45

Interval Splits Disabled
Interval Splits Enabled (GSL=1)
Interval Splits Enabled (GSL=2)
Interval Splits Enabled (GSL=3)

Matching Rate

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.28: Effect of matching rate on matching time

Figure 11.28 shows that all configurations of the BE+-tree performed similarly when
the matching rate changed. Altogether, the matching times of all configurations of
the BE+-tree increased linearly with an increasing matching rate. But again, the BE+-
trees with the interval split technique enabled achieved significantly lower absolute
matching times. This result is also consistent with the evaluation of the original BE-
tree. For higher matching rates there were relatively less mismatching filter EPAs that
could have been skipped. So, the linear increase of the matching times is expected.

141

11 An Efficient Index for Large Sets of Continuous Queries

8/4 32/16 64/32 128/64 256/128

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Interval Splits Disabled
Interval Splits Enabled (GSL=1)
Interval Splits Enabled (GSL=2)
Interval Splits Enabled (GSL=3)

maxcap / minsupport

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.29: Effects of maxcap and minsupport on matching time

Figure 11.29 shows the matching time for different values of maxcap and minsupport.
On the x-axis, the first number gives the value of maxcap and the second number gives
the value of minsupport used in the corresponding runs of the experiment. The pa-
rameter minsupport was always set to 0.5 ∗ maxcap so that an overflowing l-node was
partitioned only if at least half of the filter conditions could be moved into a new par-
tition. Again, this experiment not only confirmed the original BE-tree evaluation, but
also showed that the parameters influence BE+-trees exactly in the same way as BE-
trees. The matching time changed slightly when the parameters were changed. As
proposed by the original work on the BE-tree, these parameters can be used to fine-
tune the matching performance. Obviously, our used default values 16/8 were not
optimal but close to. Because their optimal settings depend also on other parameters
as in the case of BE-trees, these parameters can be used to fine-tune BE+-trees too.

As already stated, we also tested workloads generated on basis of other probability
distributions without getting other results. Exactly the same effects appeared, but
of course with different intensities. The next figures show the results for workloads
which had uniformly distributed interval sizes and positions as well as uniformly
distributed events. Because uniformly distributed intervals get stuck in the root cells
less often than normally distributed intervals, less interval splits occurred. Therefore,
we observed a much lower degree of redundancy in this experiment (see Figure 11.31).
The BE+-tree without interval splits benefited from the uniform distribution. This was
proven by a significantly higher depth of c-directories (see Figure 11.32). Even though
there were less interval splits and the basic space clustering was of higher quality, the
BE+-tree with interval splits enabled was still superior (see Figure 11.30).

142

11.8 Evaluation

0.0001 0.1000 0.2500 0.3750 0.5000 0.7500 1.0000

0.
00

0.
02

0.
04

0.
06

0.
08

Interval Splits Disabled
Interval Splits Enabled (GSL=1)
Interval Splits Enabled (GSL=2)
Interval Splits Enabled (GSL=3)

Split Factor

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.30: Effect of split factor on matching time

0.0001 0.1000 0.2500 0.3750 0.5000 0.7500 1.0000

0
25

0k
50

0k
75

0k
1M

Interval Splits Enabled (GSL=1)
Interval Splits Enabled (GSL=2)
Interval Splits Enabled (GSL=3)

Split Factor

S
to

re
d

F
ilt

er
 C

on
di

tio
ns

Figure 11.31: Effect of split factor on redundancy

This particular experiment again confirmed that the very first interval splits are the
most effective ones. For the parameter SPLIT_FACTOR set to its default value 0.0001
there were only up to 20,015 filter conditions stored among all runs of the experiment.
This means that due to interval splits the sizes of the BE+-trees increased by only up
to 15 additional filter conditions which is less than 0.1 %. But there already was a
significantly lower event matching time as shown in Figure 11.30. Because this was
true in all our experiments, we chose the very small number of 0.0001 as default value
for SPLIT_FACTOR. This setting noticeably improves the matching performance for
real-world workloads, but does not lead to high redundancy.

143

11 An Efficient Index for Large Sets of Continuous Queries

0.0001 0.1000 0.2500 0.3750 0.5000 0.7500 1.0000

0
1

2
3

4

Interval Splits Disabled
Interval Splits Enabled (GSL=1)

Interval Splits Enabled (GSL=2)
Interval Splits Enabled (GSL=3)

Split Factor

C
−

D
ire

ct
or

y
D

ep
th

Figure 11.32: Effect of split factor on c-directory depth

10% 25% 50% 75%

0.
00

00
0.

08
75

0.
17

50

Interval Splits Disabled
Interval Splits Enabled (GSL=1)

Maximum Interval Size

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.33: Effect of interval size on matching time

For the workloads generated on basis of uniform distributions, we report the results
of an experiment that was not presented yet. In this experiment, we examined the
matching time for different average interval sizes. For this purpose we extended and
reduced the value range [2 : maxintervalSize] from which the sizes of intervals were
drawn under uniform distribution. While the minimum value was kept at 2, the max-
imum value maxintervalSize was changed. The x-axis in Figure 11.33 gives the ratio of the
maximum interval size to the size of the entire domain. Obviously, smaller intervals
can be indexed better than larger ones. Large intervals naturally have less potential to
prune the space than small intervals.

144

11.8 Evaluation

To complete the presentation of the evaluation of the interval split technique, we de-
rive some general advices on basis of the outcomes of the experiments. The good
news is that there is virtually no wrong configuration of parameters with respect to
matching performance. But recall that a very aggressive configuration may result in a
high degree of redundancy. To achieve optimal matching performance while uncon-
trolled redundancy is avoided, parameters must be fine-tuned according to the work-
load. However, it is possible to recommend a basic configuration of parameters which
comes relatively close to the optimal configuration for most real-world workloads.
This basic configuration is as follows. The parameter SPLIT_FACTOR should be set
to 0.5. Then, it is guaranteed that every advantageous interval split is performed and
every interval split that potentially only increases redundancy is not performed. The
parameter GRID_SPLIT_LIMIT should be set to one. As the experiments showed,
an increased value led to high redundancy very often and not always reduced the
matching time. In contrast, the parameter TOTAL_SPLIT_LIMIT should be set large
enough. To be sure to not prevent beneficial interval splits, it should be set to any
value that is higher than the total number of attributes.

11.8.3 Benchmarks

In this section, we compare the performances of the BE-tree and the BE+-tree for ran-
domly generated workloads that consisted of 50 attributes and 50k filter EPAs by de-
fault. We tested a great number of probability distributions and different combinations
of them. Here, we report the results that are most important or cover a wide range of
real-world applications. For the interval split technique the recommended configura-
tion was used instead of the more conservative default configuration. Recall that in
the first part of the evaluation every filter condition always consisted of two predi-
cates following a certain pattern and that in the second part every filter condition had
a predicate on each attribute. In this last part, attributes were selected randomly per
filter condition according to a specific probability distribution. Besides the uniform
distribution, we also report the results for normal and exponential distributions that
model many real-world applications in which some hot attributes appear in many
filter conditions while other attributes are almost never restricted. The sizes and po-
sitions of intervals as well as events were randomly generated as in the experiments
before. The range from which interval sizes were drawn was fixed so that an interval
covered between 2 % and 25 % of the entire 32-bit integer domain. For the uniform
and the normal distribution this led to an average interval size of 12 %. Note that this
value was the default value in the evaluation of the original BE-tree [SJ11, SJ13].

145

11 An Efficient Index for Large Sets of Continuous Queries

25k 50k 100k 200k

0
1

2
3

4
5

BE−tree
BE+−tree

Total Number of Input Filter EPAs

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.34: Effect of total number of input filter EPAs (NORMAL distributions)

25k 50k 100k 200k

0
10

0
20

0
30

0
40

0
50

0

BE−tree
BE+−tree

Total Number of Input Filter EPAs

C
re

at
io

n
T

im
e

in
 S

ec
on

ds

Figure 11.35: Creation times (NORMAL distributions)

The results we present first are for a setup in which all generators (i.e., the generators
for attribute selection, interval sizes, interval positions, and event positions) followed
the normal distribution. Note that the insertion order of filter EPAs was according
to their creation order and, thus, random in all following experiments. Figure 11.34
shows the matching time for different total numbers of filter EPAs. The BE+-tree
clearly outperformed the BE-tree by many times. Also for all other tested setups of the
experiment, the BE+-tree was always superior to the BE-tree. Differently configured
generators only led to different distances between the resulting graphs. We present
the worst cases (for the BE+-tree) later in this section.

146

11.8 Evaluation

25 50 100 200

0.
0

0.
5

1.
0

1.
5

2.
0

BE−tree
BE+−tree

Total Number of Attributes

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.36: Effect of total number of attributes (NORMAL distributions)

We also measured the total time that was needed to create an entire query index from
scratch for a given set of filter EPAs. A typical property of bulk loading techniques for
index structures is a significantly better creation time. While a BE+-tree can be created
top-down in one go, a BE-tree must be created by calling the insertion algorithm N
times for N filter EPAs. Figure 11.35 shows the creation times of both approaches.
The bulk loading of the BE-+-tree scaled substantially better than the query-by-query
insertion of the BE-tree. Therefore, even for large sets of filter EPAs it is not costly
to (re-)create a BE+-tree. Note that the BE+-trees in this experiment had to cope with
many more filter expressions that had to be stored, because the interval split technique
was always enabled. For 200k filter EPAs, the corresponding BE-trees stored exactly
200k filter conditions, but the corresponding BE+-trees stored more than three million
filter conditions on average. Despite this fact, the creation times of the BE+-trees were
substantially better than those of the original BE-trees.

Next, we present and discuss the matching time for different total numbers of at-
tributes. Figure 11.36 shows that the BE+-tree performed significantly better than the
original BE-tree. However, both were relatively insensitive to the total number of at-
tributes. The slope of the graph of the BE+-tree is quite similar to the slope of the
graph of the original BE-tree. This fact proves that the original BE-tree produced a
good space partitioning for a random insertion order of filter EPAs. As mentioned
earlier, the globally optimal space partitioning of the BE+-tree is a less effective op-
timization technique compared to the interval split technique. It has a crucial effect
only if the insertion order of filter conditions is disadvantageous.

147

11 An Efficient Index for Large Sets of Continuous Queries

100% 90% 80% 70% 60% 50% 40% 30%

0
1

2
3

4
5

6
7

BE−tree
BE+−tree

Size of Query Area

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.37: Effect of query area size on matching time (NORMAL distributions)

25k 50k 100k 200k

0.
0

0.
5

1.
0

1.
5

2.
0

BE−tree
BE+−tree

Total Number of Input Filter EPAs

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.38: Effect of total number of input filter EPAs (UNIFORM distributions)

The next experiment that we present and discuss is only reported for this particular
setup of the generators, because it held also for all other setups. Up to now, inter-
vals were distributed across the entire domain of their associated attribute. In this
experiment, the area of the domain that was covered by all intervals (query area) was
successively shrunken symmetrically. Figure 11.37 shows the effects on the matching
time. The labels on the x-axis give the ratio of the size of the query area to the size of
the entire domain. It shows that the performance of the original BE-tree decreased sig-
nificantly when the intervals covered only a smaller part of the domain. However, due
to grid tightening and interval splits the performance of the BE+-tree kept constant.

148

11.8 Evaluation

25k 50k 100k 200k

0
25

50
10

0

BE−tree
BE+−tree

Total Number of Input Filter EPAs

C
re

at
io

n
T

im
e

in
 S

ec
on

ds

Figure 11.39: Creation times (UNIFORM distributions)

The next figures show the results of the same experiments but for slightly differently
generated workloads. All generators that created the workloads followed the uniform
distribution this time. Besides the normal distribution, the uniform distribution is
one of the most important and most widely used probability distributions to describe
and model real-world applications. Because there occurred no new effects, we do not
discuss the results in detail. Figure 11.38 shows the matching time for different total
numbers of filter EPAs. Also in this setup the BE+-tree was superior to the original
BE-tree. But note that the distance between the two graphs is smaller than in the setup
before. This is because there got significantly less intervals stuck. Consequently, there
were less interval splits possible (and necessary) so that the original BE-tree had a
performance that came closer to the performance of the BE+-tree. As a side effect, the
degree of redundancy of the BE+-tree was considerably lower this time.

Figure 11.39 gives the corresponding creation times for both the BE-tree and the
BE+-tree. At a first glance, there is nothing new to discuss. Therefore, creation times
are not reported anymore, because the difference between the BE-tree and the BE+-
tree and the scaling were the same for every tested setup. However, it should be
mentioned that the concrete numbers of the BE+-tree were almost identical to the con-
crete numbers of the BE+-tree in the setup before. It is somewhat surprising that the
creation times of the BE+-trees were almost identical, because the workload of the
previous setup led to many more interval splits and, thus, significantly more copies
of filter conditions that had to be stored in addition. This means, the total number of
interval splits has only little impact on the creation time.

149

11 An Efficient Index for Large Sets of Continuous Queries

25 50 100 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

BE−tree
BE+−tree

Total Number of Attributes

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.40: Effect of total number of attributes (UNIFORM distributions)

25k 50k 100k 200k

0
1

2
3

BE−tree
BE+−tree

Total Number of Input Filter EPAs

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.41: Effect of BETA1 distributed interval sizes

Similar to the results of the previous setup, Figure 11.40 shows that both the BE-tree
and the BE+-tree were again relatively insensitive to the total number of attributes
and that the BE+-tree achieved again a substantially better matching time than the
original BE-tree. Once more, a random insertion order of filter conditions led to a
good space partitioning in the case of the original BE-tree. The experiment showed
that exchanging the probability distribution of the generator that selects the attributes
on which a filter condition places indexable predicates had no significant effect. For
this reason, the attributes on which a filter condition places indexable predicates were
selected on basis of the normal distribution in all following experiments.

150

11.8 Evaluation

25k 50k 100k 200k

0.
00

0.
05

0.
10

0.
15

BE−tree
BE+−tree

Total Number of Input Filter EPAs

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.42: Effect of CHI_SQUARED1 distributed interval sizes

Even though the exchange of the probability distributions of the other workload gen-
erators did not lead to an overall outcome that was different from the main results
presented so far, the final figures show the matching times for probability distribu-
tions that are quite different from the normal and the uniform distributions. In partic-
ular, we present the results of four different setups in which the positions or the sizes
of intervals were generated on basis of the BETA1 or the CHI_SQUARE1 distributions
(see Section A.3.1 in the appendix for details), while all other generators followed the
normal distribution. We chose these particular distributions for presentation, because
they are different from bell-shaped probability distributions and often the underlying
distributions in real-world applications [Gra94].

The next two figures (Figure 11.41 and Figure 11.42) show the matching times for
setups in which the underlying distribution of the generator of interval sizes has been
exchanged. Figure 11.41 gives the results for workloads with BETA1 distributed inter-
val sizes. In these workloads, half of the intervals were tiny and the other half of inter-
vals were huge on average. As shown by Figure 11.41, the performance of the BE+-tree
was almost identical to its performance in the setup with normally distributed interval
sizes. This was because tiny intervals are per se good to index by all types of BE-trees
(tiny intervals tend to not get stuck at the upper levels of c-directories) and huge inter-
vals can be handled via the interval split technique. But the performance of the BE-tree
improved significantly in comparison to its performance in the setup with normally
distributed interval sizes. In this experiment, the created BE-trees had a much better
space clustering because of the tiny intervals.

151

11 An Efficient Index for Large Sets of Continuous Queries

Figure 11.42 shows the matching times for workloads with CHI_SQUARED1 dis-
tributed interval sizes. Note that the distribution CHI_SQUARED1 is a special case
being identical to the exponential distribution. Almost all intervals were of tiny size
in this experiment. The previous experiments showed that the interval split technique
is the most effective optimization technique of the BE+-tree. But because there were
almost all intervals tiny, they got not stuck very often and, thus, interval splits were
neither possible nor necessary very often. The BE-tree benefited from the tiny inter-
vals and its graph comes close to the graph of the BE+-tree therefore. However, the
BE+-tree still outperformed the BE-tree in this disadvantageous setup.

25k 50k 100k 200k

0.
0

0.
1

0.
2

0.
3

0.
4

BE−tree
BE+−tree

Total Number of Input Filter EPAs

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.43: Effect of BETA1 distributed interval positions

25k 50k 100k 200k

0.
00

0.
05

0.
10

0.
15

BE−tree
BE+−tree

Total Number of Input Filter EPAs

M
ill

is
ec

on
ds

 /
E

ve
nt

Figure 11.44: Effect of CHI_SQUARED1 distributed interval positions

152

11.9 Related Work

The last two figures plot the matching times for workloads in which the positions
of intervals were generated according to other probability distributions. Figure 11.43
gives the results of the setup with BETA1 distributed interval positions. Here, there
is nothing new to discuss. Figure 11.44 shows the matching times of the setup with
CHI_SQUARED1 distributed interval positions. In this setup, almost all intervals were
located at the left border of the domain. This particular setup was the one among all
tested setups for that the difference between the BE+-tree and BE-tree was smallest.
At a closer look, the original BE-tree took full advantage of the CHI_SQUARED1 dis-
tributed intervals. Because almost all intervals where at the left border of the domain
and had a size of at most 25 % of the domain size, they did not get stuck at the top
levels in the case of the BE-tree. However, the BE+-tree still outperformed the BE-tree.
For 200k filter EPAs the BE+-tree achieved a 75 % faster matching time.

The benchmarks proved that the BE+-tree achieves a substantially better matching
performance than the BE-tree in virtually every situation. Applications with no or
infrequent index updates and very high data rates should always prefer the BE+-tree
therefore. Note that we used our recommended values of parameters belonging to the
interval split technique in all benchmarks. The BE-tree has only two parameters for
fine-tuning that are also parameters of the BE+tree. But the BE+-tree offers several
more options for further tuning its performance according to a specific workload.

11.9 Related Work

Of course, previous work on BE-tree [SJ11, SJ13] and GESS [DS01] is related to the
BE+-tree. But because BE-tree and GESS already have been presented and discussed
throughout this chapter, they are excluded from this section. Instead, we discuss
other important indexing approaches. Note that those were not considered in our
benchmarks, because already the BE-tree is superior to all approaches proposed so
far. The following approaches are not competitive in at least one important category
and not discussed in detail therefore. The count-based index Propagation [Fab01] is
designed for event matching in publish/subscribe systems. However, this approach
does not support multi-valued predicates that restrict an attribute to multiple possible
non-contiguous values. This low expressiveness is unacceptable for many of today’s
applications. The tree-based index structures for ranked publish/subscribe systems
proposed in [Mac08] do scale very poorly with the total number of attributes. But
scalability of an index is of utmost importance for most applications.

153

11 An Efficient Index for Large Sets of Continuous Queries

SIFT. The work presented in [YG94] introduces and discusses several approaches,
called SIFT methods in the following, on basis of the inverted list data structure [ZM06]
for matching profiles submitted to a document database against incoming documents.
This work laid the foundation for subsequent work done in the area of event match-
ing and is mentioned here therefore. The presented approaches comprise count-based
methods as well as tree-based methods. All SIFT methods only support equality predi-
cates (and via an extension also negation predicates), which is sufficient for document
matching. However, for event matching also the efficient support of multi-valued
predicates (including range predciates) is very important. This shortcoming of the
SIFT methods is addressed and fixed by k-index [Wha09].

K-Index. The index k-index [Wha09] is static, supports multi-valued predicates, and
is based on the inverted list data structure [ZM06]. However, k-index only supports
single-valued predicates natively. A multi-valued predicate must be translated into a
set that contains a corresponding single-valued predicate for each value of the multi-
valued predicate. This is adequate only if there are very few values. But for attributes
with high cardinality domains (e.g., all 32-bit integer numbers) as they are present in
EP applications, range predicates cannot be supported efficiently. To overcome this
problem, k-index proposes to organize attribute domains in hierarchies of different
granularities. However, this proposal is not specified in detail. As an additional fea-
ture, k-index also allows to find and return only the top-k matching Boolean expres-
sions for an incoming data item according to some scoring function [Mac08].

Gryphon. The static index presented in [Agu99] and developed for the publish/sub-
scribe system Gryphon [Ban99] is a tree data structure. Actually, the Gryphon index
is dynamic and created by inserting subscriptions one another. Every subscription is
fully described by a path in the corresponding tree based on its predicates. Each tree
node is associated with an attribute and a predicate type. On basis of the different
values demanded by the corresponding predicate instances, a tree node points to dif-
ferent child nodes. All this is identical to the Esper index. For subscriptions that do
not restrict a specific attribute there are catch-all edges to the respective next tree lev-
els. At the end of a path, a corresponding subscription is stored in a leaf node. After
the dynamic creation of a Gryphon tree for a set of subscriptions, several optimiza-
tion techniques that prevent the insertion of additional subscriptions are performed.
In contrast to the BE+-tree, an a priori knowledge of all subscriptions is not directly
exploited and there is no efficient bulk loading technique provided.

154

11.9 Related Work

Esper Index. The SPE Esper [Esp] has its own implementation of a dynamic query
index. All observations described here are extracted from the source code of version
5.0.0. As in our implementation, Esper optimizes filter conditions through rewriting.
The Esper index consists of so-called filter handle set nodes (FHSN) that are organized
in a tree. Each path in that tree represents a set of indexed filter conditions. In terms
of BE-tree, every FHSN is a leaf, a partition and a cluster node at the same time. It can
store any number of filter conditions. There is no maximum capacity. Furthermore,
there can be any number of partitions within a FHSN. Each partition is associated
with an attribute. But in contrast to BE-tree and just as Gryphon, partitions are also
associated with a certain type of predicate. For example, if a set of filter conditions has
= predicates as well as > predicates on a certain attribute defined, then there are two
separate partitions. One partition contains all filter conditions having a = predicate on
that attribute, the other partition contains those with a > predicate on it. Partitions are
called index entries and organized differently in comparison to the BE-tree. They route
on basis of the values demanded by all corresponding predicates to different FHSNs
at the next level. While in the case of the BE-tree the clustering is always done via
a grid index for intervals, the Esper index selects an appropriate Java data structure
depending on the predicate type. For instance, an index entry is a hash map for =

predicates and a tree map for > predicates. Note that the Esper index is similar to
the (dynamic) Gryphon index that is clearly outperformed by the BE-tree [SJ11, SJ13].
Because Esper was not considered in any evaluation of query indexes yet, we ran some
of our benchmarks using Esper. However, in every benchmark both the BE-tree and
the BE+-tree were very significantly superior to the Esper index.

Summary

This chapter presents the BE+-tree, a novel index structure for large sets of contin-
uous queries. It is based on the BE-tree which is the most efficient query index so
far. The BE+-tree extends the BE-tree by several optimization techniques that are in-
tegrated into a bulk loading method for BE-trees. First, due to bulk loading a globally
optimal partitioning (according to some scoring function) can be achieved. Second,
attribute domains are reduced to the range that is actually used by the filter condi-
tions of all CQs. Third, through the fixed grid structure used by the BE-tree to index
predicates in the form of intervals, it is possible that intervals get stuck at the upper
levels. The BE+-tree handles stuck intervals by splitting them so that the resulting
parts can be pushed down to lower levels. An experimental evaluation shows that

155

11 An Efficient Index for Large Sets of Continuous Queries

all proposed optimization techniques have a strong potential to improve the overall
performance. Moreover, BE+-trees can be created noticeably faster from scratch than
BE-trees because of the bulk loading approach. The disadvantages of the BE+-tree are
an increased memory consumption caused by interval splits and the loss of the dy-
namic property. The former might not be relevant since the sizes of main memory are
high today. But if it does, several parameters allow to control the required additional
memory while still getting a significantly improved performance. The latter can be
compensated in many applications by periodically recreating the query index.

156

12
Efficient Aggregation over Event

Streams with Time-Interval

Semantics

Outline
12.1 Introduction . 158

12.2 Standard Implementation . 158

12.3 Tree-Based Implementation . 162

12.4 Evaluation . 175

12.5 Related Work . 181

157

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

12.1 Introduction

Aggregation is important for almost every kind of data analytics and, thus, has gained
much attention in the past. Different processing paradigms have different require-
ments and need tailor-made approaches to aggregation therefore. In the stream pro-
cessing paradigm, the aggregation operator must support the concept of windows
and should continuously update its output as efficiently as possible with regard to
the high performance demands of applications. In the particular case of a data model
with time-interval semantics as it is used in our implementation of JEPC, the design
and implementation of the aggregation operator is more complicated and operators
for data models with time-instant semantics cannot be taken over. By now, there has
been proposed only one appropriate implementation so far. Unfortunately, this im-
plementation scales linearly with the size of the operator state. In this chapter, we
present an alternative implementation on basis of balanced trees, named Agg-2-3-tree,
that scales logarithmically with the size of the operator state. An experimental evalu-
ation confirms the significantly better performance of the Agg-2-3-tree.

The outline of this chapter is as follows. At first, we present the standard imple-
mentation of the aggregation operator for event streams with time-interval semantics.
This is not only for demonstrating its shortcomings, but also for explaining the princi-
ples of windowed aggregation over event streams with time-interval semantics. Then,
we introduce the Agg-2-3-tree which is a 2-3-tree augmented with the segment tree.
Hereafter, we present experiments that examined its performance in comparison to
the standard implementation. Finally, related work is discussed.

12.2 Standard Implementation

The snapshot-reducible data stream algebra [KS09] on which JEPC is based also comes
with a default implementation that has been adopted by several systems which im-
plement this algebra (e.g., PIPES [KS04], Odysseus [App12]). Algorithm 12 shows the
proposed implementation of the aggregation operator. Note that the state of the ag-
gregation operator does not consist of events of the input event stream as in the case
of other stateful operators (e.g., join, union, difference). Instead, so-called partial aggre-
gates that are also events with time-interval semantics are kept. For each point in time
that is covered by the current state of the aggregation operator there is exactly one
partial aggregate valid. This requires that within the state of the aggregation operator
all partial aggregates have disjoint time intervals and that there are no gaps between

158

12.2 Standard Implementation

Algorithm 12: SCALARAGGREGATION(Sin, finit, fmerge, feval)

Input: Stream: Sin, Functions: finit, fmerge, feval

Output: Stream: Sout

1 SweepArea sa← NEWSWEEPAREA(≤ts , [ts : te) ∩ [t̂s : t̂e) 6= ∅, ts ≥ t̂e);
2 for event := (p, [ts : te))←↩ Sin do
3 Iterator quali f ies← sa.QUERY(event);
4 if quali f ies = ∅ then
5 sa.INSERT((finit(p), [ts : te)));

6 else
7 Timestamp lastte ← ts;
8 while quali f ies.HASNEXT() do
9 Element (p̂, [t̂s, t̂e))← quali f ies.NEXT();

10 quali f ies.REMOVE();
11 if t̂s < ts then
12 sa.INSERT((p̂, [t̂s, ts)));
13 if te < t̂e then
14 sa.INSERT((fmerge(p̂, p), [ts : te) ∩ [t̂s : t̂e)));
15 sa.INSERT((p̂, [te : t̂e)));

16 else
17 sa.INSERT((fmerge(p̂, p), [ts : t̂e)));

18 else
19 if [t̂s : t̂e) = [ts : te) ∩ [t̂s : t̂e) then
20 sa.INSERT((fmerge(p̂, p), [t̂s : t̂e)));

21 else
22 sa.INSERT((fmerge(p̂, p), [t̂s : te)));
23 sa.INSERT((p̂, [te : t̂e)));

24 lastte ← t̂e;

25 if lastte < te then
26 sa.INSERT((finit(p), [lastte : te)));

27 Iterator results← sa.EXTRACTELEMENTS(event);
28 while results.HASNEXT() do
29 Element (p̂, [t̂s, t̂e))← results.NEXT();
30 (feval(p̂), [t̂s : t̂e)) ↪→ Sout;

159

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

the time intervals of two adjacent partial aggregates. The payload of a partial aggre-
gate contains all information that is necessary for the computation of final aggregates
and, thus, depends on the specific aggregate function being computed. Aggregate
functions are described by three functions finit, fmerge and feval [LWZ04]. While finit(p)
is for starting a new partial aggregate based on the payload p of some input event,
fmerge(a, p) is for updating the payload of an existing partial aggregate a based on the
payload p of an input event. The function feval(a) transforms the payload of a partial
aggregate a into the payload of a final aggregate. For example, the computation of
the average value of a numeric event attribute attr can be achieved by modeling the
payload of a partial aggregate as a pair (s, c) where s is the sum of any number of
numeric values and c is a counter that gives the total number of values the sum has
been computed for. Then, the aggregation function can be defined as follows [KS09]:

finit(p) := (p.attr, 1)

fmerge((s, c), p) := (s + p.attr, c + 1)

feval((s, c)) := s/c

Whenever a new partial aggregate is started by an input event, the sum s is set to the
value of the corresponding event attribute attr and the counter c is set to 1. On every
update of a partial aggregate by an input event, the value of the corresponding event
attribute attr is added to the sum s and the counter c is incremented. To obtain the
average value from a partial aggregate, the sum must be divided by the counter.

Algorithm 12 uses a SweepArea (see Section 8.3.1 on page 69) to keep all partial
aggregates that can still be affected by future events. This SweepArea is configured
as follows (line 1). All partial aggregates of the SweepArea returned by ITERATOR

are ordered by start timestamps (≤ts). For a given reference event, QUERY returns all
partial aggregates with a time interval that intersects the time interval of the reference
event ([ts : te) ∩ [t̂s : t̂e) 6= ∅). The method EXTRACTELEMENTS gets and removes all
partial aggregates with an end timestamp less than or equal to the start timestamp of
a given reference event (ts ≥ t̂e). Those partial aggregates cannot be affected by future
events anymore and are safe to be extracted, evaluated and reported. Partial aggre-
gates are created and updated on arrival of new events. All existing partial aggregates
that temporally intersect with an incoming event must be updated and are obtained
therefore (line 3). If there are no partial aggregates to update, the event starts a new
partial aggregate (lines 4–5). Otherwise, all partial aggregates that must be updated
are iterated. Each of those partial aggregates is removed from the SweepArea (line 10)

160

12.2 Standard Implementation

and one, two or three partial aggregates are inserted in return (lines 11–26). The total
number of partial aggregates that are inserted depends on the relationship between
the intersecting time intervals. If the time interval of the event starts after the time
interval of the partial aggregate being updated (t̂s < ts), a partial aggregate having
the original payload and the time interval [t̂s : ts) is inserted into the SweepArea. Sim-
ilarly, a partial aggregate having the original payload and the time interval [te : t̂e)

is inserted into the SweepArea if the time interval of the event ends before the time
interval of the partial aggregate being updated (te < t̂e). For the range of time a partial
aggregate is covered by the event a new partial aggregate is inserted. The payload of
that partial aggregate is created by applying fmerge to the original payload and the pay-
load of the event. Lastly, an event may cover a range of time which is not covered by
any partial aggregate of the SweepArea. For this range of time a new partial aggregate
must be initialized (line 26). After all partial aggregates of the SweepArea have been
updated, those which cannot be affected by future events anymore are transformed
into final aggregates and reported (lines 27–30).

The standard implementation uses an implementation of the SweepArea that is
based on an ordered list, because the iterators returned by the methods QUERY and
EXTRACTELELMENTS must output partial aggregates ordered by start timestamps
[Krä07, KS09]. Since insertion into an ordered list has the time complexity of O(N)

where N is the size of the list, the standard implementation takes linear time. As
a consequence, the standard implementation scales poorly and mid-sized as well as
large operator states result in insufficient performance. Up to now, there has not been
proposed a better implementation yet.

Very often aggregation is used in combination with grouping. The standard imple-
mentation efficiently supports grouping as follows (a more detailed description and
pseudo code can be found in [Krä07]). Each active group gets its own SweepArea.
Every incoming event updates only the partial aggregates of its associated group. If
an incoming event lets time progress, each active group might contain expired par-
tial aggregates. But instead of searching every single active group for expired partial
aggregates, all active groups are ordered by the start timestamps of their first partial
aggregates using a min-priority queue. Thereby, all groups having a first partial ag-
gregate whose start timestamp is less than the current point in time can be efficiently
determined. For each of those groups, all expired partial aggregates are extracted and
transformed into final aggregates. Because every group has its own clock, all final
aggregates are ordered using another min-priority queue before they are put into the
output stream of the aggregation operator.

161

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

12.3 Tree-Based Implementation

As an alternative to the standard implementation of the aggregation operator, we
present an implementation that utilizes a balanced tree data structure instead of an
ordered list for maintaining partial aggregates. Within the tree data structure partial
aggregates are arranged in the form of a hierarchy. Of course, this requires to delay
some merges of partial aggregates with incoming events and partial aggregates with
each other, respectively.

12.3.1 The 2-3-Tree

The 2-3-tree is a special case of the B-tree [BM72, Com79] and was introduced unpub-
lished in 1970 [Cor09]. Because there is no source that gives a commonly accepted
definition of 2-3-trees, there can be found many and slightly different definitions in
literature. Throughout this chapter, we use the following definition of 2-3-trees.

Definition 11 (2-3-Tree). The 2-3-tree is a search tree data structure. Every leaf node con-
tains exactly one data item and one unique key. All leaf nodes are at the same level and totally
ordered according to their keys. Every internal node including the root node has either two
(left and right) or three child nodes (left, middle and right) and contains exactly one key but no
data items. The key of an internal node is the maximum key in the subtree rooted by it.

According to Definition 11, 2-3-trees inherently limit the number of children per inter-
nal node to two to three. This is in contrast to B-trees which allow user-defined limits.
As a consequence, 2-3-trees are not widely branched and, thus, well-suited for main
memory. Because all leaf nodes are at the same level, a 2-3-tree is always balanced and
its height grows logarithmically with the total number of stored data items.

Theorem 4. The height h of a 2-3-tree storing N data items is at most log2 N.

Proof. A 2-3-tree is always balanced and each of its internal nodes has at least two child
nodes. Then N ≥ 2h holds for every 2-3-tree. This is equivalent to h ≤ log2 N.

Because of Theorem 4, all operations that traverse only a single path in the 2-3-tree can
be done in logarithmic time. In particular, all basic operations (i.e., search, insert, and
delete) have a time complexity of O(log N). As an example, Algorithm 13 shows the
search operation that requires the root node of a 2-3-tree and the key being looked up.
The algorithm visits exactly one node per level until it reaches a leaf node. At each
internal node, the relationship between the search key and the keys of the child nodes
clearly determines which child node to visit next.

162

12.3 Tree-Based Implementation

Algorithm 13: 23TREESEARCH(node, key)
Input: 2-3-Tree Node: node, Key: key
Output: Data Item: dataItem

1 if ISLEAF(node.le f tChild) then
2 if node.le f tChild.key = key then
3 return node.le f tChild.dataItem;

4 else if node.middleChild 6= NULL and node.middleChild.key = key then
5 return node.middleChild.dataItem;

6 else if node.rightChild.key = key then
7 return node.rightChild.dataItem;

8 else
9 if key ≤ node.le f tChild.key then

10 return 23TREESEARCH(node.le f tChild, key);

11 else if node.middleChild 6= NULL and key ≤ node.middleChild.key then
12 return 23TREESEARCH(node.middleChild, key);

13 else if key ≤ node.key then
14 return 23TREESEARCH(node.rightChild, key);

15 return NULL;

The insert and delete operations are also similar to those of the B-tree and therefore
only roughly outlined in the following. At first, the target leaf node of the data item to
insert or to delete is determined by performing a search operation with its key. Then,
the data item is inserted into or deleted from the found leaf node. The insert and delete
operations may lead to underflowing or overflowing internal nodes. Overflows and
underflows are handled via node merges and node splits as in B-trees.

12.3.2 Managing Partial Aggregates in 2-3-Trees

For the purpose of indexing intervals, search trees can be augmented with data struc-
tures such as the interval tree [Ber08, Cor09] or the segment tree [Ber08]. In the follow-
ing, we extend the 2-3-tree by features known from the segment tree. Recall that the
2-3-tree requires a key dimension which can be ordered according to the < relation.
But intervals have no natural total order according to the < relation [All83, Moo79]. In
order to manage partial aggregates in a 2-3-tree, we force adjacent partial aggregates
to have disjoint but meeting time intervals and order them by their end timestamps.

163

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

[xmin : xmax)

[xmin : 9) [9 : 17) [17 : xmax)

[xmin:3) [3:9) [9:12) [12:16) [16:17) [17:21) [21:24) [24:xmax)

Figure 12.1: 2-3-tree managing partial aggregates

We use the following example to describe the general principle in more detail. Let
xmin be any integer number with xmin < 3 and let xmax be any integer number with
xmax > 24. Then, Figure 12.1 shows a valid 2-3-tree that manages partial aggregates.
Each tree node is labeled with the corresponding time interval of its associated partial
aggregate (note that the shown end timestamps are arbitrary and only intended to
illustrate our approach). At first, we focus on the nodes at the leaf level. Here, the
2-3-tree keeps the partial aggregates ordered by their end timestamps, because the
end timestamps are used as keys. Since we require adjacent partial aggregates to have
disjoint but meeting time intervals, the start timestamp of a partial aggregate at the leaf
level is identical to the end timestamp of its preceding partial aggregate. However, the
very first partial aggregate has no preceding partial aggregate. Therefore, we set its
start timestamp to the start timestamp of the very first event. Note that the partial
aggregates at the leaf level (which is, in fact, an ordered list) are organized in the same
way as in the standard implementation. For the time intervals of internal nodes the
end timestamps are already determined by the 2-3-tree (i.e., the end timestamp of an
internal node is identical to the maximum end timestamp in the subtree rooted by it).
We set the start timestamp of an internal node to the minimum start timestamp in the
subtree rooted by it. Then, the time interval of an internal node is the union of the
time intervals of all its child nodes. In particular, the root node directly shows that all
stored partial aggregates are in [xmin : xmax). This way, every internal tree level has
the same properties as the leaf level (i.e., adjacent time intervals are disjoint but meet
and all partial aggregates at the same level are ordered by their end timestamps).

164

12.3 Tree-Based Implementation

12.3.3 The Agg-2-3-Tree

In the following, we introduce the Agg-2-3-tree. It is a 2-3-tree that manages partial
aggregates as shown in the last section and comes with a set of tailor-made algorithms
for fully supporting windowed aggregation over event streams with time-interval se-
mantics. The data items being stored are the payloads of partial aggregates. In the
Agg-2-3-tree, payloads of partial aggregates are stored in not only the leaf nodes, but
also the internal nodes. As a consequence, there are multiple partial aggregates cov-
ering the same point in time. To get the final aggregate for such a point in time, the
payloads of all covering partial aggregates must be merged before evaluation. Re-
call that in the standard implementation a new event is immediately merged with all
partial aggregates which temporally intersect the event. For the new behavior the
function fmerge must be defined slightly differently than in the standard implementa-
tion. In the case of the Agg-2-3-tree, fmerge(a, a′) combines the payloads of two partial
aggregates a and a′. In addition, the modified function fmerge has a neutral element e.
Whenever the payload of a partial aggregate a is merged with the neutral element, a is
returned unchanged. For ease of presentation, an internal tree node can temporarily
have a fourth child node that is referred to as bu f f erChild. In a correct order of child
nodes, bu f f erChild is always the rightmost child node.

12.3.3.1 Auxiliary Operations

We created for some tasks being performed by the basic operations of the Agg-2-3-tree
auxiliary operations that are presented in the following. Algorithm 14 is used to add
an arbitrary node node2 to an internal node of an existing Agg-2-3-tree node1 as a
child node. If node1 has only two child nodes, then node2 can be simply added to
node1 as a regular child node (lines 2–3). Otherwise, node2 must be added temporarily
to node1 as a fourth child node (line 5). In every case, it is important to order all child
nodes according to their keys (line 6). The algorithm AGG23TREEORDERNODE is not
presented since it is a trivial ordering task. If the buffer has been used (line 7), node1
overflows and must be split. Therefore, a new node node′ that takes over the two
rightmost child nodes of node1 is created (lines 8–12). In case node1 is the root node, a
new root node must be created (i.e., the tree grows by one level). The new root node
gets node1 and node1′ as child nodes as well as the data item of node1, while the data
items of node1 and node1′ are set to the neutral element. If node1 is not the root node,
then node1′ gets the same data item as node1 and is added to the parent node of node1
by recursively calling AGG23TREEADDNODE.

165

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

Algorithm 14: AGG23TREEADDNODE(node1, node2)
Input: Agg-2-3-Tree Node: node1, node2

1 node2.parentNode← node1;
2 if node1.middleChild = NULL then
3 node1.middleChild← node2;

4 else
5 node1.bu f f erChild← node2;

6 AGG23TREEORDERNODE(node1);
7 if node1.bu f f erChild 6= NULL then
8 Agg-2-3-Tree Node node1′ ← NEWNODE({node1.rightChild, node1.bu f f erChild});
9 node1.rightChild← node1.middleChild;

10 node1.bu f f erChild← NULL;
11 node1.middleChild← NULL;
12 node1.key← node1.rightChild.key;
13 if node1.parentNode = NULL then
14 Agg-2-3-Tree Node root← NEWNODE({node1, node1′});
15 root.dataItem← node1.dataItem;
16 node1.dataItem← e; node1′.dataItem← e;

17 else
18 node1′.dataItem← node1.dataItem;
19 AGG23TREEADDNODE(node1.parentNode, node1′);

Algorithm 15: AGG23TREEMERGEAGGREGATES(node)
Input: Agg-2-3-Tree Node: node

1 node.le f tChild.dataItem← fmerge(node.le f tChild.dataItem, node.dataItem);
2 if node.middleChild 6= NULL then
3 node.middleChild.dataItem← fmerge(node.middleChild.dataItem, node.dataItem);

4 node.rightChild.dataItem← fmerge(node.rightChild.dataItem, node.dataItem);
5 node.dataItem← e;

In certain situations, it is necessary for reasons of correctness to push down the pay-
load of a partial aggregate before changing its key. Algorithm 15 shows the procedure
that is for pushing down the payload of a partial aggregate to the next level. The al-
gorithm requires an internal node as argument and merges the data item of each of its
child nodes with its data item. Afterwards, the data item of the given node is set to
the neutral element e in order to eliminate the content.

166

12.3 Tree-Based Implementation

Algorithm 16: AGG23TREEGETLEFTMOSTLEAFNODE(node)
Input: Agg-2-3-Tree Node: node
Output: Agg-2-3-Tree Node: le f tmostLea f Node

1 Agg-2-3-Tree Node le f tmostLea f Node← node;
2 while not ISLEAF(le f tmostLea f Node) do
3 le f tmostLea f Node← le f tmostLea f Node.le f tChild;

4 return le f tmostLea f Node;

Algorithm 16 can be used to obtain the leftmost leaf node in a (sub-)tree. The leftmost
leaf node in an entire Agg-2-3-tree is special, because it represents the first partial
aggregate within the state of the aggregation operator. Starting at the root node of a
(sub-)tree node, the algorithm traverses the leftmost path until it reaches a leaf node.
This leaf node is the leftmost one and returned therefore.

12.3.3.2 Basic Operations

The next paragraphs present the basic operations of the Agg-2-3-tree. We start with
the insert operation that is shown in Algorithm 17. Because Agg-2-3-trees can only
handle partial aggregates, a new event is directly transformed into a partial aggre-
gate whose payload is derived via finit from the payload of the new event and whose
key is set to the end timestamp of the new event. Then, this partial aggregate is put
into a new node being inserted in place of the event (line 1). The first node being
inserted starts a new Agg-2-3-tree (line 2), while the insertion of a new node into an
existing Agg-2-3-tree is more complex. In our approach, an Agg-2-3-tree must have a
certain property the insert operation relies on. The insert operation requires the start
timestamp of the first partial aggregate xmin (see Figure 12.1) of an Agg-2-3-tree to be
identical to the start timestamp of a new event. Note that this property is always en-
sured by the basic operations of the Agg-2-3-tree. Depending on the key of the node
being inserted there are three different cases. The key of the node being inserted can
be less than, equal to or greater than the maximum key xmax (see Figure 12.1) in the
entire Agg-2-3-tree. If the keys are identical to each other, then the time interval of the
node being inserted is the union of the time intervals of all stored partial aggregates.
This means that all stored partial aggregates must be updated. Therefore, the node to
insert is simply merged with the root node (line 3). The remaining two cases require
each a differentiation whether the tree has only one level or more than one level. In
general, an Agg-2-3-tree keeps a large set of partial aggregates and has multiple levels

167

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

Algorithm 17: AGG23TREEINSERT(root, event)
Input: Agg-2-3-Tree Node: root, Event: event

1 Agg-2-3-Tree Node node← NEWAGG23TREENODE(finit(event.p), event.te);
2 if root = NULL then Start new Agg-2-3-Tree with node as root node;
3 else if root.key = node.key then root.dataItem← fmerge(root.dataItem, node.dataItem);
4 else if ISLEAF(root) then
5 Agg-2-3-Tree Node node′ ← NEWAGG23TREENODE(e);
6 if root.key < node.key then
7 AGG23TREEADDNODE(node, root);
8 node′.key← node.key;
9 AGG23TREEADDNODE(node, node′);

10 else
11 AGG23TREEADDNODE(root, node);
12 node′.key← root.key;
13 AGG23TREEADDNODE(root, node′);

14 else
15 if root.key < node.key then
16 Agg-2-3-Tree Node rightPathNode← root;
17 while not ISLEAF(rightPathNode) do
18 AGG23TREEMERGEAGGREGATES(rightPathNode);
19 rightPathNode.key← node.key;
20 rightPathNode← rightPathNode.rightChild;

21 Agg-2-3-Tree Node node′ ← NEWAGG23TREENODE(e, node.key);
22 AGG23TREEADDNODE(rightPathNode.parentNode, node′);
23 ROOTNODE().dataItem← fmerge(ROOTNODE().dataItem, node.dataItem);

24 else
25 Agg-2-3-Tree Node node′ ← root; Bool run← TRUE;
26 while run = TRUE do
27 foreach child ∈ < node′.le f tChild, node′.middleChild, node′.rightChild > do
28 run← FALSE;
29 if child.key ≤ node.key then
30 child.dataItem← fmerge(child.dataItem, node.dataItem);
31 if child.key = node.key then return ;

32 else if ISLEAF(child) then
33 node.dataItem← fmerge(child.dataItem, node.dataItem);
34 AGG23TREEADDNODE(node′, node); return;

35 else
36 node′ ← child; run← TRUE; break;

168

12.3 Tree-Based Implementation

a) Tree expansion b) Subtree update

xmin xmax

event.te

xmin

event.te

xmax

Figure 12.2: Agg-2-3-tree insertion

therefore. So, we discuss this case first. If the key of the node being inserted exceeds
xmax, the Agg-2-3-tree is expanded at the right hand side and all partial aggregates are
updated (see Figure 12.2a and lines 15–23). The tree expansion is done by traversing
the rightmost path down to the rightmost node at the leaf level. While on its way
down, the algorithm pushes down the payloads of all partial aggregates and updates
the key of every visited internal node. At the leaf level, a new node that has the neu-
tral element as data item and that takes over the key of the node being inserted is
added. Finally, all partial aggregates are updated by merging the node being inserted
with the root node (ROOTNODE simply gets the current root node). In the last case
to discuss, the key of the node being inserted ends before xmax so that only a part of
all partial aggregates must be updated. All affected partial aggregates are located in
the subtree that covers a range starting at xmin and ending at some point between xmin

and xmax (see Figure 12.2b). Therefore, the algorithm updates top-down all affected
partial aggregates (lines 24–36). The node being inserted may have a key that is equal
to the key of a visited node. Then, the update terminates at this point (line 31). But
if the node to insert has a key that is exceeded by the key of the rightmost affected
node at the leaf level, a new node is created at the leaf level for the range of time that
is covered by both of them (line 34). In case that the Agg-2-3-tree consists only of its
root node, tree expansion and subtree update cannot be performed. Instead of the
tree expansion, the node being inserted simply becomes the new root node having the
former root node as left child node and a new node keeping the neutral element as
right child node (lines 6–9). The subtree update is replaced by a similar procedure.
But here, the existing root node gets the node being inserted as left child node and a
new node keeping the neutral element as right child node (lines 10–13).

169

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

Algorithm 18: AGG23TREEDELETELEFTMOSTLEAF(root, key)
Input: Agg-2-3-Tree Node: root, Key: key

1 if root.key ≤ key then
2 SETROOTNODE(NULL);

3 else
4 Agg-2-3-Tree Node node← AGG23TREEGETLEFTMOSTLEAFNODE(root);
5 if node.key = key then
6 node← node.parentNode;
7 node.le f tChild← NULL;
8 while node.le f tChild = NULL do
9 if node.middleChild 6= NULL then

10 node.le f tChild← node.middleChild;
11 node.middleChild← NULL;
12 return;

13 AGG23TREEMERGEAGGREGATES(node);
14 if node.parentNode = NULL then
15 node.rightChild.parentChild← NULL;
16 SETROOTNODE(node.rightChild);
17 return;

18 else
19 Agg-2-3-Tree Node siblingNode← NULL;
20 if node.parentNode.middleNode 6= NULL then
21 siblingNode← node.parentNode.middleNode;

22 else
23 siblingNode← node.parentNode.rightNode;

24 AGG23TREEMERGEAGGREGATES(siblingNode);
25 if siblingNode.middleChild 6= NULL then
26 AGG23TREEADDNODE(node, siblingNode.le f tChild);

siblingNode.le f tChild← siblingNode.middleChild;
27 siblingNode.middleChild← NULL;
28 return;

29 else
30 AGG23TREEADDNODE(siblingNode, node.rightChild);
31 node.parentNode.le f tChild← NULL;
32 node← node.parentNode;

170

12.3 Tree-Based Implementation

For the delete operation of the Agg-2-3-tree we assume a sliding window behavior
(that, of course, also includes the jumping windows). In particular, we expect par-
tial aggregates to be removed only one another and strictly from the left to the right.
Therefore, the delete operation shown in Algorithm 18 is only for removing the first
partial aggregate (or all partial aggregates at once as a special case). If it is called with
a key greater than the key of the root node, then the entire Agg-2-3-tree is deleted
(line 1). Otherwise, it must be called eventually with the key of the first partial aggre-
gate. During execution of the aggregation operator, the key to delete will always be
the current point in time. Then, the first partial aggregate is removed by the algorithm
if and only if it cannot be longer affected by any event in the future. Because of the
assumption, only the leftmost leaf node is of interest. Therefore, the algorithm gets
that node (line 4) and compares its key to the key given as argument. Only if the keys
are equal, the leftmost leaf node is deleted. This is done by simply removing it from its
parent node (lines 6–7). Obviously, this procedure leads to an invalid Agg-2-3-tree, be-
cause the parent node has no left child node anymore. The following loop (lines 8–32)
fixes this problem recursively in a bottom-up fashion. In the best case, the parent node
has a middle child node besides the right child node. Then, the middle child node can
be taken over as new left child node (lines 9–12). After this little modification the en-
tire Agg-2-3-tree is valid again and the algorithm terminates. Otherwise, the parent
node is underflowing and a local reorganization is necessary. Because the underflow-
ing node currently being processed will be modified in some way or other, its partial
aggregate is pushed down to its child nodes (line 13). If this node is the root node,
then the Agg-2-3 tree shrinks by one level. This is achieved by making its right child
node (the only existing child node) to the new root node (lines 14–17). And if it is not
the root node, then it has a sibling node on the right hand side. Those two nodes have
at least three child nodes in sum and can exchange nodes or can be merged in order to
resolve the underflow. To prepare the following procedure, also the partial aggregate
of the sibling node is pushed down to its chid nodes. If the sibling node has three child
nodes, then its left child node can simply be taken over (lines 25–28). In this case, the
Agg-2-3-tree becomes completely valid again and the algorithm terminates. But if the
sibling node has only two child nodes, a merge operation is performed (lines 29–32).
Therefore, the remaining child node of the underflowing node currently being pro-
cessed is added to its sibling node and the underflowing node is removed from its
parent node afterwards. In this case, the underflow is resolved at the current level but
may be delegated to the parent level. Because of this, the loop starts a new iteration
for the parent node of the former underflowing node.

171

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

Algorithm 19: AGG23TREEAGGREGATIONWITHGROUPING(Sin, finit, fmerge, feval , fgroup)

Input: Stream: Sin, Functions: finit, fmerge, feval , fgroup

Output: Stream: Sout

Data: Map: groupToTree with entries (gID, agg23tree),
groupToOutput with entries (gID, outputEvent),
groupToClock with entries (gID, t),

Heap: timeToGroups with entries (t, groups := {gID1, gID2, . . .}) sorted by t

1 for event := (p, [ts : te))←↩ Sin do
2 Group Identifier groupID← fgroup(event);
3 if groupToClock.GET(groupID) < ts then
4 Timestamp clock; Set groups;
5 repeat
6 if timeToGroups.GETFIRST().t > ts then
7 clock← ts;
8 groups← {groupID}

9 else
10 clock← timeToGroups.GETFIRST().t;
11 groups← timeToGroups.GETFIRST().groups;
12 timeToGroups.REMOVEFIRST();

13 for gID ∈ groups do
14 Agg-2-3-Tree Node root← groupToTree.GET(gID);
15 AGG23TREEGETNEXT(gID, root, clock, FALSE);

16 if clock = ts and group2Output.GET(groupID) = NULL then
17 Agg-2-3-Tree Node root← groupToTree.GET(groupID);
18 AGG23TREEGETNEXT(groupID, root, clock, TRUE);

19 for (gID,outputEvent) ∈ groupToOutput do
20 ADDTOOUTPUTQUEUE(outputEvent);
21 Agg-2-3-Tree Node root← groupToTree.GET(gID);
22 AGG23TREEDELETELEFTMOSTLEAFNODE(root, clock);

23 groupToOutput.CLEAR();

24 until clock = ts;

25 Agg-2-3-Tree Node root← groupToTree.GET(groupID);
26 if root = NULL then
27 root← NEWAGG23TREE(finit, fmerge, feval);
28 groupToTree.PUT((groupID, root));

29 AGG23TREEINSERT(root, event);
30 if timeToGroups.GET(te) = NULL then
31 timeToGroups.ADD((te, {groupID}));

32 else timeToGroups.GET(te).groups.ADD(groupID) ;

172

12.3 Tree-Based Implementation

12.3.3.3 Aggregation Operator

In the following, we present a more efficient implementation of the aggregation op-
erator for event streams with time-interval semantics. Algorithm 12 shows our im-
proved implementation that utilizes the Agg-2-3-tree and already includes the sup-
port of grouping. Exactly as the standard implementation, the algorithm requires the
input event stream and the aggregate functions. In addition, a function fgroup for par-
titioning the input event stream must be given. Then, each active group gets a sepa-
rate Agg-2-3-tree for managing its partial aggregates. The map groupToTree stores for
each group identifier the corresponding instance of the Agg-2-3-tree. Output events
are buffered per group in the map groupToOutput. Since the input event stream is
partitioned, each group has its own clock that is managed in the map groupToClock.
Every new event is inserted into the Agg-2-3-tree of its associated group, while the
Agg-2-3-trees of all other groups are not affected. However, a new event may let time
progress. Assume that time progresses from some point in time now′ to a later point
in time now. Among all active groups, all partial aggregates that expired with respect
to now must be reported in a temporal order. The naïve approach would be to let
time progress from now′ to now by iterating all time instants in-between in a temporal
order. For each of those time instants, all groups are checked whether there is an ex-
pired partial aggregate to report. This naïve approach results in a semantically correct
implementation, but is extraordinarily costly, because there are many false positive
checks performed. For some points in time there are no expired partial aggregates at
all. Checking all active groups for this point in time leads to a number of false positive
checks that grows linearly with the number of active groups. But even if there are
expired partial aggregates for some point in time, there still might be groups without
expired partial aggregates. Therefore, we developed a better approach to grouping
that is much more efficient. In particular, we use an index data structure to check only
points in time for that at least one partial aggregate expired. Moreover, for each of
those time instants we maintain a set that contains the identifiers of all groups which
have an expired partial aggregate.

ti tj now tk tl tm

{gb, gd} {ga, ge} {gd}{gc, gd, ge} {ga}

Figure 12.3: Index for efficient support of grouping

173

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

Figure 12.3 illustrates the index data structure we use to efficiently support grouping.
It shows the timeline and all points in time at that at least one partial aggregate expires
(ti–tm). For each shown point in time there is an associated set keeping the identifiers
of all groups with an expiring partial aggregate. Assume that a new event lets time
progress from any point in time before ti to the point in time now that is marked in
the figure. Then, the index can be queried to find out that at ti the groups gb and gd as
well as at tj the groups ga and ge must be updated. Because a temporal order is impor-
tant, the index timeToGroups is a heap that keeps pairs (t, groups := {gID1, gID2, . . .})
ordered by t. Whenever an event lets time progress, Algorithm 19 utilizes this index
to find, remove and report all expired partial aggregates in a temporal order using an
output queue (lines 5–23). The last iteration is always done for clock set to ts. The
reason is that the associated group of the event may have a first partial aggregate
that is not expired yet. Then, it exceeds the point in time ts and must be split at ts

therefore. The first part with ts as end timestamp gets removed and reported (obvi-
ously, we forcibly created an expired partial aggregate) while the right part becomes
the new first partial aggregate. This also ensures that in the next part of the algorithm
(lines 25–29) the event can be inserted into the corresponding Agg-2-3-tree, because
now the start timestamps of the tree xmin and the event are identical to each other. At
the end, the index must be updated because of the inserted event there is now a group
that has a partial aggregate which will expire at te (lines 30–32).

Algorithm 20: AGG23TREEGETNEXT(groupID, root, key, f orce)
Input: Group Identifier: groupID, Agg-2-3-Tree Node: root, Key: key, Bool: f orce
Data: Functions: fmerge, feval ,

Map: groupToOutput with entries (gID, outputEvent),
groupToClock with entries (gID, t)

1 Agg-2-3-Tree Node node← AGG23TREEGETLEFTMOSTLEAFNODE(root);
2 Timestamp ts ← node.ts;
3 if (node.key > key and f orce = TRUE) or (node.key = key and f orce = FALSE) then
4 Payload p← e;
5 while node 6= NULL do
6 p← fmerge(p, node.dataItem);
7 node← node.parentNode;

8 Event outputEvent← (feval(p), [ts : key));
9 groupToOutput.PUT(groupID, outputEvent);

10 groupToClock.PUT(groupID, key);

174

12.4 Evaluation

The procedure shown in Algorithm 20 creates the next output event for a group and
puts it into groupToOutput. Note that the algorithm has access to the aggregate func-
tions fmerge and feval as well as to the data structures groupToOutput and groupToClock
used by the aggregation. Algorithm 20 can be called in two different modes via the
parameter f orce. In non-forced mode (f orce=FALSE), the first partial aggregate is
checked whether it is expired. If so, it is transformed into a final aggregate by merging
all partial aggregates on the path to it. Otherwise, there is no output created at all.
And in forced mode (f orce=TRUE), the first partial aggregate is transformed into an
output event independent of whether or not it is expired. Because key is used in every
case as the end timestamp of the output event and as the new start timestamp of the
tree, the first partial aggregate is split into two parts if it is not expired yet (line 10).

12.4 Evaluation

This section presents experiments we conducted on a commodity machine with an
i7-2600 CPU, 8 GiB of main memory running 64-bit HotSpot Java VM (1.7.0_13). The
standard implementation was evaluated using PIPES [KS04] and the implementation
based on the Agg-2-3-tree was evaluated using the native EP provider that contains
it as implementation of the aggregation EPA. Events were processed sequentially by
using one thread only. Each experiment included a warm-up phase during which the
operator state was filled up completely before measurements were taken.

12.4.1 Scalability

At first, we examined the performances of both implementations with respect to dif-
ferent sizes of the operator state. The experimental setup comprised the computation
of an average aggregate over all events within a sliding time window of size x time
instants. Each event had three 32-bit integer numbers as payload and events were
pushed as fast as possible. At every point in time there was exactly one event so that
x also gives the total number of events a sliding window permanently contained.

x Standard implementation Agg-2-3-tree

10k 1,237 events/s 209,590 events/s
20k 606 events/s 200,013 events/s
40k 304 events/s 188,513 events/s

Table 12.1: Scalability of different aggregation operator implementations

175

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

1k 10k 20k 30k 40k

0
75

k
15

0k
22

5k
30

0k
37

5k

Standard Implementation
Agg−2−3−Tree

Window Size

E
ve

nt
s

/ S
ec

on
d

Figure 12.4: Effect of window size

Figure 12.4 shows the results for different values of x on the horizontal axis. In terms
of absolute numbers, the implementation based on the Agg-2-3-tree clearly outper-
formed the standard implementation. Its corresponding graph also reveals the loga-
rithmic time complexity of the implementation based on the Agg-2-3-tree. Because the
corresponding graph of the standard implementation very quickly touches the zero
line, Table 12.1 gives the exact measurements for window sizes of 10k, 20k and 30k
time instants. The second column reveals the linear time complexity of the standard
implementation. When the window size was doubled, the maximum event through-
put halved. The third column shows that this was not true for the implementation
based on the Agg-2-3-tree. Since the standard implementation is not able to cope with
mid-sized and large operator states, we further increased the window size only for the
implementation based on the Agg-2-3-tree. Figure 12.5 shows the results for window
sizes ranging from 50k up to 2M time instants. Even in case of large windows the
event throughput was adequate because of the logarithmic time complexity.

12.4.2 Simultaneous Events and Jumping Windows

If any window is applied to simultaneous events or if any jumping window is applied
to any events (note that jumping windows are popular before aggregation), resulting
events may have identical time intervals. The standard implementation benefits from
this in multiple ways. First, an additional event with the same time interval as a previ-
ous event does not result in additional partial aggregates. Its time interval is the union
of the time intervals of the first existing partial aggregates. Because its time interval

176

12.4 Evaluation

does not overlap any existing partial aggregate, no additional partial aggregates must
be added. As a consequence, the size of the operator state does not increase. Second,
an additional event with the same time interval as a previous event does not let time
progress so that no final aggregates must be computed.

In the experiments presented next, the previous experimental setup was changed
as follows. At each point in time the input event stream had N events in total (N was
varied from 1 to 15). The size of the time window was set to 10,000/N. This means
that the aggregate was computed for 10,000 events in each run. But for the reasons
discussed in the last paragraph, the state of the operator consisted of only 10,000/N

50k 500k 1M 1.5M 2M

0
50

k
10

0k
15

0k
20

0k

Agg−2−3−Tree

Window Size

E
ve

nt
s

/ S
ec

on
d

Figure 12.5: Effect of large window sizes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
5k

10
k

15
k

20
k

Standard Implementation

Simultaneous Events

E
ve

nt
s

/ S
ec

on
d

Figure 12.6: Effect of simultaneous events (standard implementation)

177

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
50

0k
1M

1.
5M

2M

Agg−2−3−Tree

Simultaneous Events

E
ve

nt
s

/ S
ec

on
d

Figure 12.7: Effect of simultaneous events (Agg-2-3-tree)

partial aggregates. Figure 12.6 shows the performance of the standard implementa-
tion for different numbers of simultaneous events N on the x-axis. As discussed, the
standard implementation benefited from simultaneous events in a linear fashion. The
size of the state decreased as the number of simultaneous events increased. The shown
graph again confirms the linear time complexity of the standard implementation.

Due to its design, simultaneous events do also not result in additional partial ag-
gregates in the implementation based on the Agg-2-3-tree. And because simultaneous
events do not let time progress, our implementation does not look for expired partial
aggregates in this case. Algorithm 19 explicitly checks whether time has progressed
before expired partial aggregates are searched (line 3). Figure 12.7 shows the results
of the same experiment using the implementation based on the Agg-2-3-tree. Obvi-
ously, also the Agg-2-3-tree benefited from simultaneous events. However, the abso-
lute numbers were significantly higher and just as the linear time complexity of the
standard implementation showed up in this experiment, so also the logarithmic time
complexity of the implementation based on the Agg-2-3-tree showed up.

12.4.3 Grouping

In our final experiments, we studied the effect of grouping. Both the standard imple-
mentation and the implementation based on the Agg-2-3-tree are designed to support
grouping much more efficiently than the corresponding naïve approaches. To avoid
biased results arising from the different time complexities of the implementations, the
experiments were configured in a way such that the sliding time window used by the

178

12.4 Evaluation

aggregation always contained exactly 10k events for every group. Again, the exper-
imental setup comprised the computation of an average aggregate, but this time in
combination with grouping. We partitioned the timeline into segments each covering
one million time instants. For each segment we generated exactly one input event per
group. The sliding time window used by the aggregation was configured to cover
exactly 10k segments. In the first runs of the experiment, the timestamps of all events
of a segment were set to the minimum time instant of their segment. Thus, there were
globally as many simultaneous events per segment as groups. But note that within
each single group there were no simultaneous events at all.

2 125 250

0
2.

5k
5k

7.
5k

10
k

Standard Implementation

Number of Groups

E
ve

nt
s

/ S
ec

on
d

Figure 12.8: Effect of grouping (standard implementation)

2 125 250

0
50

k
10

0k
15

0k

Agg−2−3−Tree

Number of Groups

E
ve

nt
s

/ S
ec

on
d

Figure 12.9: Effect of grouping (Agg-2-3-tree)

179

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

2 125 250

0
2.

5k
5k

7.
5k

10
k

Standard Implementation

Number of Groups

E
ve

nt
s

/ S
ec

on
d

Figure 12.10: Effect of grouping (standard implementation)

Figure 12.8 shows the performance of the standard implementation for different num-
bers of groups. With an increasing number of groups, the throughput decreased
slightly sublinearly. From 2 groups to 125 groups the throughput dropped by 1,033
events/s and from 125 groups to 250 groups it dropped by 947 events/s. The through-
put of the implementation based on the Agg-2-3-tree also decreased slightly sublin-
early (see Figure 12.9). It dropped by 16,873 events/s and by 15,719 events/s respec-
tively. But again, the performance of the implementation based on the Agg-2-3-tree
was significantly better than the performance of the standard implementation.

The last experiment we present had the same setup as the previous experiment.
But this time, all events of a segment were uniformly distributed across their segment.
As a consequence, there were almost no simultaneous events so that virtually every
event let the time progress. Therefore, the effort to create finished aggregates must
have been done per input event rather than per segment as in the previous exper-
iment. Figure 12.10 shows that again the throughput decreased slightly sublinearly
with an increasing number of groups using the standard implementation. However,
the decrease was more sharply in comparison to the previous experiment. In partic-
ular, the throughput dropped by 1,579 events/s and then by another 1,065 events/s.
This was simply due to the fact that there were no simultaneous events which could
have been exploited. Figure 12.11 shows the results for the implementation based on
the Agg-2-3-tree. Here, we observed exactly the same effect. The throughput also de-
creased slightly sublinearly and more sharply in the absence of simultaneous events
(18,321 events/s followed by 15,861 events/s, to be precise).

180

12.5 Related Work

2 125 250

0
50

k
10

0k
15

0k

Agg−2−3−Tree

Number of Groups

E
ve

nt
s

/ S
ec

on
d

Figure 12.11: Effect of grouping (Agg-2-3-tree)

Altogether, our alternative implementation based on the Agg-2-3-tree not only
achieves a much better performance than the standard implementation, but also sup-
ports grouping efficiently. As a pleasant side effect, this allows for efficient duplicate
elimination via the aggregation operator [Lar97]. The impact of the used index can
be determined when we disable it. Then, our alternative implementation must check
for each single time instant that has past all active groups for expired partial aggre-
gates. For instance, a run of the last experiment with only two active groups and the
index disabled resulted in a maximum event throughput of only 14 events per second
because of a very high number of unnecessary checks.

12.5 Related Work

The content of this chapter is related to work done in the areas of temporal database
systems [JS96, Sno92] and data stream processing. Aggregation over tables in a tem-
poral database has the same semantics as the aggregation operator of the snapshot-
reducible data stream algebra. But all proposed approaches are tailor-made for data
being stored on external memory. Moreover, some of the approaches are not incremen-
tal and most of them do not support a sliding window behavior. In the area of data
stream processing, the proposed approaches to aggregation are incremental and sup-
port a sliding window behavior, but rely on a data model with time-instant semantics
and not on the more challenging data model with time-interval semantics.

181

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

12.5.1 Temporal Aggregation in Databases

The aggregation tree and its extension the k-ordered aggregation tree [KS95] were the
first disk-efficient (i.e., each tuple is read only once from disk) approaches to tem-
poral aggregation. Both of them use a tree data structure based on the segment tree
[Ber08] to manage partial aggregates that are updated by processing tuples one an-
other. Tuples should be processed in a random order, because the tree data structure
is not balanced. If tuples are processed in a temporal order, the data structure degen-
erates to a list. In the case of temporally ordered or only slightly disordered tables, the
k-ordered aggregation tree is more memory-efficient. It requires every tuple to be at
most k positions away from its position in a temporal order of the input table. Then,
it is known when a partial aggregate cannot be affected by the remaining tuples any-
more. This allows the use of a garbage collector in order to keep the data structure
small. However, the garbage collector only reduces the needed main memory so that
the time complexity is still O(N2). The aggregation tree inspired subsequent work on
temporal aggregation and was successfully parallelized [Gen99, YK97].

The balanced tree algorithm and the merge-sort aggregation [MLI00] are more ef-
ficient approaches. They are complementary to each other, because the key idea is
to exploit the different characteristics of aggregate functions by using different tech-
niques. The balanced tree algorithm is for computing COUNT, SUM and AVG aggregates.
It requires the set of all timestamps (start timestamps as well as end timestamps) to be
sorted first. Then, all timestamps are iterated in temporal order. For example, COUNT
aggregates are computed by using a single counter variable (SUM and AVG are han-
dled analogous). At every start timestamp the counter is incremented and at every
end timestamp the counter is decremented. Since this approach is dominated by the
sorting of all timestamps, it has a time complexity of O(N log N). The authors pro-
pose to manage the timestamps in a balanced red-black tree as an optimization for
repeated timestamps. Because the balanced tree algorithm is only capable of com-
puting a limited set of standard aggregate functions efficiently, the paper proposes a
merge-sort algorithm for computing MIN and MAX aggregates. However, neither the
balanced tree algorithm nor the merge-sort aggregation perform an incremental com-
putation. Therefore, they are not able to efficiently support a sliding window behavior.
For large databases, the authors further propose the bucket algorithm that partitions
the data along the timeline with respect to memory constraints. Because tuples with
very large time intervals make partitioning difficult, the bucket algorithm uses a so-
called meta array which keeps all those tuples. The bucket algorithm also allows for
parallelization of the balanced tree algorithm and the merge-sort aggregation.

182

12.5 Related Work

The SB-tree [YW03] is a B-tree [BM72] augmented with the segment tree [Ber08] for
managing partial aggregates in a hierarchy. Thus, it is similar to the Agg-2-3-tree. The
properties inherited from the B-tree make the SB-tree balanced and disk-efficient. All
tree nodes have a minimum capacity and a maximum capacity as in the case of the
B-tree. The SB-tree allows for incremental computations. It has been extended in sev-
eral ways by its authors to support a sliding window behavior. The dual SB-tree and
the joint SB-tree support sliding window queries which do not have a fixed window
size. While the former maintains two SB-trees, the latter maintains the same informa-
tion but in a single tree data structure only. Lastly, the MSB-tree is an extension that
stores additional information in a regular SB-tree for efficient support of MIN and MAX

aggregates in sliding window queries. Since the SB-tree is a disk-based data structure,
it is not efficiently applicable in data stream processing.

12.5.2 Sliding Window Aggregation in Stream Processing

Much work done on processing (sliding window) aggregation queries over data
streams is only approximate (e.g., [AM04, BS03]) in order to save time, space, or both.
This work is not discussed, because an EP system must be able to report exact results
for sliding window aggregation queries. Furthermore, proposed approaches which do
not fully support a sliding window behavior are also not discussed (e.g., [Cra03]). The
remaining approaches proposed by the stream processing community are discussed
in the following. Except one of them that only supports a limited set of standard ag-
gregates, all approaches focus on aggregation over event streams with time-instant
semantics. Therefore, the standard implementation that has been already presented
and discussed in detail in Section 12.2 is the only competing approach to sliding win-
dow aggregation over event streams with time-interval semantics.

B-Int [AW04] supports aggregation over event streams with time-instant seman-
tics. This semantics allows for arbitrarily segmenting the input event stream according
to base intervals of different granularities. Each base interval stores the precomputed
aggregation result over all events that are covered by it. A lookup operation requires
only to combine a (minimal) set of base intervals that together cover all events within
the requested range. The work presented in [Tan15] describes a more efficient imple-
mentation that is faster by a constant factor in practice.

Paned windows [Li05] and paired windows [KWF06] also partition the input event
stream in order to summarize events for partial aggregate pre-computation, but limit
the total number of levels to two in order to speed up the insertion of new events. Both
approaches perform well in the special case of jumping but overlapping windows

183

12 Efficient Aggregation over Event Streams with Time-Interval Semantics

with a large jump size. In this case, insert operations are much more frequent than
final aggregate computations. Paned windows partition the input event stream into
equally-sized parts. In contrast, paired windows are more sophisticated, because they
create partitions with respect to the overlap of successive windows and have been
proven to be superior to paned windows. However, for sliding windows both paned
and paired windows degenerate and have a linear time complexity.

The work presented in [Gha07] supports aggregation over event streams on basis
of the positive-negative approach (PNA). In the PNA, a new event is immediately
inserted and valid until a corresponding negative event is inserted. Recall that the
time-interval semantics can be mapped to the PNA and vice versa (see Section 7.2).
The start timestamp of the associated time interval corresponds to the timestamp of
the positive event and the end timestamp corresponds to the timestamp of the nega-
tive event. However, the proposed approach only supports aggregation functions that
are invertible. Therefore, it is not possible to support all standard aggregates.

Summary

In this chapter, we introduce the Agg-2-3-tree, a novel data structure for efficiently
managing partial aggregates. On basis of the Agg-2-3-tree, we propose a novel im-
plementation of the aggregation operator for event streams with time-interval seman-
tics. We present our evaluation in which we compared our proposed implementation
based on the Agg-2-3-tree to the only competing implementation in a series of exper-
iments. Those verified that our novel implementation has a better time complexity,
is superior in terms of absolute performance, supports grouping with the same effi-
ciency, and also takes advantage of events having identical time intervals.

184

13
Conclusions

During the last years, multiple systems for the real-time processing of event streams
have been developed. Because of different roots and the lack of standardization, indi-
vidual systems differ from each other so that the system landscape is highly heteroge-
nous today. This part successfully demonstrated in the form of the design and the
implementation of a prototype that despite the wide range of problems arising from
the heterogeneity middlewares for EP in the sense of ODBC/JDBC for database sys-
tems are still technically feasible. But in contrast to ODBC/JDBC, middlewares for EP
require a substantial richer specification and a higher implementation effort. It must
be defined not only a common API, but also a common data model and a common
query language. Our prototype, the Java Event Processing Connectivity, provides an
expressive query language having a well-founded semantics and already allows the
connectivity to different stream processing engines, to all standard database systems
and to a native implementation of the JEPC specification, which provides among oth-
ers a high-performance query index and a high-performance operator for aggregating
events. Since JEPC overcomes the problem of vendor lock-in, different supported EP
providers can not only be seamlessly interchanged, but also be mixed without any
problems. For instance, this enables every application on top of JEPC to utilize the
provided high-performance query index that ensures good scalability with the num-
ber of queries, while for all other tasks the desired EP provider is used.

185

Part III

Extensions to the Middleware

187

14
Introduction

Outline
14.1 Extending Event Processing Technology . 190

14.2 Remainder of the Part . 191

189

14 Introduction

14.1 Extending Event Processing Technology

This part presents several extensions to state-of-the-art event processing technology
we developed on top of JEPC. The advantage of this approach is that an extension
must be implemented only once and can then be used in combination with every raw
EP provider supported by JEPC. Furthermore, also the semantics and behavior of an
extension does not change when the raw EP provider is exchanged for another one.
The extensions we introduce are specifically designed for the problems and upcoming
challenges of event processing technology described in Chapter 2.

Sequential pattern matching which is the de facto standard approach to event pat-
tern matching in EP does not fully exploit the temporal dimension of events. There-
fore, we propose TPStream, a temporal pattern matcher with time-interval semantics,
and show that temporal pattern matching is not a competing approach to sequential
pattern matching, but a true extension to sequential pattern matching, because tem-
poral pattern matching includes sequential pattern matching as a special case.

Typical EP systems can handle only primitive data types. However, events are of-
ten associated with not only a point in time, but also a location. The growing amount
of mobile devices and real-world sensors will further increase the need to process
spatial event attributes. We show how to extend JEPC in order to process events con-
taining arbitrarily complex spatial data (i.e., spatial operators and spatial predicates
can be used in queries). Our approach is applicable to every type of EPA and allows
traditional EPAs as well as EPAs with spatial capabilities to seamlessly work together
in EPNs. As a concrete example, we apply our approach to TPStream in order to detect
spatiotemporal event patterns besides temporal event patterns.

There are many existing and emerging applications into which the integration
of today’s static EP technology causes problems. We propose dynamic event pro-
cessing as a new paradigm therefore. Dynamic EP comprises two different aspects.
First, we introduce a matchmaker that establishes fully automatically all connec-
tions between the elements of a stream processing application and immediately re-
acts to changes. This makes stream processing applications self-adaptive to varying
sets of data sources, CQs and data sinks. Second, in existing EP systems a query
is not allowed to change at runtime. However, context-sensitive EP applications re-
quire queries that can be quickly adapted when the context changes. We describe
a general approach to quickly and safely updating CQs on-the-fly. Because this ap-
proach requires access to the recent history of event streams, we also present a high-
performance event store for recording and reloading enormous event streams.

190

14.2 Remainder of the Part

Lastly, we present extensions for improving the overall performance of EP applica-
tions built with JEPC. Just as in database systems, a query optimizer is essential
for efficient query execution in event processing. We introduce a query optimizer
for JEPC that takes over powerful rule-based and cost-based optimization techniques
from database systems. Since pattern matching is not part of standard database sys-
tems, there exist no optimization techniques that could be adopted. Therefore, we
propose novel optimization techniques for single pattern matching EPAs as well as
for entire sets of pattern matching EPAs being applied to the same event stream. Be-
cause challenging workloads cannot be handled by a single JEPC instance, we present
a framework that distributes queries across multiple and parallel running JEPC in-
stances. Due to the unification achieved by JEPC, parallel running instances must
not necessarily connect to the same raw EP provider. On the contrary, different types
of EP providers are enabled to work together in federations. Because different raw
EP providers have different strengths and weaknesses, synergies can be exploited in
such federations to achieve a performance that is better than the performance of the
parallelization of just a single type of EP provider. Our framework automatically dis-
tributes queries at the operator level with respect to not only load balancing, but also
the individual strengths and weaknesses of the available types of EP providers.

14.2 Remainder of the Part

The outline of this part is as follows. Chapter 15 presents the temporal pattern matcher
TPStream and shows how to extend JEPC by spatial features. Chapter 16 introduces
the concept of automatic matchmaking in real-time stream processing. Chapter 17
presents the design and implementation of several event stores for JEPC including a
high-performance implementation for archiving enormous event streams on external
storage. Chapter 18 describes our general approach to updating continuous queries
on-the-fly. Chapter 19 shows the design and implementation of the JEPC query op-
timizer. Chapter 20 presents the framework for building parallel and federated JEPC
infrastructures. Chapter 21 concludes this part.

191

15
Temporal and Spatiotemporal

Pattern Matching over Event

Streams

Outline
15.1 Introduction . 194

15.2 ASEQ Operator . 196

15.3 TPStream Operator . 201

15.4 Expressing Sequential Patterns . 209

15.5 Expressing Spatiotemporal Patterns . 213

15.6 Implementation . 215

15.7 Evaluation . 219

15.8 Related Work . 223

193

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

15.1 Introduction

During the last decade, several techniques for the real-time detection of complex
patterns in high-volume event streams have been developed [Bar07, CM10, Dem07,
DIG07, MM09, WTA10, WDR06]. All those techniques utilize the temporal dimension
of event streams in two different ways [MM09, WDR06]. First, a pattern to detect
defines an exact order in which specific events must occur. Second, a time window
within which a pattern must occur completely can be specified. While this kind of
pattern matching is sufficiently expressive in many application domains, there are
also application domains that require more expressiveness [Li11]. In particular, more
options to specify the temporal relationships between events are needed. Therefore,
we present TPStream for detecting complex temporal patterns with interval-based
semantics. Because of the importance of the traditional sequential pattern match-
ing, TPStream supports patterns with point-based semantics as well. Consequently,
TPStream is not a competing approach but a true extension to state-of-the-art event
pattern matching and provides best of both worlds in a seamless manner. Existing
declarative query languages for expressing sequential pattern matching queries must
only be slightly modified to support also temporal pattern matching queries. We show
an implementation of TPStream that respects the important performance requirements
of EP namely high-volume throughput and real-time detection of patterns.

A: Time between 6 - 10 a.m. or time between 2 - 6 p.m.

C: Position not close to position of silverbackPosition

Position

Posit
ion

B: Travelled less than 200 meters

Time
Figure 15.1: Temporal event pattern

Figure 15.1 illustrates a temporal event pattern a research group studying the dynam-
ics in gorilla troops might be interested in. Gorillas form groups, called troops, around
a single silverback that leads the troop [Gor]. But there are several situations in which
gorillas leave their troop. Male gorillas are only accepted in their natal troop up to
a certain age of about 11 years and then emigrate to start their own troop. Also, fe-
male gorillas emigrate from their natal troop to join another troop at around 8 years
of age. Grown male gorillas are banished by the silverback when they try to take over
leadership and ill gorillas are often left behind. A direct observation of a gorilla troop

194

15.1 Introduction

by researchers is time consuming, costly and would disturb the shy gorillas. There-
fore, researchers could decide to attach a small GPS sensor to each gorilla of a single
observed troop and to stay away from the whole home range of the observed troop.
Every sensor sends periodically an event containing a unique identification, the cur-
rent position as well as a timestamp. On basis of this very simple kind of information
the researchers would want to be notified whenever a gorilla has left the troop. There
are different temporal patterns for different kinds of leaving. The temporal pattern
shown in Figure 15.1 specifically defines the situation in which a gorilla has been left
behind after a rest period. Gorilla troops are resting together every midday and ev-
ery night. When not resting, a gorilla troop searches for food within the home range
(event A with time-interval semantics). Gorillas who traveled less than 200 meters in
total during a food period likely collected food only for themselves or are ill (event
B with time-interval semantics). An entire troop of gorillas has to collect much more
food and travels a significant longer distance (at least 400 meters in general). To be
truly sure a gorilla has left the troop or has been left behind, the distance to the silver-
back (as the center of the troop) must become greater than 100 meters at some point
during a food period and is not allowed to become less than 100 meters again until the
food period has ended (event C with time-interval semantics).

Intuitively, a temporal pattern defines temporal constraints (e.g., “overlaps” or
“during”) over a set of symbol events with time-interval semantics. Temporal patterns
are more complex than sequential patterns that define order constraints over a set of
symbol events with time-instant semantics (only “after”, “before” and “at the same
time” are expressible in this case). To support a temporal pattern query such as the
one in the last paragraph, two features must be supported. First, arbitrary temporal
constraints over events with time-interval semantics must be expressible. Considering
the temporal pattern in Figure 15.1, it must be possible to define that event A and event
B start at the same point in time, but event B ends after event A. Additionally, event C
must have its first endpoint somewhere in event B and its second endpoint after the
end of event A. Second, symbol events with time-interval semantics must be derived
from events with time-instant semantics. In Figure 15.1 for instance, sensors are pro-
viding position events attached with a single timestamp only. However, a sequence of
position events implicitly contains the desired symbol events A, B and C. Users must
be able to specify how to derive symbol events from incoming events. Moreover, sym-
bol events with time-interval semantics should be constructed within the responsible
operator in an online manner. Assume for example a gorilla who left its troop changes
its home range and meets the silverback never again or not until a couple of days has

195

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

elapsed. Then, the time interval of event C becomes unbounded or very large and the
second endpoint is never known or only after a couple of days. This would violate the
requirement of EP that patterns are detected in the very moment they occur. However,
to detect the pattern in Figure 15.1 in a timely manner, it is not necessary to know the
second endpoint of event C exactly. As soon as it is known that the second endpoint
of event C is after the second endpoint of event A, the pattern matches and must be
detected. There is currently no method that supports all these features.

In this chapter, we present the design and implementation of the temporal pattern
matching operator TPStream. It has been carefully designed to be not more compli-
cated to use than sequential pattern matching operators, to derive user-defined sym-
bol events with time-interval semantics from incoming events with time-instant se-
mantics in an online fashion, to be able to process high volumes of events, to detect
patterns in real-time, and to be a generalization of sequential pattern matching opera-
tors. Because of the latter point the detection of sequential patterns is also supported,
which makes TPStream a true extension to sequential pattern matching.

Throughout this chapter we use the term point event to refer to an event being valid
at only a single point in time t and the term interval event to refer to an event being
valid at multiple successive points in time ts, . . . , te with te > ts. For an event stream E,
the expression E(i) denotes the i-th event of the stream. As in the case of JEPC and
almost all other pattern matching methods, pattern matching is performed on streams
containing point events only. Also, we assume that event streams are ordered by time.
However, there are approaches to handle out of order streams (e.g. [Li07, Li08, SW04])
which are fully compatible with the operators presented in this chapter so that our
assumption simplifies presentation without restricting applicability in practice. Lastly,
note that interval events are modeled by closed time intervals [ts : te] and that an event
having a time interval with ts = te is called a point event although it is in interval
event representation. As a consequence, a stream of events in interval representation
can consist of both point and interval events. However, if this sharp distinction is not
wanted in a query, it can be disabled (see Section 15.3.3).

15.2 ASEQ Operator

In this section, we discuss sequential pattern matching over point event streams and
introduce the abstract operator ASEQ. The operator ASEQ is only virtual and covers
popular operators in terms of expressiveness and semantics. In comparison to a single
existing operator, ASEQ is designed to be equally or more expressive.

196

15.2 ASEQ Operator

Today’s pattern matching operators detect sequential patterns in the form of a set
of specific point events that must occur in a specific order and within a certain time
window [MM09, WDR06]. Besides this basic functionality, several operators support
extensions such as alternative (event A or event B must occur), conjunction (event A
and event B must occur simultaneously), negation (an event may not occur) or Kleene
closure (an event may occur several times in a row) [Dem07, DIG07, MM09, WTA10].

15.2.1 Symbols and Predicates

A single element of a sequential pattern definition represents a point event having a
certain property and is termed a symbol. The definition of ASEQ symbols is oriented
towards the syntax and meaning of the pattern matching EPA of JEPC.

Definition 12 (ASEQ Symbol). An ASEQ symbol is emitted by point events on basis of a
user-defined condition. Whenever an incoming point event fulfills the condition of an ASEQ
symbol, it emits the associated ASEQ symbol and globally available variables can be set simul-
taneously. The syntax used to define an ASEQ symbol is as follows:

S AS ϕ(E) [DO var1 = E.x, var2 = E.y, . . .]

The symbol S is emitted if and only if the user-defined Boolean-valued function ϕ, referred
to as “ASEQ predicate”, evaluates to TRUE (AS clause). This function is evaluated for each
incoming event of an arbitrary but fixed point event stream E. In the optionally DO clause,
values of attributes (x, y, . . .) of an event that emits S can be assigned to user-defined global
variables (var1, var2, . . .). In the case of multiple symbols being defined on the same event
stream, a single input event may emit multiple different symbols simultaneously.

Variables are used to correlate events. Event correlations are supported by all modern
pattern matching operators and make pattern matching more powerful than regular
expression matching. While some operators support event correlations indirectly via
global variables as ASEQ, others (e.g., SASE [WDR06]) allow to access the payload of
an event that emits a symbol directly via the symbol character. Since both approaches
differ only in syntax, they are totally equivalent. An important parameter of symbol
definitions are predicates which check events for user-defined properties.

Definition 13 (ASEQ Predicate). An ASEQ predicate ϕ : (D × T)∗ ×DV × (D ×
T)N → (B × T)∗ is a Boolean-valued higher-order function that maps every point event
of some stream E ∈ (D × T)∗ with payload domain D and time domain T to a value in
B := {TRUE, FALSE}. Additionally, an ASEQ predicate can access the values of all global
variables denoted by V and all previous events via a function PREV: N→ D×T.

197

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

ASEQ predicates have access to not only the event e ∈ E currently being processed
and the values of all global variables being summarized in the set V, but also previous
events belonging to the stream E. While many existing operators do not support this
functionality, ASEQ predicates have access to any previous event (as it is provided by
Esper [Esp] that implements match recognize queries (MRQ) [Zem07] for example).
In the query language of ASEQ, the function PREV is used as follows:

PREV(i).attr

This notation means that the i-th predecessor of the latest event is accessed and its
value of the attribute attr is obtained.

15.2.2 Sequential Patterns

Well-defined symbols (e.g., A, B and C) can be combined into a sequential search pat-
tern (e.g., ABC). For instance, a typical sequential pattern definition specifies an in-
crease or decrease in a series of numerical values (i.e., a time series). Formally, a
sequential pattern is a regular expression over ASEQ symbols that specifies a (po-
tentially infinite) set of totally ordered symbol sequences. The following grammar
describes all legal ASEQ patterns PASEQ over ASEQ symbols:

PASEQ ← ∅ | S | (S1;S2;S3; . . .) | (S1,S2,S3, . . .)

| ?S | S∗ | S+ | S{n ∈N} | !S | P1
ASEQP2

ASEQ

The empty pattern ∅ as well as a single symbol S are legal patterns (rules 1 and 2).
Multiple symbols can be made alternatives (rule 3). Then, at least one of the symbols
must be emitted at this position in the pattern. Multiple symbols can also be connected
via a conjunction resulting in a pattern that requires all those symbols to be emitted
at this position (rule 4). The question mark operator can be applied to a symbol for
making it optional (rule 5). A symbol can be allowed to be emitted any number of
times in a row by applying the Kleene star operator to it (rule 6). The Kleene plus op-
erator is similar but requires the associated symbol to be emitted at least once (rule 7).
A symbol can be required to be emitted exactly n times in a row by using the exact
count operator (rule 8). The negation operator requires a symbol to be not emitted
at this position (rule 9). Lastly, two ASEQ patterns can be combined into a sequence
requiring the first pattern P1

ASEQ to be followed by the second pattern P2
ASEQ (rule 10).

Of course, the presented grammar is powerful and not fully supported by a single ex-
isting pattern matching operator in general. For example, SASE+ supports the Kleene
plus operator but not the Kleene star operator [DIG07].

198

15.2 ASEQ Operator

15.2.3 Syntax

Listing 15.1 presents the query language of ASEQ that is similar to the query lan-
guages of existing operators for sequential pattern matching. In the FROM clause, one
or more input event streams must be defined. An optional partitioning of the input
event streams can be defined in the PARTITION BY clause. In the DEFINE clause,
all symbols must be defined in the form of a list of symbol definitions. Each symbol
definition must consist of a symbol condition in the form of an ASEQ predicate and
may include the binding of any number of global variables according to Definition 12.
In the PATTERN clause, a sequential search pattern over the defined symbols must be
specified. The size of a time window within the pattern must occur completely can be
defined in the optional WITHIN clause. If no size is defined, ASEQ uses a time win-
dow of infinite size by default. Finally, one or more global variables for composing the
payload of the output events must be given in the RETURN clause.

1 FROM E1, E2, E3, . . .
2 [PARTITION BY Ei .x, Ej.y, . . .]
3 DEFINE SA, SB, SC , . . .
4 PATTERN PASEQ

5 [WITHIN w]

6 RETURN payload of output event

Listing 15.1: ASEQ query language

15.2.4 Semantics

For every match contained in N input event streams E1, E2, . . . , EN the operator ASEQ
contains exactly one event (m, t) in its output event stream:

ASEQ(E1, E2, . . . , EN) := σ({(m1, t1), (m2, t2), . . .})

Each output event (m, t) is produced by exactly one successful match, that is:

(m, t) := ∀i ∈ [1 : N] : ∃E′i ⊆ Ei : isPartition(E′i , Ei)

∧ ∃F : F � getHistory
(⋃

i∈[1:N]

E′i

)
∧ t = max

f∈F
(f .t) ∧ S = map(emit(), F)

∧ m = match(S) ∧m 6= ∅ ∧ t− F(1).t ≤ w

199

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

The first requirement for every match is the existence of a valid partition of each input
event stream. Whether a set of events E′ is a valid partition of an input event stream
E is determined by the Boolean-valued function isPartition. This function remains
abstract for the following reasons. First, partitioning is done differently among differ-
ent existing operators. A default definition of the function is given for TPStream in
Section 15.3.5. Second, some existing operators let users define the function by them-
selves. For example, SASE+ provides different event selection strategies from which
users can chose [DIG07]. Different selection strategies would not be possible if a fixed
partitioning schema was defined in the semantics. The second requirement for every
match is the existence of a substream F of the history of the union of all partitions. A
history of a set of events is an event stream that contains all events in temporal or-
der (payloads are allowed to be from different domains). A substream F of an event
stream E (denoted by �) means that F begins and ends with arbitrary events of E
and includes every event in-between. That is, F is a connected part of E. Then, ev-
ery event of the substream F is replaced by the set of symbols it emits. The set of all
emitted symbols for a given event is provided by the function emit which is applied
via a map-operation to all events. If an event emits no events according to the symbol
definitions, then emit returns the empty symbol �. It indicates that no symbols are
emitted but an event is present. For a stream of sets of symbols S the function match
returns the payload of the output event m in case of a successful match:

match(S) :=

payload o f output event if S matches P

∅ otherwise

Languages for pattern matching over event streams are more powerful than languages
for regular expression matching [Agr08] and have a wide variety among different de-
signs and implementations. To cope with that variety, the function match remains
abstract. On the one hand, some existing operators detect a sequential pattern if the
respective next symbol of a pattern occurs eventually. That is, events that potentially
emit other symbols are allowed to be mixed in (eventually-followed-by semantics). On
the other hand, some existing operators detect a pattern only if the symbols of a pat-
tern occur directly one another. Thus, no other events are allowed to be in-between the
events that emit two adjacent symbols of a pattern (directly-followed-by semantics).
However, if such an operator supports Kleene star, then the eventually-followed-by
semantics can also be achieved. Between these two different semantics, there exist op-
erators such as TESLA [CM10] that allow to define a detection window for adjacent
symbols. That is, a symbol must occur eventually after another symbol but within a

200

15.3 TPStream Operator

user-defined time window (followed-by-within semantics). Because of these different
existing semantics, ASEQ has the function match as a user-defined parameter in order
to be able to implement every of the different proposed semantics. While the payload
of an output event m is given by match, the timestamp is taken over from the last event
of F. Finally, F must fit into a time window with user-defined size w.

ASEQ is defined to potentially report all matches contained in the input. How-
ever, some of its output events could be unwanted. While for some applications such
as stock monitoring it is important to report every match, it is sufficient for a fire de-
tection system to create only one output event for each individual fire [CM10]. There-
fore, some operators provide different strategies users can chose from (e.g., via a SKIP
clause such as in Esper [Esp], MRQ [Zem07], SASE+ [DIG07]). Those strategies can
for example restrict an event to take part in at most one match. This means, the first
correct match in that an event takes part is reported while all following matches in that
the event takes part are not reported. Therefore, ASEQ allows to apply a user-defined
filter σ to prevent correct but unwanted matches from entering the output stream.

The design of ASEQ simply integrates all extensions and semantics that can be
found among popular pattern matching operators in order to cover them all. Note
that a formal proof cannot be given, because many pattern matching operators were
introduced only informally [CM10]. However, for verifying the expressiveness of
TPStream towards sequential patterns it is only important to have a sequential pat-
tern matching operator that is as powerful as possible for comparison reasons.

15.3 TPStream Operator

In this section, we introduce our novel temporal pattern matching operator TPStream
which is a modified version of ASEQ. TPStream differs from ASEQ in the represen-
tations of symbols and patterns, but is designed in such a way that existing query
languages can be easily upgraded to also support temporal pattern matching queries.
A TPStream pattern defines temporal constraints over symbols in time-interval repre-
sentation. By default, TPStream strictly distinguishes between symbols that are point
events and symbols that are interval events.

15.3.1 Temporal predicates

While in ASEQ all emitted symbols are point events, emitted symbols can be point
or interval events in TPStream. The latter can be achieved by replacing the ASEQ
predicate by a so-called temporal predicate in the definition of a symbol.

201

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

Definition 14 (Temporal Predicate). A temporal predicate ψ : (D × T)∗ × Ωϕ →
(B × T × T)∗ is a Boolean-valued higher-order function that takes a point event stream
E ∈ (D×T)∗ and an arbitrary ASEQ predicate ϕ ∈ Ωϕ as input and evaluates to an event
stream where every event is a triple specifying a closed time interval within the output value
b ∈ B of the ASEQ predicate does not change. The exact definition is as follows:

ψ(E, ϕ) :=
{
(b, ts, te) | ∃(p, ts) ∈ E ∧ ∃(p, te) ∈ E

∧ ∀(p, t) ∈ E : (t ∈ [ts : te]⇒ ϕ(p) = b)

∧ TE = { t | (p, t) ∈ E } ∧ ∀(t′s, t′e) ∈ TE ×TE :

[ts : te] ⊂ [t′s : t′e]⇒ ∃(p, t) ∈ E : (t ∈ [t′s : t′e] ∧ ϕ(p) 6= b)

According to Definition 14, a time interval [ts : te] is generated by coalescing the time
instants of consecutive point events that evaluate to the same output value b for a
user-defined ASEQ predicate ϕ. At first, the formula requires the existence of a sub-
stream of E whose point events all evaluate to the same output value for the given
ASEQ predicate. The rest of the formula requires that there is no larger substream of E
having this property. Therefore, all generated time intervals are of maximum size.
Algorithm 21 on page 216 shows the incremental evaluation of temporal predicates.
An advantage of this definition is that user-defined predicates are carried over from
ASEQ. In the syntax of the TPStream query language, only the function TEMP must be
applied to a user-defined ASEQ predicate to make it a temporal predicate.

Consider an event stream E with integer numbers v as payload and an ASEQ pred-
icate ϕ that checks whether v is even (ϕ(E) := v % 2 = 0). Listing 15.2 shows the
FROM clause and the DEFINE clause that defines two symbols X and Y. While X is
defined directly by the user-defined ASEQ predicate ϕ, Y is defined by the temporal
version of ϕ. Table 15.1 shows all emitted X and Y symbols in the second and third
columns for an instance of E given in the first column. Symbol X is emitted every time
when the predicate evaluates to TRUE. In contrast, symbol Y is emitted for each range
of time in which the predicate evaluates always to TRUE.

1 FROM E
2 DEFINE X AS ϕ(E)
3 Y AS TEMP(E,ϕ)

Listing 15.2: Definition of ASEQ predicates and temporal predicates

202

15.3 TPStream Operator

E = (v, t) Emitted X symbols Emitted Y symbols

(20,235) (X,235,235) (Y,235,240)
(18,240) (X,240,240)
(19,245)
(21,250)
(22,255) (X,255,255) (Y,255,265)
(24,260) (X,260,260)
(22,265) (X,265,265)
(19,270)

Table 15.1: Comparison of ASEQ predicates and temporal predicates

Recall that the use of an ASEQ predicate always results in point events. The use of the
temporal version of an ASEQ predicate leads to interval events in general, but it can
also result in point events. This happens when the ASEQ predicate evaluates to TRUE
for some event and to FALSE for its adjacent events. In TPStream, every symbol can
be individually defined by either an ASEQ predicate or a temporal predicate.

The use of a temporal predicate affects the assignment of global variables. In the
case of ASEQ predicates, values of an emitting event can be assigned to variables. But
in the case of temporal predicates, multiple events may take part in the creation of a
single emitted symbol. Only values of the first and last event that created a symbol can
be used to set variables, because only these two events are present in every case. If a
temporal predicate is used to define a symbol, users must specify not only the attribute
to bind, but also an associated event in the DO clause. Therefore, the functions START
and END are provided for selecting the first event and the last event. The following
example presents the binding of variables in the context of temporal predicates.

1 FROM Stream s

2 DEFINE A AS TEMP(s,ϕ1) DO var1 = START(s).x,

3 var2 = START(s).y

4 B AS TEMP(s,ϕ2) DO finished_at = END(s).t

Listing 15.3: Temporal predicates and binding of variables

In Listing 15.3, the values of the event attributes x and y are assigned to the global
variables var1 and var2 whenever symbol A is emitted. For both variables the first
event that starts a symbol A is used. And whenever a symbol B is emitted, the times-
tamp of the last event is assigned to the variable finished_at. In the special case
where a point symbol event is emitted, START and END refer to the same event.

203

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

15.3.2 Temporal Constraints

Since the temporal relationship between two interval events can be more complex
than the relationship between two point events, order constraints according to the <

relation (or to the ≤ relation respectively) as in the case of ASEQ are not sufficient
anymore. Instead, TPStream allows to use temporal constraints to specify the rela-
tionships between symbols. The upper part of Table 15.2 shows all 13 possible re-
lationships between two interval events (known as Allen’s operators [All83]). These
temporal constraints clearly specify for two interval symbol events the exact order of
the timestamps of their corresponding closed time intervals. But instead of defining
temporal constraints via keywords (just as in Allen’s schema [All83]) or in the form
of Boolean expressions over endpoints aka endpoint encoding (just as in ISEQ [Li11]),
we decided to adopt the encoding schema presented in [SG11]. This encoding schema
does not require to remember a large set of keywords or to write long and complex
Boolean expressions. On the contrary, it is a simple, compact and clear visual repre-
sentation of temporal constraints. In this encoding schema, a temporal constraint is
represented by a word of length four over two different characters. The two characters
refer to defined symbols and are used to represent their timestamps. Therefore, each
individual character must occur exactly twice per word. Reading from left to right,
the first occurrence of a character in a word defines the position of the start timestamp
of a symbol event and its second occurrence represents the position of the end times-
tamp of the same symbol event. For example, the temporal constraint ABAB means
that the start timestamp of a symbol event A must be followed by the start timestamp
of a symbol event B, the start timestamp of symbol event B must be followed by the
end timestamp of symbol event A, and the end timestamp of symbol event A must be
followed by the end timestamp of symbol event B. In terms of Allen’s operators this is
equivalent to the “A overlap B” relationship and in endpoint encoding this is equiva-
lent to the Boolean expression (A.ts < B.ts) ∧ (B.ts < A.te) ∧ (A.te < B.te). In addition
to the two characters, dots can be used in words to express equality. For instance, the
word AA.BB means that the end timestamp of A must be equal to the start timestamp
of B (i.e., A.te = B.ts). In contrast to Allen’s operators, we further distinguish between
interval events and point events. In the upper part of Table 15.2, A and B are interval
events. That is, it is always A.ts < A.te and B.ts < B.te. The additional 10 temporal
constraints in the center part of Table 15.2 can be used to express that A or B must be a
point symbol event, and the additional three temporal constraints in the lower part of
Table 15.2 can be used to express that A and B must be point symbol events.

204

15.3 TPStream Operator

Encoding Pictorial Encoding Pictorial Encoding Pictorial

A and B are interval events (Allen’s operators)
AABB ABBA BBAA

A.BAB AA.BB A.BBA

BB.AA BAA.B ABAB

ABA.B BABA A.BA.B

BAAB

A is point event, B is interval event
A.ABB BB.A.A A.A.BB

BBA.A BA.AB

A is interval event, B is point event
B.BAA AA.B.B B.B.AA

AAB.B AB.BA

A and B are point events
A.AB.B B.BA.A A.A.B.B

Table 15.2: Encoding of temporal constraints in TPStream

15.3.3 Temporal Patterns

A temporal constraint (TC) is one of the 26 basic relationships shown in Table 15.2:

TC ← AABB | ABBA | . . . | A.A.B.B

Each TC clearly specifies the two symbols it refers to (determined by the two charac-
ters which are used in the word), the required types (point or interval event) as well
as the exact order of timestamps. However, a single TC for a pair of symbols is insuffi-
cient in many situations. To express also indefinite relationships [NB95] between two
interval events, TPStream allows to combine TCs into a temporal constraint list (TCL):

TCL← ∅ | TC | TC; TCL

Every non-empty TCL is either a single TC or a list of multiple TCs being connected
by logical or-operators (;). All TCs in a TCL must refer to the same two symbols.
Thus, a TCL defines a disjunction of TCs for two symbols and allows for expressing
all relationships between two symbols that can also be expressed in endpoint encod-
ing [Tom96]. A TCL evaluates to TRUE if and only if at least one of its TCs evaluates

205

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

to TRUE. For example, it might be important that some symbol begins before another
symbol while their end timestamps are permitted to be in any order (i.e., the relation-
ship between their end timestamps is indefinite). In the use case of the introductory
section for instance, it is only important that symbol C starts in symbol B. Whether
symbol C ends before, at the same time or after symbol B does not matter. In this
case, all possible TCs in which symbol B starts in symbol C can be combined into
the TCL BCBC;BCCB;BCB.C. Another important situation in which multiple different
TCs must be combined is if it does not matter whether a symbol is an interval event or
a point event. For example, AABB;A.ABB specifies that symbol A is completely before
symbol B independent of its type. In most cases, specifying the relationship between
only two symbols is insufficient. Therefore, TPStream allows to specify a separate TCL
for each pair of defined symbols and to combine them into a temporal pattern (TP):

TP← ∅ | (TCL) | (TCL), TP | !S, TP

A non-empty TP is either a single TCL or a list of multiple TCLs being connected by
logical and-operators (,). For each pair of symbols at most one corresponding TCL can
be contained in a TP. If there is no corresponding TCL for a specific pair of symbols,
then every relationship between the symbols is accepted. A TP evaluates to TRUE if
and only if all of its TCLs evaluate to TRUE. Because TCLs are connected via logical
and-operators in a TP, every relationship between two or more symbol events that
can be expressed in endpoint encoding (which is studied in [NB95] and used in ISEQ
[Li11]) can also be expressed in TPStream. Additionally, TPStream allows to negate
single symbols via the !-operator in a temporal pattern (then, the associated symbol
may not occur). Sometimes, a situation of interest can only be described by multiple
alternative TPs. Therefore, TPs can be combined into a temporal pattern list (TPL):

TPL← ∅ | (TP) | (TP); TPL

Each non-empty TPL is either a single TP or a list of multiple TPs being connected
by logical or-operators (;). A TPL evaluates to TRUE if and only if at least one of its
TPs evaluates to TRUE. Note that it is possible to define invalid TPs and TPLs (e.g.,
A.ts before B.ts and B.ts before C.ts and C.ts before A.ts). For the rest of the chapter we
assume that TPs and TPLs are always well-defined.1

1In practice, usually the query compiler is in charge of checking the validity of pattern definitions.
In the special case of TPStream, the component testing for constraint satisfaction (see Section 15.6) can
easily determine whether a temporal pattern is valid.

206

15.3 TPStream Operator

15.3.4 Syntax

In comparison to ASEQ, TPStream only provides extended functionality for defining
symbols and a new grammar for expressing patterns. Therefore, the overall structure
of the query language can remain the same as shown by Listing 15.4.

1 FROM E1, E2, E3, . . .
2 [PARTITION BY Ei .x, Ej.y, . . .]
3 DEFINE SA, SB, SC , . . .
4 PATTERN TPL
5 [WITHIN w]

6 RETURN payload of output event

Listing 15.4: TPStream query language

The parameters of the FROM, PARTITION BY, WITHIN and RETURN clauses are not
changed at all in the query language of TPSteam. But the query language of TPStream
allows to define a symbol via either a pure ASEQ predicate or a temporal predicate
in the DEFINE clause. In the PATTERN clause of the query language of TPStream, a
TPL must be given instead of an ASEQ pattern. For example, a query for detecting the
temporal pattern shown in Figure 15.1 can be defined as shown in Listing 15.5.

1 FROM Sensors s

2 PARTITION BY s.id

3 DEFINE A AS TEMP(s.t IN [6 a.m. : 10 a.m.] OR s.t IN [2 p.m. : 6 p.m.])

4 DO gorilla = START(s).id,

5 gorilla_pos = START(s).pos

6 B AS TEMP(abs(s.pos-gorilla_pos) < 200)

7 C AS TEMP(abs(s.pos-posSilverback())) > 100)

8 DO time_of_leaving = START(s).t

9 PATTERN A.BAB,(BCBC;BCCB;BCB.C),ACAC

10 WITHIN 6 HOURS

11 RETURN gorilla, time_of_leaving

Listing 15.5: Finding gorillas that left their troop

Assume that the schema of the event stream Sensors used in Listing 15.5 has the
attributes pos keeping the position of a sensor and id keeping its identification. This
stream is partitioned by id, because the pattern must be searched for each monitored
gorilla individually. Symbol A is generated exactly two times per day, because there
are one period ranging from 6 a.m. to 10 a.m. and one period ranging from 2 p.m.
to 6 p.m. every day. The generation is simply triggered by the clock contained in

207

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

Sensors. In the concrete example, symbol B is correlated with symbol A via the
variable gorilla_pos. As long as the current position has a distance less than 200
to the position when A started, B is expanded. In case of C, the current position of the
silverback is obtained via a function posSilverback and compared to the current
position of the sensor. We determine the point in time when the current position has a
distance greater than 100 to the position of the silverback for the first time. This is the
point in time of leaving. Therefore, the timestamp of the first event of C is assigned to
the variable time_of_leaving. The pattern requires symbol B to start with symbol
A but to end after symbol A. Symbol C must start in symbol B, but it does not matter
whether C ends before, at the same time, or after symbol B. The beginning of Cmust be
after the beginning of A and the end of C must be after the end of A. Finally, the pattern
must occur within 6 hours and every detected match leads to a new output event
having the identification of the sensor and the point in time of leaving as payload.

15.3.5 Semantics

The output of TPStream is a stream containing one event for every detected match:

TPStream(E1, E2, . . . , EN) := σ({(m1, t1), (m2, t2), . . .})

Each output event (m, t) is produced by exactly one individual match, that is:

(m, t) := ∀i ∈ [1 : N] : ∃E′i ⊆ Ei : isPartition(E′i , Ei)

∧ ∃F : F � getHistory
(⋃

i∈[1:N]

E′i

)
∧ ∃S : ∀s ∈ S : ∃F′ � F : s ∈ emit(F′)

∧ m = match(S) ∧m 6= ∅ ∧ t = max
f∈F

(f .t) ∧ t− F(1).t ≤ within

To achieve the same flexibility as ASEQ, the Boolean-valued function isPartition can
be user-defined again. However, in our implementation of TPStream for JEPC we use
the commonly used partitioning schema by default:

isPartition(E′, E) := ∀i : ∀j : (e′i ∈ E′ ∧ e′j ∈ E′)⇒

(∀k ∈ [1 : n] : e′i.xk = e′j.xk ∧ ∀e ∈ E \ E′ : ∃l ∈ [1 : n] : e.xl 6= e′i.xl)

Let the attributes x1, x2, . . ., xn of E be referenced in the PARTITION BY clause. Then,
two conditions must hold. First, every event of a valid partition E′ must have the same
value for each referenced attribute. Second, every event of E that is not contained in
E′ must have a different value for at least one referenced attribute.

208

15.4 Expressing Sequential Patterns

Again, there must be a fixed substream F of the history. But in contrast to ASEQ, the
function emit returns all emitted point and interval symbol events for a substream F′

of F with respect to Definition 14. In particular, emit returns only intervals that are
of maximum size and completely contained in F′. While the function match remains
abstract in the semantics of ASEQ, it is clearly defined in the semantics of TPStream:

match(S) :=

payload o f output event if TPL(S) = true

∅ otherwise

The input of match is a set of point and interval symbol events emitted by events of
F. Every TPL can be translated into a Boolean expression over timestamps of symbols
as follows. Each TC defines the order of the timestamps of two symbols and can be
translated into a Boolean expression (see Section 15.3.2). Every TCL connects all of its
TCs by logical disjunctions (∨). Each TP connects all of its TCLs by logical conjunc-
tions (∧). Finally, every TPL connects all of its TPs by logical disjunctions (∨). At the
end, a valid Boolean expression over timestamps is created. This expression can be
evaluated for the timestamps of the symbols in the input. If a certain configuration
evaluates to TRUE, the payload of the output event is generated and returned.

The semantics of the within condition and the computation of the timestamp t are
the same as in ASEQ. Also, a user-defined filter σ can be applied to the output which
contains every possible match. This gives the same degree of flexibility as ASEQ.

15.4 Expressing Sequential Patterns

In this section, we outline how to express sequential patterns via temporal patterns.
For each rule in the ASEQ pattern grammar we present an equivalent TPStream pat-
tern definition. We also show how to express the different semantics that exist among
different operators for sequential pattern matching (namely eventually-followed-by,
directly-followed-by, and followed-by-within semantics). Without loss of generality,
we assume that incoming events have unique timestamps for ease of presentation.

Sequence. The sequence AB of two symbols A and B can be expressed as follows in
TPStream. First, the symbols A and B are defined by exactly the same predicates ϕA

and ϕB that would be used in ASEQ. Thus, emitted symbols are always point events.
Second, the order constraint AB is expressed by the temporal constraint A.AB.B. List-
ing 15.6 shows the final translation.

209

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

1 DEFINE A AS ϕA, B AS ϕB

2 PATTERN A.AB.B

Listing 15.6: A followed by B

Conjunction. To define a pattern in which multiple symbols {A,B,C, . . .}must occur
simultaneously, every symbol is defined via the predicate that would be used in ASEQ.
Then, the temporal constraint X.X.Y.Y is used for each pair of symbols to express the
conjunction. However, because of transitivity of the conjunction a temporal constraint
must not be added for every pair of symbols. Instead, a transitive reduction can be
performed resulting in a minimal set of necessary temporal constraints to express the
conjunction of more than two symbols. Listing 15.7 shows the final translation.

1 DEFINE A AS ϕA, B AS ϕB, C AS ϕC, . . .
2 PATTERN (A.A.B.B), (B.B.C.C), . . .

Listing 15.7: Conjunction

Alternative. An alternative is used to define that at least one symbol of {A,B,C, . . .}
must occur. In TPStream, multiple TPs each requiring another symbol at the position
of the alternative are defined. Finally, all TPs are combined into a TPL. Listing 15.8
presents the translation of the ASEQ pattern X(A;B; . . .)Z.

1 DEFINE X AS ϕX, Z AS ϕZ, A AS ϕA, B AS ϕB, . . .
2 PATTERN ((X.XA.A),(A.AZ.Z)); ((X.XB.B),(B.BZ.Z)); . . .

Listing 15.8: Alternative

Kleene Plus. In TPStream, the Kleene plus operator can be expressed by exchanging
the ASEQ predicate in the definition of the associated symbol for its temporal version
by simply applying the function TEMP to it. Because an emitted symbol can now be a
point or an interval event, the TP must cover both cases. The translation of the ASEQ
pattern AB+C is shown in Listing 15.9.

210

15.4 Expressing Sequential Patterns

1 DEFINE A AS ϕA, B AS TEMP(ϕB), C AS ϕC

2 PATTERN (A.ABB;A.AB.B), (BBC.C;B.BC.C)

Listing 15.9: Kleene plus

Negation. A negated symbol must be defined as a regular symbol in order to specify
its properties and exact position within a pattern. Then, in every TP that contains the
negated symbol the negation operator must be applied in addition. For example, the
pattern A!BC is expressed in TPStream as shown in Listing 15.10.

1 DEFINE A AS ϕA, B AS ϕB, C AS ϕC

2 PATTERN (A.AC.C), (A.AB.B), (B.BC.C), !B

Listing 15.10: Negation

Exact Count. The exact count operator is just syntactic sugar in ASEQ. For example,
A{5} is a shortcut for the pattern ABCDE in which all symbols are defined by exactly
the same predicate ϕ. A translation of sequences is already presented above.

Question Mark. The question mark operator requires a symbol to occur not or ex-
actly once. Both alternatives can be expressed in the form of alternative TPs being
combined into a TPL. Listing 15.11 shows the translation of the ASEQ pattern A?BC.

1 DEFINE A AS ϕA, B AS ϕB, C AS ϕC

2 PATTERN ((A.AB.B),(B.BC.C)); (A.AC.C)

Listing 15.11: Question mark

Kleene Star. Similar to the question mark operator, the application of the Kleene
star operator results in two different patterns. In one pattern, the symbol a Kleene
star is applied to may not occur. In the other pattern, the symbol a Kleene star is
applied to may occur multiple times in a row but must occur at least once (equivalent
to the Kleene plus operator). For example, the pattern AB∗C can be substituted by the
alternative patterns AC and AB+C. For both patterns there already are translations into
the query language of TPStream. The combination of the translated patterns into a
TPL is equivalent to the Kleene star operator.

211

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

With the translations presented so far, every ASEQ pattern can be expressed in the
form of a temporal pattern. However, the resulting temporal patterns inherently im-
plement the eventually-followed-by semantics. To express that two symbols must be
emitted by two adjacent events (directly-followed-by semantics), a temporal pattern
can be extended as shown in Listing 15.12.

1 DEFINE A AS ϕA DO begin = t

2 B AS ϕB ∧ PREV(1).t = begin

3 PATTERN A.AB.B

Listing 15.12: A directly followed by B

In comparison to Listing 15.6, Listing 15.12 extends the condition of symbol B. In ad-
dition to the user-defined condition ϕB, it is required that the directly preceding event
emitted symbol A. This can be achieved by remembering the timestamps of the events
that emitted symbol A. Then, it can be checked via PREV in the definition of symbol
B whether the directly preceding event emitted symbol A. Lastly, the followed-by-
within semantics can also be expressed. The query in Listing 15.13 defines a sequence
in which A is followed by B within a time window of size w. Again, the condition of
symbol B is extended. But this time, the timestamp of the current event is compared
to the timestamp of emitted A symbols that can be accessed via a global variable.

1 DEFINE A AS ϕA DO begin = t

2 B AS ϕB ∧ t - begin <= w
3 PATTERN A.AB.B

Listing 15.13: A followed by B within w

The presented translations for every rule in the grammar of ASEQ as well as for the
different semantics serve as building blocks for arbitrary sequential patterns. To ex-
press a complex ASEQ pattern, every atomic part can be translated individually first.
Then, the translated parts can be combined step by step into the final TPL by spec-
ifying the exact order and semantics (eventually-followed-by, directly-followed-by,
followed-by-within) for every pair of adjacent symbols. Note that TPStream is more
powerful than ASEQ since it is possible to have both sequential and temporal parts in
a single TPStream pattern definition. Also note that different sequential semantics can
be mixed within a single TPStream pattern definition.

212

15.5 Expressing Spatiotemporal Patterns

15.5 Expressing Spatiotemporal Patterns

The spatial capabilities of existing stream processing systems are quite limited, be-
cause spatial functionality is not natively supported. Of course, the position of a fixed
or moving object can be encoded as a series of numeric attributes (e.g., latitude, lon-
gitude and height) defining a point in some coordinate system, and simple operations
such as computing the distance between two points can be reduced to an arithmetic
expression. In simple cases, this method may serve as workaround. For instance,
the motivating example in Section 15.1 can be implemented this way. However, the
workaround is not sufficient anymore when it comes to more complex geometries
(e.g., lines, areas) [Güt00] and more complex spatial operations (e.g., checking whether
a point is in or close to a certain area, computing the intersection of two areas).

The integration of a stream processing system into applications that deal with com-
plex spatial data and complex spatial operations requires native support of spatial
data types and spatial operators, which process the spatial datatypes properly, in or-
der to support complex spatial queries. Simple Feature Access (SFA) [Her11] defines
all necessary data types and operations for representing and processing spatial data,
is standardized by both OGC and ISO, and is platform-independent. Among others,
SFA specifies well-known text (WKT) which is a markup language for describing vec-
tor geometries. The advantage of WKT is that a complex geometry can be encoded
as a single ordinary string. This allows spatial operators to seamlessly work together
with non-spatial operators. Spatial operators can compile WKT strings into some ob-
ject representation internally, process the geometries, and then encode all resulting
geometries again into WKT strings for the output. Non-spatial operators cannot in-
terpret or process WKT strings, but because a string is a primitive data type they can
simply pass through WKT strings and do not become blocking therefore.

JEPC can be extended by new spatial EPAs as follows [HKS15]. The core already
provides the data type DataType.GEOMETRY for keeping WKT strings (see Table 7.1
on page 52). Thus, spatial EPAs can easily identify spatial attributes and all others han-
dle attributes of type DataType.GEOMETRY as attributes of type DataType.STRING
by default. Recall that JEPC allows to bring in user-defined EPAs (see page 59). For ex-
ample, we implemented TPStream in the form of a user-defined EPA (UEPA) for JEPC.
Because UEPAs are defined by arbitrary Java code, functionality for compiling WKT
strings and processing the resulting geometry objects can be implemented. However,
we prefer to use a third party library such as JTS Topology Suite [JTS] or GeoTools
[Geo] rather than implementing the SFA specification by ourselves.

213

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

The approach described in the last paragraph can be used to add every kind of spatial
operator as UEPA to JEPC [Ali10]. As an example and proof of concept, we extended
TPStream, which already existed as UEPA, in order to detect complex spatiotemporal
patterns [Erw04, SG11] besides temporal patterns. In particular, our extended ver-
sion of TPStream allows to apply all spatial operators of SFA to spatial attributes in
the definition of symbols. This enables the manipulation of geometries and, more im-
portably, the use of spatial predicates. For instance, complex spatiotemporal patterns
in the trajectories of moving objects can be detected by TPStream now.

To give an impression of the interesting and powerful class of spatiotemporal pat-
tern queries, we take over a use case being presented in [Sak10] for TPStream and
streaming data. In this use case, the trajectories of snow storms are monitored and
some particular snow storms are selected by a spatiotemporal pattern query being
described in the following. The used spatiotemporal pattern query detects all strong
snow storms that first hit Berlin and then hit Dresden in Germany within 4 hours.
From a spatial point of view, this means that a moving area representing a snow storm
must have intersected two fixed areas representing the cities Berlin and Dresden. In
addition, it is required that the snow storm was strong when it hit both cities. The
exact meaning of strong is specified on basis of the speed of a snow storm that must be
equal to or greater than 80.0 km/h. From a temporal point of view, only snow storms
that first hit Berlin and then hit Dresden are of interest. Moreover, when the snow
storm hit the cities and as long as the snow storm was raging in the cities, it must have
been strong. Lastly, the just defined spatiotemporal pattern must occur completely
within a time window of size 4 hours.

1 (SELECT ∗

2 FROM SnowStorms s

3 MATCH_RECOGNIZE_TEMPORAL (

4 MEASURES START(A).id AS storm_id, END(B).polygon AS storm_polygon

5 WITHIN 4 HOURS

6 PARTITION BY s.id

7 PATTERN AABB,(CAAC;CAA.C),(DBBD;DBB.D)

8 DEFINE A AS TEMP(intersects(s.polygon, Berlin)),

9 B AS TEMP(intersects(s.polygon, Dresden)),

10 C AS TEMP(s.speed >= 80.0),

11 D AS TEMP(s.speed >= 80.0)

12)

13) AS SnowStormExample

Listing 15.14: Spatiotemporal pattern query in JEPC-QL

214

15.6 Implementation

Listing 15.14 shows the query being ported to TPStream and expressed in JEPC-QL.
The query consumes an event stream SnowStorms that consists of position updates
of snow storms. Each position update contains the identification of the corresponding
snow storm (id), its current speed (speed) and its current area represented by a poly-
gon encoded as a WKT string (polygon). Berlin and Dresden are constant WKT
strings that define the areas of the cities in the form of polygons. For more examples
which are also supported by TPStream in case of streaming data see [SG11].

Because we already had extended Boolean expressions to support spatial opera-
tions, we carried over our implementation for TPStream to our native implementa-
tions of the filter and the correlation EPAs. For the aggregation EPA, we extended our
native implementation to support the spatial aggregates UNION (gives the union of a
set of polygons), DISTANCE (gives the length of the corresponding linestring of a se-
quence of points) and TRAJECTORY (gives the trajectory as linestring of a sequence of
points). Thus, JEPC supports spatial functionality in all basic EPAs via the native EP
provider and additionally offers spatiotemporal pattern matching by now.

15.6 Implementation

In Figure 15.2, we give a high-level view on the internals of our TPStream implemen-
tation in the form of an UEPA for JEPC. It can be used to detect a single TP over a set
of input event streams. If the temporal pattern is a TPL consisting of multiple alter-
native TPs, one physical instance of TPstream is currently created for each single TP.
Processing a complex TPL by a single physical TPStream operator most likely would
give better performance and is on our agenda for future work.

TPStream Operator

Partition

Partition

Partition

Matcher

ψ(ϕi)

ϕj

ψ(ϕk)

ϕl

ψ(ϕm)

ϕn

...

Figure 15.2: Architecture of TPStream

215

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

The leftmost arrows in the figure represent multiple input event streams. Every in-
coming event is copied into its associated partition first. If no partitioning is specified,
then there is exactly one partition per event stream as illustrated in the figure. Each
partition has an instance of all compatible predicates (a predicate is defined for a spe-
cific event stream, i.e., event type) for deriving symbols in an online manner. The
figure shows one temporal predicate ψ and one ASEQ predicate ϕ per input event
stream. Every event entering a partition is forwarded to all instantiated ASEQ predi-
cates and temporal predicates.2 In the case of ASEQ predicates, symbols are emitted
directly as point events and forwarded to the matcher component. And in the case of
temporal predicates, the creation of symbols is performed via Algorithm 21.

Algorithm 21: TEMPORALPREDICATE((p, t))
Input: Event: (p, t)
Data: ASEQ Predicate: ϕ, Event: bu f f er, lastEvent

1 if bu f f er.p = ϕ(p) then
2 bu f f er.te ← t; // extend time interval of symbol event

3 lastEvent← (p, t);

4 else
5 if bu f f er.p = TRUE then // finish symbol event

6 SETVARIABLESEND(lastEvent);
7 FORWARD(bu f f er);

// start new symbol event

8 bu f f er← (ϕ(p), t, t);
9 if bu f f er.p = TRUE then

10 SETVARIABLESSTART((p, t));

Algorithm 21 determines all time intervals of maximum size during which ϕ is always
fulfilled (see Definition 14). The endpoints of those time intervals are used as times-
tamps for symbol events being emitted. For generating time intervals in an online
manner a buffer is used. This buffer keeps the time interval currently being in creation
and the corresponding output value of ϕ as payload. If a new input event that does
not change the output value of ϕ streams in, the end timestamp of the buffered symbol
event is replaced by the timestamp of the input event (lines 1–3). Thus, time intervals
are extended incrementally as long as the output value of ϕ does not change. Every

2Though parallel processing of partitions would be an opportunity to improve performance, our cur-
rent implementation still runs sequentially. Optimizing the performance is part of our future work.

216

15.6 Implementation

input event for which the predicate changes its output value results in the creation of
a new symbol event (lines 4–10). If the symbol event created so far was produced by
input events for which the predicate evaluates to TRUE, then this symbol event must
be finished. The last event that participated in its creation is used for setting global
variables defined via END (line 6) and the symbol event keeping the finished time in-
terval is forwarded to the matcher component (line 7). Then, a new symbol event is
started on basis of the input event (line 8). If this new symbol event will be forwarded
to the matcher component eventually (i.e., the ASEQ predicate is satisfied), then the
first input event is used for setting global variables defined via START (line 10).

As indicated by the bi-directed arrows in Figure 15.2, the matcher component
not only receives finished symbol events from the instantiated predicates, but also
has access to the buffer of every instantiated temporal predicate. This is of utmost
importance for supporting real-time detection. For example, consider the query in
Listing 15.5. A successful match requires the end timestamp of a symbol event C to
be greater than the end timestamp of a symbol event A. However, it is not necessary
to know the exact value (thus, it must not be completed). As soon as the end times-
tamp of a symbol event C in the buffer of the associated temporal predicate becomes
greater than the end timestamp of a symbol event A (and all other TCLs of the pattern
hold), our matcher already produces the output event. Without this live generation
of time intervals there arise two critical problems. A matcher that requires completed
time intervals will block until the interval of a symbol event C is completed. Con-
sider a gorilla, which has left the troop, meets the silverback after a couple of days
again. Then, not until this point in time symbol event C is finished. In a worst case
scenario, the gorilla never meets the silverback again. As a consequence, there would
be no completion of symbol event C and the match would never be detected. These
issues violate the real-time requirements of event processing and are avoided in our
implementation by giving the matcher access to the buffers.

Almost all sequential pattern matching operators use automata in the implemen-
tation of the matcher component (e.g., SASE [WDR06], Cajuga [Dem07]), because
searching for an ASEQ pattern on a stream of symbols is similar to regular expression
matching. In contrast, temporal pattern matching is related to constraint satisfaction
problems [Kum92] (ZStream [MM09] shows that sequential pattern matching can be
interpreted in the same way). Because we currently use a single TPStream operator for
every TP in a TPL and because every TC is binary, the TP to detect can be represented
as a constraint graph. For example, Figure 15.3 shows the constraint graph for the tem-
poral pattern (ABBA,(ACCA;A.CCA; A.CA.C), ADDA,CCEE,(DDEE;DD.EE)).

217

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

A

B

C

D E

ACCA;A.CCA;A.CA.C
ABBAADDA

DDEE;DD.EE
CCEE

Figure 15.3: Constraint graph of temporal pattern

The user-defined symbols are the vertices of a constraint graph. If there is a user-
defined TCL for a pair of symbols, those symbols are connected by an undirected
edge being labeled with all TCs of the TCL. A constraint graph evaluates to TRUE if
and only if at least one TC of every edge is satisfied. In contrast to a real constraint
satisfaction problem where configurations are searched, we must only check whether
a given candidate configuration satisfies the constraint graph. In general, there are
multiple candidate configurations that must be checked at a time. The set of all can-
didate configurations is determined as follows. Within the time window there can
be any number of emitted symbol events (thus, a set) for each defined symbol. With
respect to the above example, there is a set XA keeping all symbol events associated
with symbol A, a set XB keeping all symbol events associated with symbol B, and so
on. The Cartesian product of all those sets gives the set of all candidate configurations
that must be checked. Because the number of candidate configurations can be large
and because of the fact that a candidate configuration disqualifies as soon as one TCL
(i.e., an edge in the constraint graph) is not satisfied, our implemented matcher gener-
ates the set of all configurations lazy and tries to detect non-matching configurations
as early as possible during generation. From an algorithmic point of view, we start
with generating the Cartesian product of only two sets of symbol events and check
the corresponding TCL (if it exists). In the best case, no or only few pairs of symbol
events will remain. Then, the Cartesian product of all remaining pairs and another set
of symbol events is created. Again, corresponding TCLs are checked already by now
to reduce the next set of intermediate configurations. This iterative procedure is con-
tinued until the last set of symbol events has been processed. Changing the order of
the sets of symbol events, the sizes of the sets of intermediate configurations may vary.
Obviously, there is an optimal order that minimizes the sizes of all sets of intermediate
configurations so that a minimal number of checks must be performed.

218

15.7 Evaluation

Note that this kind of problem is similar to the problem of join ordering [Moe09]. The
sets of symbol events are the input relations and the TCLs are join conditions refer-
ring to a pair of relations. Our implemented matcher component orders the sets of
symbol events according to a simple heuristic that is based on the following assump-
tion. The more TCLs which can be checked there are, the less is the size of the next
set of intermediate configurations. Therefore, our strategy is as follows and requires
the constraint graph. The first set of symbol events is the corresponding set of the
symbol being involved in more TCLs than all other symbols (i.e., the symbol having
the most edges in the constraint graph). The second set is one of the neighbors of the
first set. This guarantees that there will be at least one TCL for pruning the next set
of intermediate configurations. In general, a symbol has more than one neighbor in
the constraint graph. Then, we select the neighbor which has the most edges among
all neighbors. The next sets are selected in the same way as the second one. That is,
the third symbol is a neighbor of the second symbol having the most edges among all
neighbors of the second symbol, and so on and so forth.

To illustrate the general principle and to clarify all ambiguities, consider the con-
straint graph given in Figure 15.3. According to our strategy, the matcher component
would derive an order of sets of symbol events as follows. The set of symbol events
XA associated with symbol A is the first, because symbol A is the only symbol being
involved in three TCLs. Next, we must select one of its neighbors. Because the sym-
bols C and D have two neighbors each and symbol B only one, the symbols C and D

are preferred over symbol B. After all, we select the set XD associated with symbol D,
because the TCL of symbol A and symbol D consists of only one TC while the TCL of
symbol A and symbol C consists of three TCs and is considered less restrictive there-
fore. However, if the numbers of TCs were equal, we would select one of the two sets
by random. Then, we select the set XE, because symbol E is the only remaining neigh-
bor of symbol C. Lastly, we have to turn back to the remaining neighbors of symbol A
that are the only remaining symbols. According to our heuristic, we prefer symbol C
over symbol B so that the final optimized order is XA × XD × XE × XC × XB.

15.7 Evaluation

Based on our implementation of TPStream, we conducted the following experiments
on a workstation with an Intel i7-2600 3.4 GHz processor (only a single core was used)
and 8 GiB main memory running Oracle JRE 1.7.0_13.

219

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

15.7.1 Optimizing the Evaluation Order

In our first experiment, we examined the effect of our strategy to optimize the eval-
uation order of TCLs by using the matcher component in isolation. The setup of the
experiment was as follows. We used a fixed set of 8 user-defined symbols and se-
lected 16 TCs for these symbols. The two symbols of a TC as well as the TC itself
were randomly chosen. For each single run of the experiment we generated 10,000
sets each containing exactly x symbol events for each user-defined symbol. We tested
different values of x in this experiment. The time intervals of the symbol events were
randomly chosen from [10 : 100]. We put all 10,000 sets one another into two instan-
tiated matcher components. One matcher component evaluated TCLs in a random
order and the other matcher component evaluated TCLs in an optimized order using
our ordering strategy. We measured the time each matcher component needed for
checking all configurations contained in each of the 10,000 test sets.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
20

00
40

00
60

00
80

00
10

00
0

Optimized Order
Random Order

Emitted Symbols

C
om

pu
ta

tio
n

T
im

e
in

 m
s

Figure 15.4: Effect of evaluation order

Figure 15.4 shows the averaged total runtime as a function of x. The matcher com-
ponent that optimized the evaluation order of TCLs (Optimized Order) was clearly
superior to the matcher component that evaluated TCLs in a random order (Ran-
dom Order). For example, the processing of 10,000 sets each containing 25 symbol
events per user-defined symbol needed 805 ms using an optimized evaluation order
and 2,473 ms using a random evaluation order. In the case of input sets containing 30
symbol events per user-defined symbol, an optimized evaluation order already was
more than six times faster than a random evaluation order. Therefore, the matcher
component optimized the evaluation order of TCLs in all following experiments.

220

15.7 Evaluation

15.7.2 Maximum Throughput under Varying Parameters

In the following experiments, we pushed events as fast as possible into TPStream
to determine its maximum throughput in different situations. We used synthetically
generated event streams and queries in order to have full control of all parameters.

1 FROM EventStream e

2 PARTITION BY e.id

3 DEFINE S1 AS temp(ϕ(e.x1)) DO out = end(e).id

4 S2 AS temp(ϕ(e.x2))

5 . . .
6 Sn AS temp(ϕ(e.xn))

7 PATTERN TPrand

8 WITHIN w TIME UNITS

9 RETURN out

Listing 15.15: Parametrized test query

Listing 15.15 shows our parametrized test query for an event stream EventStream

whose schema consisted of a numeric attribute named id and n Boolean-valued at-
tributes named x1, x2, . . ., xn. The parameter n specified not only the total number
of Boolean-valued attributes, but also the total number of user-defined symbols. In
other words, n Boolean-valued event attributes led to test queries in which n different
symbols S1, S2, . . ., Sn were defined. Of course, also every generated input event had
n Boolean values besides a value for the mandatory attribute id as payload. Every
symbol Si was defined via a temporal predicate (thus, every emitted symbol event
could be either a point event or an interval event) which was dependent only on the
event attribute xi. The ASEQ predicate ϕ used by every temporal predicate was sim-
ply the identity function ϕ(b ∈ B) := b. Lastly, the temporal pattern TPrand was a
generated but valid TPStream pattern over all user-defined symbols and consisted of
m randomly chosen TCs in total (as in the previous experiment).

We used an event generator that allowed us to control and vary all important
characteristics. In particular, the generator created events evenly distributed across
k partitions. There was exactly one event every 1,000 time units per partition. With
probability of 50 %, an input event took part in the creation of a symbol event. The
sizes of the time intervals of emitted symbol events were randomly chosen (uniform
distribution) between zero time units (thus, a point event) and l time units so that the
average size of time intervals was l/2. Because the total number of partitions k had no
noticeable impact on the performance (using the default schema of partitioning), we
present our results for k = 1 and different values of n, m, l and w in the following.

221

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

4 8 16 32 64

1M
2M

3M
4M

5M

n = 4
n = 8
n = 12

n = 16
n = 20

m

E
ve

nt
s

/ S
ec

on
d

Figure 15.5: Effects of parameters n and m

100K 175K 250K

10
0K

1M
2M

3M
4M

l = 10K
l = 70K
l = 130K
l = 190K
l = 250K

w

E
ve

nt
s

/ S
ec

on
d

Figure 15.6: Effects of parameters w and l

At first, we tested different numbers of user-defined symbols n and of TCs m of the
temporal pattern TPrand. The size of the time window was fixed to w = 175, 000 time
units and the maximum length of time intervals of symbol events was fixed to l =

130, 000 time units. Figure 15.5 shows the maximum throughput as a function of m
for different settings of n. While the number of symbols n had a strong impact on
the throughput, it remained relatively stable when the parameter m was changed. An
increasing n led to an increasing number of predicates, an increasing number of sets
of symbol events and an increasing number of TCLs. In contrast, an increasing m did
not increase the numbers of predicates, symbol sets and TCLs. Additionally, more TCs
had almost no effect because TCLs are translated into compact Boolean expressions.

222

15.8 Related Work

In our last experiment, we tested different sizes of the time window w and of the time
intervals of emitted symbol events l. The number of user-defined symbols was fixed
to n = 8 and the number of TCs of the pattern TPrand was fixed to m = 16. Figure 15.6
shows the results as a function of w for different settings of l. Our measurements
clearly show that the performance dropped when l was decreased as well as when
w was increased. The reason for this lies in the problem which TPStream must solve.
Recall that the matching problem is similar to stream joins. For stream joins it is known
that the performance decreases as the size of the state increases in general. In this
experiment, the number of emitted symbol events within a fixed-size time window
increased with a decreasing maximum size of time intervals of emitted symbol events
l. Analogues, the larger the time intervals of emitted symbol events were the less
emitted symbol events were within a fixed-size time window. The window size w
affected the size of the state and, thus, the throughput in the same way. When w was
increased the time window contained more emitted symbol events and when w was
decreased the time window contained less emitted symbol events.

15.8 Related Work

Sequential pattern matching over event streams is discussed extensively in
Section 15.2. None of the proposed operators is able to derive symbol events with
time-interval semantics and to detect temporal patterns. Besides the general idea of
pattern matching over event streams, TPStream is related to ISEQ as well as ZStream
and mainly inspired by spatiotemporal pattern queries.

Spatiotemporal Pattern Queries. The spatial databases community identified a new
and powerful class of so-called spatiotemporal pattern queries (STPQ) for detecting com-
plex patterns in spatiotemporal data [Erw04]. Recently, a holistic approach to express-
ing and evaluating STPQ in trajectory databases was presented [SG11]. The temporal
design of this approach served as a foundation for TPStream. In particular, TPStream
adopts the concept of temporal predicates and the encoding schema for temporal con-
straints. In order to improve expressiveness towards sequential patterns, TPStream
adds multiple important extensions (e.g., negation, alternatives, etc.). While TPStream
is designed to detect patterns in streaming data in real-time, the approach presented
in [SG11] is specifically designed for trajectory databases. That is, all data is avail-
able and allows for efficient indexing and query execution. Therefore, the approach
presented in [SG11] is not applicable to streaming data.

223

15 Temporal and Spatiotemporal Pattern Matching over Event Streams

ISEQ. To the best of our knowledge, ISEQ [Li11] is the only existing pattern match-
ing operator that is based on time-interval semantics so far. ISEQ motivates the
need for pattern matching on basis of time-interval semantics, adopts the flexible
and expressive two-endpoint representation for specifying temporal patterns and has
a strong emphasis on efficient query execution. However, ISEQ requires incoming
events to have already time intervals. In addition, input events must be ordered by
end timestamps (a quite unusual assumption especially in real-world applications)
and ISEQ does not provide a high-level query language. The most significant dif-
ference to TPStream is that ISEQ does not allow users to define symbols having an
interval-based semantics. Instead, ISEQ already expects those events with time inter-
vals in its input instead of raw point events. The input events are created by some ex-
ternal middleware which remains completely unspecified. While TPStream supports
the specification of symbols having an interval-based semantics (including correla-
tions between different symbols) and temporal patterns in a single query definition,
such queries cannot be expressed in ISEQ. In the case of ISEQ, the entire proposed
operator is only for expressing and detecting temporal patterns. Since ISEQ is an effi-
cient matcher component rather than a holistic operator such as TPStream, one could
consider to use it as matcher component for TPStream. However, this is not easily
possible due to its odd assumption that events must be ordered by end timestamps.
Lastly, ISEQ depends on an additional punctuation mechanism [Tuc03] to avoid block-
ing. Such a mechanism is not provided by many EP systems (including JEPC) and not
required in case of TPStream because of its non-blocking nature.

ZStream. Almost all operators for sequential pattern matching utilize an automaton
for matching. ZStream [MM09] is different and proposes to parse a sequential pattern
definition into an operator tree having the defined symbols as leaf nodes. On top of
the leaf nodes, different operators are then applied. For instance, ZStream provides
operators for expressing a sequence of symbols, a negation of a symbol and Kleene
closures. During execution, input events stream from the corresponding leaf nodes
upwards to the root. Symbol definitions are applied by labeling edges with the cor-
responding conditions (correlations are supported). The resulting trees are similar to
traditional join trees and, thus, to the constraint graph evaluation of TPStream. Conse-
quently, ZStream orders the operator nodes optimally according to a cost model. The
proposed cost model is more complex, because it has to deal with user-defined con-
ditions whose selectivities must be estimated. In the case of TPStream, every atomic
condition is one of the 26 TCs and allows for a simpler cost estimation therefore.

224

15.8 Related Work

Summary

This chapter presents TPStream, a pattern matching operator that is able to detect
complex temporal patterns in event streams. On basis of proven concepts of state-
of-the-art sequential pattern matching, a powerful query language is proposed for
expressing complex temporal patterns over symbol events with time-interval seman-
tics. While the input of TPStream are still instantaneous events that are produced by
almost all event sources in practice, TPStream supports deriving higher knowledge in
the form of symbol events with time-interval semantics. The events being derived are
completely user-defined. The careful design of the query language makes it a real ex-
tension to existing query languages. It allows to express sequential as well as temporal
restrictions within a single query. In this chapter, a first implementation of TPStream
that is non-blocking and detects occurrences of patterns in real-time is also presented.

225

16
Automatic Matchmaking in

Real-Time Data Stream

Processing

Outline
16.1 Introduction . 228

16.2 Background and Motivation . 230

16.3 Matchmaking Problem . 232

16.4 Solutions . 235

16.5 Implementation . 248

16.6 Evaluation . 252

16.7 Related Work . 259

227

16 Automatic Matchmaking in Real-Time Data Stream Processing

16.1 Introduction

One of the most important characteristics of a modern SPE is its ability to execute
continuous queries over high volumes of streaming data with low latency [SÇZ05].
To achieve this goal, continuous queries and data sources are directly linked via fixed
connections. Also continuous queries and data sinks as well as continuous queries
with each other are hard-wired. This kind of coupling results in a very efficient flow of
data, because no routing decisions must be made. Unfortunately, all connections must
be specified purely manually. As a consequence, the creation of a stream processing
application requires a lot of effort and the adaption of a stream processing application
to a changed context is costly (e.g., if new data sinks are available or existing data
sources have been updated). In short, the kind of connection management of today’s
SPEs is highly inflexible, but causes no performance overhead at runtime.

In contrast to hard-wired elements, there is the famous publish/subscribe pattern
[Eug03] in which a central broker mediates between publishers (e.g., data sources) and
subscribers (e.g., continuous queries). The result is a full decoupling of all elements
in dimensions of time, space and synchronization. Publish/subscribe provides a high
degree of flexibility, but leads to overhead at runtime because routing decisions must
be made for each arriving data item. The imposed runtime overhead is significant
and contradicts the requirements of real-time data stream processing therefore [Kal05].
Moreover, flexibility is quite limited in the sense that there must be an exact agreement
on the semantics of the vocabulary (e.g., users must agree that a specific attribute
temperature contains sensor readings measured in degrees Celsius).

What is needed is a hybrid approach that combines the good performance of fixed
connections with the flexibility of the publish/subscribe pattern. In this chapter, we
introduce the concept of automatic matchmaking that has been identified as a key
enabler for advanced stream processing platforms [HS13]. Because of the real-time
requirements, this concept still uses fixed connections. But in contrast to state-of-the-
art stream processing technology, all connections are established automatically and
adapted dynamically whenever a data producer/consumer is deployed or updated.
This not only reduces the effort of building and maintaining complex applications,
but also enables the use of stream processing technology in highly dynamic applica-
tion domains such as the Internet of Things. In particular, the sets of data producers
and consumers are allowed to change arbitrarily without affecting the runtime per-
formance. Furthermore, our approach is able to automatically handle semantic differ-
ences among the connected data producers and consumers in a declarative manner.

228

16.1 Introduction

STRING
StaticValue:

MillingMachine

typeplace
SHORT

StaticValue:
10IsKey: true

mid

StaticValue:
42

SHORT
UnitOfMeasurement:

Watt

MinValue: 0

consumption
INTEGER

temperature
FLOAT

UnitOfMeasurement:
DegreesCelsius

MinValue: -273.15

UnitOfMeasurement:
DegreesFahrenheit

FLOAT
temperature

SHORT
place

UnitOfMeasurement:
DegreesKelvin

FLOAT
temperature

SHORT
mid

StaticValue:
42

View of Alice: View of Bob:

Schema of sensor placed at milling machine 42:

IsUnique: true

StaticValue:
10

Figure 16.1: Matchmaking example

The following example gives an impression of the concept of automatic matchmaking.
Consider a production plant consisting of milling machines. Each machine has a sen-
sor which provides a stream of measurements. The sensor placed at milling machine
42 (M42) periodically sends a data item following the schema shown at the top of Fig-
ure 16.1 (the first row gives the names of the attributes, the second their data types
and all others contain metadata of the corresponding attribute). For example, tem-
perature is a floating point number, measured in degrees Celsius and always greater
than or equal to -273.15. Let Alice and Bob be two engineers being responsible for
all machines of the plant. Both are constantly interested in the average temperature
value over the last 50 measurements belonging to M42. They want to utilize a SPE
for executing CQs that derive this information. But the desired shapes of data items
differ from the sensor schema and from each other. Alice is most familiar with tem-
perature values in degrees Fahrenheit and associates a specific machine with its place
within the facility. In contrast, Bob prefers to use artificial identifications (mid), which
are assigned to each machine, to select a specific one. Furthermore, he uses a soft-
ware for post-processing that can analyze only temperature values in degrees Kelvin.
In state-of-the-art SPEs, Alice and Bob are forced to connect their CQs with the data
stream containing the sensor readings from all machines within the facility and to se-
lect as well as to manipulate data items by themselves (e.g., converting temperature
values). In contrast, automatic matchmaking enables Alice and Bob to create CQs that
consume data items following their individual views which are shown in the lower
part of Figure 16.1. Then, the SPE establishes the connections automatically and takes
care of selecting and modifying data items accordingly before delivery to the CQs.

229

16 Automatic Matchmaking in Real-Time Data Stream Processing

Automatic matchmaking becomes more important or even an enabler in highly dy-
namic application domains such as the Internet of Things or security monitoring. In
the latter case, a sophisticated system for monitoring IT infrastructures could deploy
software-based sensors and CQs with respect to the degree of danger [HS13]. This
means, in normal state only sensors and CQs of vital importance are active to save
resources. But as soon as there is an indication of danger, the monitoring system de-
ploys more and more sensors and CQs for getting deeper insights (e.g., observing all
system calls of a suspect process). Because there are several situations of danger, the
monitoring system decides on its own which sensors and CQs to deploy. Obviously,
such a self-adaptive behavior of a monitoring system requires not only the automatic
deployment of sensors and CQs, but also the automatic interconnection of them.

In automatic matchmaking, a data producer is automatically connected with all
matching data consumers while slight differences in the semantics are fixed. We for-
mally define the problem of matchmaking in this chapter. Because the naïve algo-
rithm for solving the matchmaking problem is extremely costly, we propose various
optimizations that are proven to perform well in practical settings.

16.2 Background and Motivation

In this section, we discuss the state-of-the-art connection management in stream pro-
cessing applications and outline the benefits which stream processing technology
achieves through its extension by automatic matchmaking.

16.2.1 State-of-the-Art Connection Management

Figure 1.1 on page 7 illustrates the overall structure of today’s stream processing appli-
cations. In particular, it shows the three main components of every stream processing
application (i.e., data sources, CQs, data sinks) as well as the fixed and user-defined
connections between them. While data sources send their data items to CQs, CQs send
their data items to other CQs and data sinks. Existing SPEs require users to define all
connections by themselves. This not only results in a lot of effort during applica-
tion development, but also prevents rapid application adaptation in highly dynamic
applications where the context changes with high frequency. For human users it is
not possible to rearrange the connections once every few seconds. Moreover, not all
existing SPEs support changes at runtime. Instead, an application must be stopped,
modified and started again. Ultimately, even little changes of a single element of an
application can cause changes of many other elements (domino effect).

230

16.2 Background and Motivation

16.2.2 Benefits of Automatic Matchmaking

The matchmaker, which is a novel component in the architecture of stream processing
that manages connections automatically, leads to the following important advantages.

16.2.2.1 Fine-Grained Connections

Typically, the term data stream refers to all active instances of the same type of data
producer. For instance, all milling machines of the motivating example have the same
type of sensor. It is best practice and forced by SPEs to merge all data items coming
from data producers of the same type into a single data stream. This is totally analo-
gous to the world of database systems where a relation Students contains all students
instead of using a separate table for each individual student. Continuous queries that
consume such data streams must use additional filter and partition operations in or-
der to select and group the data items of a data stream. Furthermore, each input of a
CQ can consume exactly one data stream and, thus, exactly one type of data.

The proposed matchmaker establishes connections at a lower abstraction level. In
particular, connections are established between individual data producers and con-
sumers. Therefore, it is possible for a CQ to obtain data items from an arbitrary subset
of all data producers without the need to filter incoming data items. Moreover, if there
are different types of data producers, CQs can receive data items from those on the
same input. This enables CQs to take into account as much information as possible,
comparable to multisensor data fusion [HL97]. Because the matchmaker establishes
all connections automatically, the management of a large number of fine-grained con-
nections instead of only few data streams becomes possible in the first place.

16.2.2.2 Self-Adaptivity

This chapter shows that the matchmaker can be implemented on top of (and of course,
inside) every modern SPE in order to manage fine-grained connections fully automat-
ically and dynamically. The latter means that it is possible to add, remove and up-
date single data producers and consumers at any time during execution even if the
underlying SPE does not support changes at runtime. Therefore, stream processing
applications become self-adaptive so that SPEs can be used in dynamic application
domains. For example, when a new sensor becomes available, the matchmaker con-
nects this sensor to all relevant continuous queries of a running SPE immediately and
automatically on-the-fly. Self-adaptivity allows for continuously varying sets of data
producers and consumers such as they occur in the Internet of Things for instance.

231

16 Automatic Matchmaking in Real-Time Data Stream Processing

Data
Producer

Data
Producer

Data
Producer

CQ

Matchmaker
CQ

CQ

...
...

Matchmaker

CQ CQ CQ CQ. . .

Data
Consumer

Matchmaker

CQ

CQ

CQ

Data
Consmer

Data
Consumer

...
...

Figure 16.2: Producer-CQ, inter-CQ, and CQ-consumer independence

16.2.2.3 Independence

Physically connected to only the matchmaker, every single element of a stream
processing application becomes independent of all others (i.e., a loose coupling is
achieved). Figure 16.2 illustrates the different kinds of independence. The first kind
arises from the decoupling of data producers and CQs (producer-CQ independence).
This allows data producers and CQs to become available and to change arbitrarily.
Additionally, this allows to execute a CQ even if there are no suitable data producers
yet. When a suitable data producer becomes available, it is immediately connected to
the CQ by the matchmaker. The same is true for two CQs, one acting as a data pro-
ducer and the other acting as data consumer (inter-CQ independence). In fact, SPEs
that do not support subqueries get this feature by using the matchmaker. Lastly, the
CQ-consumer independence arises from the decoupling of CQs and data consumers.

16.3 Matchmaking Problem

This section introduces and formally specifies the problem of automatic matchmaking
in real-time data stream processing. But first, the underlying data model is defined.

232

16.3 Matchmaking Problem

16.3.1 Data Model

Before we can formally specify the matchmaking problem, we must define the un-
derlying data model. Its first component are properties that can be used to describe
attributes more precisely such as in Figure 16.1. The main intention is the same as in,
for example, the area of online dating where people describe themselves by properties
(such as (hobby, soccer), (job, teacher)) in order to create matches.

Definition 15 (Property). A property P is a pair (key, value) consisting of a key and a
value. The set of all properties is denoted by P. Two properties P1 ∈ P and P2 ∈ P are
equal if and only if their components are equal: (key1, value1) = (key2, value2) :⇔ key1 =

key2 ∧ value1 = value2.

Attributes are defined and used in the same way as in database management systems.
In addition, an attribute may have any number of properties. Instead of allowing
only predefined properties (such as in the case of constraints in database management
systems), an attribute may have arbitrary properties being defined by users.

Definition 16 (Attribute). An attribute A is a triple (name, type, {P|P ∈ P}) consisting of
a name, a type and a set of properties. The set of all attributes is denoted by A. Two attributes
A1 ∈ A and A2 ∈ A are equal if and only if their names, types and sets of properties are
equal: (name1, type1, X) = (name2, type2, Y) :⇔ name1 = name2 ∧ type1 = type2 ∧ X =

Y. An attribute A1 ∈ A matches an attribute A2 ∈ A (denoted by A1 |= A2) if and
only if their names and types are equal and each property of A2 is also a property of A1:
(name1, type1, X) |= (name2, type2, Y) :⇔ name1 = name2 ∧ type1 = type2 ∧Y ⊆ X.

In this chapter, we focus on relational schemas because of their simplicity and wide
application in stream processing. Therefore, a schema is always a list of attributes.
However, note that the presented concepts and algorithms can be easily carried over
to any other kind of structured data model such as, for example, XML.

Definition 17 (Schema). A schema S is a tuple (A1, A2, . . . , An) ∈ An. Every attribute
name must be unique within a schema: ∀Ai, Aj ∈ S : i 6= j ⇒ Ai.name 6= Aj.name. Two
schemas (A1)n ∈ An and (A2)m ∈ Am are equal if and only if n = m ∧ ∀i ∈ [1 : n] : A1

i =

A2
i . A schema (A1)n ∈ An matches a schema (A2)m ∈ Am (denoted by (A1)n |= (A2)m) if

and only if n = m ∧ ∀i ∈ [1 : n] : A1
i |= A2

i .

Since schemas are lists of attributes as in database systems, data items are simply
tuples that conform to their corresponding schemas.

Definition 18 (Data Item). A data item DIS is a tuple conforming to a schema S.

233

16 Automatic Matchmaking in Real-Time Data Stream Processing

Now, all components of the data model are clearly defined and we can introduce trans-
formations that allow to modify those components.

Definition 19 (Transformation). A transformation τ is a pair (τS, τD) consisting of two
functions. The function τS maps a schema S ∈ An to a schema S′ ∈ Am and the function τD

performs a corresponding mapping of data items. That is, τD maps every data item DIS to a
data item DIS′ . The set of all transformations is denoted by T. Users can define an arbitrary
set TU ⊆ T of active transformations.

Because schemas are the domain and the codomain, transformations can be composed
to complex mappings. Besides transformations, a mapping always includes a pro-
jection and a permutation as final steps. The projection is used to select a subset of
attributes and the permutation is used to order the selected attributes.

Definition 20 (Mapping). A mapping µ is a composition τσ ◦ τπ ◦ τn ◦ . . . ◦ τ2 ◦ τ1

consisting of any number of transformations ∀i ∈ [1 : n] : τi ∈ T, a projection denoted by τπ

and a permutation denoted by τσ.

16.3.2 Problem Statement

The overall structure of stream processing applications shown in Figure 1.1 on page 7
can be simplified as follows. Obviously, the instances of every data source are data
producers and those of every data sink are data consumers. Continuous queries can-
not be classified so clearly, because they are both at the same time. A CQ acts as a data
consumer at its input side and as a data producer at its output side. Because a CQ may
have more than one input, each input of a CQ must be handled as an individual data
consumer. Algorithm 27 on page 250 shows how CQs can be completely disassembled
into a set of data consumers and exactly one data producer.

ConsumersProducers

... . . .

Figure 16.3: Basic problem

234

16.4 Solutions

Figure 16.3 illustrates the basic problem. It shows one set of data producers and one
set of data consumers. Any connections can be possible between both sets. In par-
ticular, every single data producer may (indirectly) match zero, one or multiple data
consumers. Analogous, every single data consumer may (indirectly) match zero, one
or multiple data producers. The task of the matchmaker is to compute and establish
all possible connections between the data producers and the data consumers.

Definition 21 (Connection). A connection is a triple ((X, SX), (Y, SY), µ) consisting of
a data producer X having the schema SX, a data consumer Y having the schema SY, and a
mapping µ that transforms SX and all of its corresponding data items such that they match SY

and all of its corresponding data items.

On basis of the formally specified data model and the description of the basic problem,
we can exactly define the general matchmaking problem.

Definition 22 (Matchmaking Problem). Let X be a data producer having the schema SX

and Y be a data consumer having the schema SY. A connection between X and Y can be
established if and only if the following condition holds:

∃τ1, . . . , τk ∈ TU ∪ {ι} : (S′X = (τk ◦ . . . ◦ τ1)(SX)

∧ ∃V ⊆ {A′ | A′ ∈ S′X} : (

∃S′′X = (A′′1 , A′′2 , . . . , A′′m) : ((∀i ∈ [1 : m] : A′′i ∈ V)

∧ m = |V| ∧ S′′X |= SY)))

Altogether, the condition requires the existence of a suitable mapping for being able to
connect X and Y. In particular, there must exist user-defined transformations which
map the schema of the producer to a schema S′X that includes the schema of the con-
sumer. This means, a subset of all attributes of the schema S′X can be ordered such
that the resulting schema S′′X matches the schema of the consumer. Note that also the
identity ι that does not modify a schema is always allowed as a transformation.

16.4 Solutions

We present different solutions of the matchmaking problem in the following. All solu-
tions automatically compute connections in an offline manner. However, it is still im-
portant to focus on computing connections efficiently, because until a connection has
been established all corresponding data items must be either buffered or discarded.

235

16 Automatic Matchmaking in Real-Time Data Stream Processing

16.4.1 Basic Transformations

Instead of allowing users to specify arbitrarily complex transformations, we decided
to support only three basic types. There are mainly two reasons that led to that deci-
sion. On the one hand, it is easier to define primitive transformations which perform
simple mappings. On the other hand, users are forced to define multiple basic trans-
formations to create a single complex one so that reusability is increased. However,
users should still be able to express any kind of mapping. Therefore, the basic transfor-
mations are designed to not reduce the expressiveness. We describe only their schema
transformations τS. Corresponding data items are treated exactly in the same way.

16.4.1.1 Conversion

The conversion τconv is a basic transformation that replaces a single attribute A of an
input schema by another attribute A′:

τconv
S ((. . . , A, . . .)) = (. . . , A′, . . .)

The attribute being replaced A is called required attribute of τconv
S and the new attribute

A′ is called image of τconv
S .

16.4.1.2 Merge

The merge τmerge is a basic transformation that creates exactly one additional attribute
A′ for a given schema on basis of any number of its attributes {Ai, Aj, . . .} and adds
the new attribute to the given schema:

τ
merge
S ((. . . , Ai, . . . , Aj, . . .)) = (. . . , Ai, . . . , Aj, . . . , A′)

FLOAT
UnitOfMeasurement:

DegreesCelsius

temperature...
...

... ...

...

...

FLOAT
UnitOfMeasurement:
DegreesFahrenheit

temperature...
...

... ...

...

...

...42.7...

...108.86...

τS τD

Figure 16.4: Conversion example

236

16.4 Solutions

INTEGER
UnitOfMeasurement:

Inch

width...
...

... ...

...

... height
INTEGER

UnitOfMeasurement:
Inch ...

...

...

LONG
UnitOfMeasurement:

SquareInch

area...
...

...

...14... ...23

322...

τS τD

Figure 16.5: Merge example

Dimensions:
3

STRING
Encoding:

Well-Known-Text

point...
...

... ...

...

...

...
INTEGER

y z
INTEGER

x
... INTEGER

...POINT(8,21,4)...

8... 21 4
τS

τD

Figure 16.6: Split example

The attributes in the set {Ai, Aj, . . .} are called required attributes of τ
merge
S and the new

attribute being added A′ is called image of τ
merge
S .

16.4.1.3 Split

The split τsplit is a basic transformation that creates any number of additional at-
tributes {An, An+1, . . . , An+m} for a given schema on basis of exactly one of its at-
tributes A and adds the new attributes to the given schema:

τ
split
S ((. . . , A, . . .)) = (. . . , A, . . . , An, An+1, . . . , An+m)

The attribute A is called required attribute of τ
split
S and the set keeping the new attributes

{An, An+1, . . . , An+m} is called image of τ
split
S .

237

16 Automatic Matchmaking in Real-Time Data Stream Processing

If for at least one required attribute A of a basic transformation τ there is no attribute
A′ with A′ |= A in a schema S or if a schema S already contains at least one attribute
of the image of τ, then the transformation τ behaves like the identity ι that leaves the
schema unchanged (i.e., τS(S) = S). We denote the set of all basic transformations by
TB and define the notion of applicability as follows:

Definition 23 (Applicability). A basic transformation τ ∈ TB is called applicable to a
schema S ∈ S if and only if τS(S) 6= S. Otherwise τ is not applicable to S.

Figures 16.4, 16.5, and 16.6 give concrete examples of all types of basic transfor-
mations. The conversion shown in Figure 16.4 requires an attribute temperature of
type floating point number with the property (UnitOfMeasurement, DegreesCelsius)
and replaces it by an attribute with the same name and type but with the property
(UnitOfMeasurement, DegreesFahrenheit). For every corresponding data item, this trans-
formation converts the attribute value from degrees Celsius to degrees Fahrenheit.
The merge shown in Figure 16.5 requires two attributes width and height each of type
integer number and with the property (UnitOfMeasurement, Inch). Then, it adds a new
attribute area keeping the size of the area. For a given data item, the additional at-
tribute has the product of width and height as value. The split shown in Figure 16.6 re-
quires an attribute point keeping point definitions in three-dimensional space as WKT
strings. Then, it extends the schema by three new attributes x, y and z each containing
the position in the associated dimension as an integer number.

Because TB is a proper subset of T, it must be clarified whether the expressiveness
is reduced by allowing users to define only basic transformations.

Theorem 5. For every transformation τ ∈ T with τS(S) = S′ there exists a composition of
basic transformations τk ◦ . . . ◦ τ1 with ∀i ∈ [1 : k] : τi ∈ TB and (τk ◦ . . . ◦ τ1)(S) = S+

such that ∀A′ ∈ S′ : ∃A ∈ S+ : A′ = A.

Proof. Let τ ∈ T be an arbitrary transformation that maps a schema S =

(A1, . . . , An) ∈ An to a schema S′ = (A′1, . . . , A′m) ∈ Am and handles data items
accordingly. Because every transformation consists of two functions, each attribute
A′ ∈ S′ is deterministically computable only on basis of attributes contained in S (the
same is true also for data items). We must focus only on all attributes A′ ∈ S′ that are
new. An attribute A′ ∈ S′ is called new if and only if A′ 6∈ S. Because attribute names
must be unique within a schema, we distinguish two cases:
i) 6 ∃A ∈ S : A.name = A′.name

Because A′ has a name that is not used in S, A′ is computable by a single merge
that attaches A′ to S.

238

16.4 Solutions

ii) ∃A ∈ S : A.name = A′.name
In this case we have to take care of the requirement that every attribute has a
unique name within a schema. If A′ is computable only on basis of A, a single
conversion is sufficient. Otherwise, we apply analogous to i) a merge in order to
attach an attribute A′′ with the same type and properties as A′ but with a name
that is not used in S and S′ to S. At the end, a conversion gives A a name that is
used neither in S nor in S′ and another conversion renames A′′ in A′.

The methods i) and ii) can be used to successively map the schema S to a schema S+

that includes S′. The conversions used in ii) must be delayed until all new attributes
that depend on an attribute which must be renamed are created.

As shown by the proof, a schema S+ that includes every attribute of S′ can always be
created via merges and conversions (splits are only supported for reasons of comfort).
Unfortunately, the order of desired attributes might differ in S+ and there might be
undesired attributes of S. But in the context of matchmaking, every mapping includes
a projection and a permutation after the composition of transformations.

Corollary 2. Within a mapping µ, every transformation τ ∈ T can be substituted by a
composition of basic transformations.

Proof. Let µ = τσ ◦ τπ ◦ . . . ◦ τ ◦ . . . be an arbitrary mapping including a transformation
τ ∈ T. According to Theorem 5, the transformation τ can be replaced by a compo-
sition of basic transformations without affecting the subsequent transformations. By
adjusting the permutation τσ and the projection τπ of µ, all undesired attributes can
be removed and the remaining attributes can be ordered correctly.

16.4.2 Naïve Matchmaking

The computation of connections is triggered whenever a data producer or consumer
has been added. When a data producer or consumer has been removed or updated,
all associated connections are simply deleted. In case a data producer or consumer
has been updated, all its connections are then recomputed entirely from scratch. Al-
gorithm 22 shows the procedure that performs matchmaking for a new or updated
data producer or consumer Z having the schema SZ. If Z is a data producer, it must
be checked for each data consumer whether a connection between it and Z can be
established. Thus, the candidates for potential connections are all data consumers.
And if Z is a data consumer, it must be checked for each data producer whether a
connection between it and Z can be established. Therefore, all data producers are the

239

16 Automatic Matchmaking in Real-Time Data Stream Processing

candidates for potential connections. The checks are performed by a procedure f that
solves the matchmaking problem for a given pair consisting of a data producer and
a data consumer. Every solution being presented in the following assumes that users
have already defined all basic transformations completely. For the rest of the chapter,
let TBU ⊆ TB be the set of all user-defined basic transformations.

While the procedure shown in Algorithm 22 is shared by all solutions being pre-
sented in the following sections, the implementation of the procedure f that solves
the matchmaking problem differs from solution to solution. The first solution that we
present follows a simple brute-force approach. In fact, it is the direct and naïve trans-
lation of the matchmaking problem (see Definition 22). Algorithm 23 describes that
naïve solution of the matchmaking problem.

Algorithm 22: MATCHMAKING((Z, SZ))

Input: New/updated producer/consumer: (Z, SZ)
Data: Set of all producers: Producers,

Set of all consumers: Consumers

1 Set Candidates← NULL;
2 if (Z, SZ) ∈ Producers then
3 Candidates← Consumers;

4 else
5 Candidates← Producers;

6 foreach (C, SC) ∈ Candidates do
7 if (Z, SZ) ∈ Producers then
8 f ((Z, SZ), (C, SC));

9 else
10 f ((C, SC), (Z, SZ));

Algorithm 23: NAÏVEMATCHMAKING((X, SX), (Y, SY))
Input: Producer: (X, SX), Consumer: (Y, SY)

1 foreach Schema S ∈ TRANSFORM(SX , TBU) do
2 foreach Set S′ ∈ P(S) do
3 foreach Schema Sσ ∈ PERMUTE(S′) do
4 if Sσ |= SY then
5 New Connection: ((X, SX), (Y, SY), µ);

240

16.4 Solutions

 S X

 S 2 S 3 S 4 S 5 S 6

 S 8 S 9 S 7

.

τ2 τ7 τ13 τ34 τ48

τ7 τ10 τ13

Figure 16.7: Transformation tree

The naïve implementation of f has two parameters. It must be called with a
producer X having the schema SX as first argument and a consumer Y having the
schema SY as second argument. At first, a loop traverses all nodes in the tree that is
created by TRANSFORM(SX, TBU). This procedure creates a tree that has schemas as
nodes and the schema SX as root. Its edges are transformations taken from TBU . Fig-
ure 16.7 depicts such a transformation tree. The second level consists of all schemas that
are created by applying every applicable transformation (see Definition 23) τ ∈ TBU

to the root node. For each node at the second level, every applicable transforma-
tion τ ∈ TBU is applied to it. The other levels are created in the same way so that
a transformation tree contains all schemas that can be created via a combination of
basic transformations being applied to SX. A transformation τ ∈ TBU is called poten-
tially applicable to a producer schema if and only if the corresponding transformation
tree has at least one edge labeled with τ. In practice, only a small fraction of TBU is
potentially applicable. For example, a conversion is potentially applicable only if the
producer schema contains its required attribute or its required attribute is contained in
the image of another potentially applicable transformation (PAT). Additionally, every
transformation is allowed to occur at most once on every path. It is possible that users
have specified a set of conversions that can destroy the image of a PAT completely (the
simplest case are two conversions being inverse to each other). Then, this PAT would
be applicable multiple times on a single path, but not result in new nodes. Instead, a
cycle that leads to infinite paths would have been created. Such undesired cycles are
prevented by forbidding repeated applications of a transformation on a path.

A second loop iterates over all subsets for each node of the transformation tree. The
algorithm P(S) creates the powerset of S (i.e., S is interpreted as a set of attributes).
Then, the algorithm PERMUTE(S) creates every permutation of the attributes in a set

241

16 Automatic Matchmaking in Real-Time Data Stream Processing

S and a third loop iterates over all those permutations. Finally, every schema cre-
ated by the three loops is checked whether it matches the consumer schema. If so, a
connection can be created but not established yet. Note that the mapping µ of this
connection has been already computed by the three loops. The path from the root of
the transformation tree to the node currently being visited gives the composition of
basic transformations. Furthermore, the projection has been computed by the loop
in the middle and the innermost loop defines the order of attributes. At the end, we
select the connection with the shortest mapping if multiple connections have been cre-
ated. In case of the naïve and optimized solutions, there may be multiple connections
with this property. However, we do not study this problem in detail, because the final
solution (fast matchmaking) always gives a clear connection at this point.

Before we can analyze the time complexity of Algorithm 23, we must name the
most important parameters first. Let C be the total number of candidates, NP be the
average number of attributes of the producer schemas and NC be the average num-
ber of attributes of the consumer schemas. Furthermore, let M be the average size of
the transformation trees being measured in total number of nodes and let the param-
eter NT represent the average number of attributes of a node of a transformation tree.
Note that it is always the case that NT ≥ NP, because there is no type of basic trans-
formation which reduces a schema but two types (merge and split) which extend a
schema. On basis of these parameters, we can determine the time complexity of naïve
matchmaking (Algorithm 22 in conjunction with Algorithm 23) as follows:

O(C ∗M ∗ 2NT ∗ NT ! ∗ NC)

For each candidate, Algorithm 23 must be executed exactly once. Its execution com-
prises traversing the entire corresponding transformation tree, iterating over the pow-
erset for each node of the transformation tree and iterating over all permutations for
each element of the powerset. Finally, the check whether a created schema matches the
candidate schema requires at least traversing all attributes in the consumer schema.
The size M of the transformation tree is influenced by the total number of PATs, de-
noted by x. In the worst case, every PAT is applicable to the root node and never
becomes non-applicable because of the application of other PATs. Then, the corre-
sponding transformation tree has as many levels as PATs and a size M according to:

M(x) =

Level︷ ︸︸ ︷
∑

0≤i≤x

#Nodes/Level︷ ︸︸ ︷
x!

(x− i)!

242

16.4 Solutions

16.4.3 Optimized Matchmaking

The analysis of the time complexity of naïve matchmaking clearly shows that the
brute-force computation of connections is way too expensive for practical uses. In
particular, the iterations over the powerset and over all permutations of each element
of the powerset are already for mid-sized schemas extremely costly (see also our ex-
periments in Section 16.6.2). Recall that these iterations are used to check whether a
certain node in the transformation tree matches the schema of the consumer and, if
so, to provide the projection and the permutation of the corresponding mapping. This
problem is very similar to the well-known problem of schema matching. There is a
more efficient solution to the schema matching problem in the form of nested loops
that compare each attribute of one schema to every attribute of the other [RB01].

Algorithm 24: OPTIMIZEDMATCHMAKING((X, SX), (Y, SY)
Input: Producer: (X, SX), Consumer: (Y, SY)

1 foreach Schema S ∈ TRANSFORM(SX , TBU) do
2 foreach Attribute A ∈ S do
3 foreach Attribute A′ ∈ SY do
4 if A |= A′ then
5 remember positions of A′ and A;

6 if ∀A′ ∈ SY : ∃A ∈ S : A |= A′ then
7 New Connection: ((X, SX), (Y, SY), µ);

Algorithm 24 shows an improved implementation of f . For each schema in the trans-
formation tree, the second loop iterates over all its attributes and the third loop iter-
ates over all attributes of the consumer schema. As a result, every pair of attributes is
checked exactly once. If such a pair of attributes matches, the algorithm remembers
their positions within their corresponding schemas. This way the two innermost loops
determine the projection and the permutation of a mapping in quadratic time. After
the two innermost loops have finished, it must be checked whether there has been
found a matching attribute in the schema currently being iterated in the transforma-
tion tree for every attribute of the consumer schema. If so, a schema match has been
found and a new connection is created. The modification of the two innermost loops
results in an update of the third and fourth term of the time complexity:

O(C ∗M ∗ NT ∗ NC ∗ NC)

243

16 Automatic Matchmaking in Real-Time Data Stream Processing

16.4.4 Fast Matchmaking

Our final solution to the matchmaking problem differs in two aspects from the pre-
vious ones. First, the nested loops that check for matches between every node of a
transformation tree and a consumer schema are replaced by a more efficient approach.
Second, subtrees of a transformation tree are pruned if they do not contain matching
schemas or if they contain only schemas that have already been checked.

16.4.4.1 Zig-Zag Matching

The nested loops approach used in optimized matchmaking is taken over from the so-
lution to the schema matching problem in which nested loops compare each attribute
of one schema to every attribute of another schema. However, schema matching is
approximate using some similarity measure for scoring every pair of attributes. At
the end, those pairs that have the highest score above some threshold are selected.
In contrast, the match relation of matchmaking (i.e., |=) requires equality of attribute
names and types (nevertheless, features such as matching synonyms/hypernyms and
type conversions are still possible through the concept of transformations). Therefore,
schema matching in the context of matchmaking is a join problem for that better solu-
tions than nested loops are available. The strategy of fast matchmaking is to sort two
schemas being checked and to perform a modified zig-zag join [GUW08].

Figure 16.8 shows this kind of schema matching called zig-zag matching. Let the
upper sorted schema be a (transformed) producer and let the lower sorted schema
be a consumer. For the sake of simplicity, all attributes have the same type and no
properties. Zig-zag matching starts with a pointer to the first attribute of the consumer
and another pointer to the first attribute of the producer, which moves forward until
an attribute that matches the current attribute of the other pointer is found. Then, the

g
BYTEBYTE

fe
BYTEBYTE

d
BYTE
c

BYTE
b

BYTE
a

x
BYTEBYTE

w
BYTE
v

BYTE
e

BYTE
b

3 attributes left

2 attributes left

ABORT

MATCH MATCH

Figure 16.8: Zig-zag matching

244

16.4 Solutions

Type Schema transformation Superfluous pruning

Split τ1 : x → {a}
Conversion τ2 : y→ w
Merge τ3 : {z} → b
Split τ4 : y→ {c} 8
Conversion τ5 : z→ e 8
Merge τ6 : {x, w} → d 8

Table 16.1: PATs for a schema having the attributes x, y, and z

zyx

azyx zwx bzyx

azwx bazyx azwx bzwx abzyx bzwx

bazwx bazwx bazwx abzwx abzwx abzwx

Consumer: xwabzProducer:

τ1 τ2 τ3

8 8 8

8 8

τ2 τ3 τ1 τ3 τ1 τ2

τ3 τ2 τ3 τ1 τ2 τ1

Figure 16.9: Pruning of redundant nodes in a transformation tree

pointer to the consumer is moved to the next attribute and the pointer to the producer
starts from its current position in order to find the next match. Zig-zag matching
aborts early in the following situations. If for an attribute of the consumer no match
can be found, the pointer to the producer reaches the end and zig-zag matching stops,
because the pointers always move forward. Moreover, if the number of attributes
ahead the pointer to the consumer is greater than the number of attributes ahead the
pointer to the producer, then there is definitively no schema match possible and zig-
zag matching aborts. In Figure 16.8, the matching is aborted because the consumer
has still three attributes left but the producer has only two attributes left.

16.4.4.2 Pruning of Superfluous Transformations

Up to now, all PATs are used to create a transformation tree. The PATs are obtained
from the set of all active transformations TBU by filtering it on basis of constraints
coming from the producer schema. In real-world applications, only few transforma-
tions will remain as a PAT in general. Figure 16.9 shows a producer schema having the
attributes x, y and z. Assume that the six transformations shown in Table 16.1 are the
only PATs in TBU . All listed transformations except τ6 are PATs, because they are di-
rectly applicable to the producer schema. The merge τ6 is a PAT, because the producer

245

16 Automatic Matchmaking in Real-Time Data Stream Processing

schema contains its required attribute x and its other required attribute w is contained
in the image of τ2, which has already been identified as a PAT. All previous solutions
use these six transformations to create the transformation tree. But if we consider the
consumer schema (shown at the upper right corner of Figure 16.9), the set of PATs can
be further filtered on basis of constraints coming from the consumer schema.

Definition 24 (Superfluity). A PAT τ ∈ TBU is superfluous if and only if its image con-
tains no attributes of the consumer schema and there is no other PAT which is not superfluous
and requires an attribute of the image of τ.

Our first pruning strategy, called superfluous pruning, comprises removing all super-
fluous transformations from the set of all PATs before creating a transformation tree.
In the example shown in Table 16.1 and Figure 16.9, half of the PATs (namely τ4, τ5

and τ6) are superfluous and not used to create the transformation tree therefore.

16.4.4.3 Pruning of Redundant Nodes

Figure 16.9 shows a transformation tree created on basis of all PATs that are not super-
fluous. The tree has many nodes that are equal or differ only in the order of attributes
from each other. This kind of redundancy can be specified more precisely:

Definition 25 (Redundancy). Two nodes S1 and S2 in a transformation tree are redundant
to each other (denoted by S1 ' S2) if and only if all attributes of S1 are contained in S2 and
vice versa: S1 ' S2 :⇔ A ∈ S1 ⇒ A ∈ S2 ∧ A ∈ S2 ⇒ A ∈ S1

Obviously, redundancy is not affected by the order of attributes (set semantics). Be-
cause all basic transformations specify neither the positions of required attributes nor
their order and because of the subsequent permutation included in every mapping,
the relation ' behaves as if it is the equality relation. This means that a redundant
node is a duplicate and can be safely removed therefore. Before we develop a strategy
for the pruning of redundant nodes, we introduce the notion of independence.

Definition 26 (Independence). Two transformations τ1 and τ2 are independent of each
other if and only if ∀S ∈ S : (τ2 ◦ τ1)(S) ' (τ1 ◦ τ2)(S).

According to Definition 26, two adjacent transformations being independent of each
other can be safely swapped within a composition of transformations.

Theorem 6. A subtree of a transformation tree U which is started by some transformation
τ ∈ TBU contains only redundant nodes if on the path leading to U there exists a node S that
already has a subtree which is started by τ and all transformations on the path between U and
S are independent of τ.

246

16.4 Solutions

 S

 R

g
TS = TBU \ {τ|τ ∈ g}

τl τr
Ul Ur

Tl = Tr =
TS \ {τl} TS \ {τr}

Figure 16.10: Verification of redundant pruning

Proof. Consider the situation illustrated in Figure 16.10. Let TBU be an arbitrary set
of user-defined basic transformations and R be a producer schema (thus, the root of
a transformation tree). Furthermore, let S be an arbitrary node in the corresponding
transformation tree and g be a composition of transformations τ ∈ TBU with g(R) = S.
The composition g is allowed to be empty such that S = R. Because a transformation
can occur on every path at most once (see Section 16.4.2), every transformation in g
is excluded from paths beginning at S. The set TS contains all transformations that
are candidates for S and its subtrees. Let two different transformations τl ∈ TS and
τr ∈ TS be applicable to S. Let Ul be the left subtree of S with root τl(S) and candi-
date transformations Tl . Let Ur be the right subtree of S with root τr(S) and candidate
transformations Tr. Let h be a path (τl ◦ . . . ◦ τr)(S) starting at S and ending some-
where in Ur. It must be shown that every node following h(S) is redundant to a node
in Ul if all transformations in h are independent of τl .

Let S′ be a node that arises at the end of a path (h′ ◦ h)(S) with h as prefix (i.e., τl

has been applied before) and an arbitrary composition h′. We focus only on transfor-
mations in h that we assumed to be independent of τl . Via repeated swaps, τl can be
moved from the end of h to its beginning while the order of all other transformations
in h remains unchanged. The resulting path from S to S′ must be already contained in
Ul so that S′ is redundant to a node in Ul .

Theorem 6 allows the detection and the pruning, called redundant pruning, of sub-
trees that only contain redundant nodes. We integrated redundant pruning into a
post-order based creation of transformation trees. Before creating a subtree via some
transformation τl , it is checked whether there is a node S on the path created so far
that has a subtree starting with τl . If so, all transformations on the path between the
current node and S are checked whether they are independent of τl . In the case that
all those transformations are independent of τl , we stop and do not create the subtree

247

16 Automatic Matchmaking in Real-Time Data Stream Processing

of τl . The information whether two transformations are independent of each other is
obtained by querying a two-dimensional triangular matrix which stores for each pair
of transformations this information. This matrix is updated in linear time whenever a
user adds or removes a basic transformation. We identify two basic transformations τx

and τy as being independent of each other, if no attribute of the image of τx matches a
required attribute of τy and no attribute of the image of τy matches a required attribute
of τx. According to this definition, the transformations τ1, τ2 and τ3 in Table 16.1 are
identified as being independent of each other. All subtrees that can be safely pruned
are cut off by a cross and grayed out in Figure 16.9.

Algorithm 25: FASTMATCHMAKING((X, SX), (Y, SY)
Input: Producer: (X, SX), Consumer: (Y, SY)

1 Schema S′Y ← SORT(SY);
2 foreach Schema S ∈ TRANSFORMFAST(SX , TBU) do
3 if ZIGZAGMATCHING(SORT(S), S′Y) = TRUE then
4 New Connection: ((X, SX), (Y, SY), µ);

Fast matchmaking shown in Algorithm 25 combines all optimization techniques. The
nested loops of optimized matchmaking have been replaced by zig-zag matching and
the procedure that creates and traverses transformation trees has been replaced by
TRANSFORMFAST that performs superfluous pruning and redundant pruning in ad-
dition. The time complexity is updated due to zig-zag matching as follows:

O(C ∗ [NC ∗ log NC + M ∗ ((NT ∗ log NT) + (NC + NT))])

16.5 Implementation

We implemented the matchmaker including all three solutions being presented in this
chapter as a JEPC extension that can be used purely on top. Therefore, our match-
maker extension can be combined with all EP providers that are supported by JEPC.
Since our implementation uses only the core API of JEPC which is an abstraction of
the APIs of SPEs, it is sufficiently flexible to be easily ported to other SPEs.

Table 16.2 shows the core API of our implementation. It provides basic function-
ality for stream processing, but the notion of a data stream has been removed com-
pletely. For example, instead of registering a data stream MillingMachines into which

248

16.5 Implementation

Method Description

ADDTRANSFORMATION(τ) Adds a user-defined basic transformation τ

REMOVETRANSFORMATION(τ) Removes the user-defined basic transformation τ

REGISTERPRODUCER(S) Registers a new producer having schema S
UNREGISTERPRODUCER(ID) Unregisters the producer with identification ID
UPDATEPRODUCER(ID, S) Replaces the schema of the producer ID by S
REGISTERCONSUMER(S) Registers a new consumer having schema S
UNREGISTERCONSUMER(ID) Unregisters the consumer with identification ID
UPDATECONSUMER(ID, S) Replaces the schema of the consumer ID by S
CREATEQUERY(CQ) Creates and executes a continuous query CQ
DESTROYQUERY(ID) Destroys the query with identification ID
UPDATEQUERY(ID, CQ) Replaces the query with identification ID by CQ
PUSHDATAITEM(ID, DI) Pushes the data item DI for the producer ID

Table 16.2: API of matchmaker

Algorithm 26: PUSHDATAITEM(ID, DI)

Input: Producer: ID, Data Item: DI

1 Data Item DI′ ← Add static values to DI;
2 foreach Connection (ID, consumer, µ) ∈ LOOKUP(ID) do
3 Data Item DI′′ ← µ(CLONE(DI′));
4 Forward DI′′ to consumer;

all milling machine sensors push their data items, every milling machine sensor reg-
isters individually by sending its schema to the matchmaker. Then, a unique iden-
tification is returned and matchmaking (see Algorithm 22) is performed for the new
data producer. Exactly the same is done for every data consumer. Registered data
producers and consumers use their identifications to update the schema and to unreg-
ister. In case of data producers there are two more aspects. First, a data producer also
uses its identification to push new data items. Second, the matchmaker remembers all
attributes being declared as static and the corresponding static values. These values
that will not change for a period of time must not be send anymore. Consequently,
this reduces the amount of data to send and improves the overall performance. For
example, the sensor of milling machine 42 in Figure 16.1 declared the attributes mid
and place as static (note that StaticValue is a special property in our implementation).
Thus, the sensor announces that these values will not change for all future data items
until it updates its schema and that it will send data items containing only values for

249

16 Automatic Matchmaking in Real-Time Data Stream Processing

Algorithm 27: CREATEQUERY(CQ)

Input: Continuous Query: CQ

1 foreach Operator MATCH(S)∈ CQ do
2 REGISTERCONSUMER(S);

3 REGISTERPRODUCER(GETOUTPUTSCHEMA(CQ));
4 EXECUTE(CQ);

temperature and consumption. All other attributes are declared static and attached auto-
matically within the matchmaker before forwarding to data consumers. Algorithm 26
shows the corresponding steps in detail. The matchmaker attaches all static attributes
and performs a lookup for obtaining all established connections. For each established
connection, the matchmaker clones the enriched data item, applies the corresponding
mapping and forwards the result to the specified data consumer.

The loss of the notion of a data stream has an important implication for the spec-
ification of the inputs of continuous queries and data sinks. Instead of selecting one
or more data streams, one or more input schemas must be specified. For this purpose,
we adopted the MATCH operator known from schema matching [RB01] (note that this
operator has a completely different meaning in schema matching). Listing 16.3 gives
examples of this operator in JEPC-QL. Its only parameter is a schema definition. In
JEPC-QL, a schema is defined as a list of attribute definitions separated by commas.
An attribute definition consist of three parts. At first, the attribute name must be de-
fined. Then and separated by a colon, the attribute type must be defined. Lastly, a set
of key-value pairs (i.e., the attribute properties) can be defined. Algorithm 27 shows
how the matchmaker handles continuous queries that include the MATCH operator.
We focus only on continuous queries that produce exactly one type of output. But it is
straightforward to handle also continuous queries with multiple outputs. Appendix B
presents a complete example of our implemented matchmaker and is intended to give
a better impression of this novel kind of stream processing.

16.5.1 Parallelization

Matchmaking can be parallelized. The obvious and best opportunity is to partition
the set of candidates in Algorithm 22 and to process the partitions of candidates in
parallel. Since there are no dependencies between two candidates, a maximum de-
gree of parallelization can be achieved. However, our current implementation runs
sequentially and parallelization is on our agenda for future work.

250

16.5 Implementation

16.5.2 Query Updates

Note that the matchmaker API shown in Table 16.2 provides a method for updating
a running continuous query. This method has no counterpart in the traditional API
of stream processing and is not supported by today’s SPEs. Therefore, we had to im-
plement our approach to updating CQs on-the-fly (see Chapter 18) also for the match-
maker. As a pleasant side effect, the matchmaker has an interesting positive impact on
our proposed approach. In the traditional stream processing paradigm that deals with
fixed and user-defined data streams, there is exactly one but naturally given restriction
in our proposed approach. This restriction is that the output schema of an updated
query definition must be equal to the output schema of the original query definition.
However, this restriction ceases to exist when the matchmaker is used. In particular,
this means that the definition of a running continuous query can then be exchanged
for any other definition. The connections to the inputs as well as from the output are
recomputed by the matchmaker. Of course, if the output schema changes it may be
that some connections disappear and/or completely new connections are established.

16.5.3 Properties

Throughout this chapter, we always assume that users explicitly specify the properties
of attributes. The semantic enrichment of attributes is crucial for the quality of the
automatically established connections and should be done carefully therefore. But
there is also the possibility to derive or generate properties (semi-)automatically. For
example, assume sensors that fly in balloons over a whole country (e.g., for measuring
meteorological data such as temperature, humidity and air pressure). Every sensor
provides its geographic coordinates (e.g., via GPS) as a property. Additional higher-
level properties can be derived from the coordinates. For instance, a property can be
added that gives the name of the city where the sensor is closest to. Then, a query can
specify a city of interest in its input schemas. The matchmaker takes care that only
sensors close to that city are connected with the query. Note that properties such as
the position of a (slowly) moving object are allowed to change with low frequency. In
fact, the method to update producers is mainly provided for updating the properties
from time to time (schema evolutions are also supported but expected to be quite
rare). Even if experts say that state-of-the-art metadata generation techniques cannot
completely replace humans [GSC06], we think that it is interesting future work to
adopt current and future techniques for (semi-)automatic metadata generation from
active research done in the area of the Semantic Web [Dil03, HSC02, Kir04].

251

16 Automatic Matchmaking in Real-Time Data Stream Processing

16.6 Evaluation

To evaluate the presented solutions to the matchmaking problem and our implemen-
tation, we conducted several experiments on a machine with an Intel i7-2600 3.4 GHz
processor and 8 GiB main memory running Oracle JRE 1.7.0_13 and Esper 4.9.0.

16.6.1 Impact on Performance

Concerning the design and implementation of the matchmaker, we primarily cared
about not introducing overhead that decreases the performance at runtime. Therefore,
we decided to compute fine-grained connections in an offline manner. At runtime,
all established connections are simply looked up for a new data item. Although a
positive impact on the runtime performance was not a goal of our work, we observed
an interesting effect that is caused by the fine-grained connections the matchmaker
establishes. For a producer that does not match the desired properties of a consumer
there is no connection established even if their schemas without properties match.
This implements an efficient filter mechanism in front of all running queries.

In the first experiment, we executed three different query workloads each consist-
ing of exactly two continuous queries that implemented the motivating example de-
scribed in Section 16.1. Every set of queries computed the average temperature over
the last 50 measurements of milling machine 42 and converted the temperature values
for Alice and Bob differently. Two different workloads consisted of queries with dif-
ferent definitions so that the resulting processing of data items differed. The first two
workloads contained query definitions conforming to the traditional stream process-
ing paradigm and the third workload made use of the matchmaker.

1 @Name("Alice")

2 select (35+(avg(temperature) * 9f/5f)) as temperature, place

3 from MillingMachines.std:groupwin(place).win:length(50)

4 group by place

5 having place = 10;

6

7 @Name("Bob")

8 select mid,(avg(temperature) + 273.15f) as temperature

9 from MillingMachines.std:groupwin(mid).win:length(50)

10 group by mid

11 having mid = 42;

Listing 16.1: Test queries of “Esper 1” in Esper EPL

252

16.6 Evaluation

1 create window AliceSub.win:length(50) select temperature, place

2 from MillingMachines;

3 insert into AliceSub

4 select cast(35f + (temperature * 9f / 5f), float) as temperature, place

5 from MillingMachines(place = 10);

6 @Name("Alice")

7 select avg(temperature) as temperature, place

8 from AliceSub;

9

10 create window BobSub.win:length(50) select mid, temperature

11 from MillingMachines;

12 insert into BobSub

13 select mid, cast(temperature + 273.15f, float) as temperature

14 from MillingMachines(mid = 0);

15 @Name("Bob")

16 select mid, avg(temperature) as temperature

17 from BobSub;

Listing 16.2: Test queries of “Esper 2” in Esper EPL

1 (SELECT AVG(temperature) AS temperature, place

2 FROM MATCH(temperature:FLOAT {(UnitOfMeasurement,DegreesFahrenheit)},

3 place:SHORT {(StaticValue,10)}

4) WINDOW(COUNT 50 EVENTS)

5 GROUP BY place

6) AS Alice;

7

8 (SELECT mid, AVG(temperature) AS temperature

9 FROM MATCH(mid:SHORT {(StaticValue,42)},

10 temperature:FLOAT {(UnitOfMeasurement,DegreesKelvin)}

11) WINDOW(COUNT 50 EVENTS)

12 GROUP BY mid

13) AS Bob;

Listing 16.3: Test queries of “Esper M” in JEPC-QL

The queries of the set Esper 1 (see Listing 16.1) are expressed in Esper EPL and define
the selection of M42 and the conversion of temperature values after the computation
of the average temperature value. In contrast, selection and conversion are defined
before the aggregation by the queries of the set Esper 2 (see Listing 16.2). The queries
of the set Esper M (see Listing 16.3) are expressed in JEPC-QL and define only the
aggregation, because they use the MATCH operator. Selection and conversion are part
of the individual views of Alice and Bob (see Figure 16.1) which are the arguments of
the MATCH operator and specify how incoming data items must look like.

253

16 Automatic Matchmaking in Real-Time Data Stream Processing

0 5 10 20 30 40 50 60 70 80 90 100

10
0k

50
0k

2M
10

M
50

M

Esper 1
Esper 2
Esper M

Total Number of Milling Machines

D
at

a
Ite

m
s

/ S
ec

on
d

Figure 16.11: Impact on runtime performance

We executed each set of queries separately and measured the maximum possible event
throughput. Esper 1 as well as Esper 2 were executed directly in the SPE Esper and Es-
per M was executed in Esper using the matchmaker on top. The data items came
evenly distributed from a size-varying set of different milling machine sensors that
always included the sensor of M42. Figure 16.11 shows our results. When the num-
ber of individual milling machine sensors was increased, also the number of irrele-
vant data items increased. Consequently, the filter condition contained in each single
query became more selective. The queries of Esper 1 could not take advantage of a
lower selectivity, because the filtering was performed only after the average temper-
ature value had been computed for every active milling machine sensor including all
irrelevant ones. But the queries of Esper 2 and the queries of Esper M benefitted from a
lower selectivity. In case of both workloads, all sensor readings not belonging to M42
were discarded before aggregation. Thus, the average temperature value was com-
puted only for M42 and not for irrelevant milling machines. Because the processing
steps of Esper 2 and Esper M were identical to each other, we can state that prevent-
ing irrelevant data items from entering continuous queries or a SPE (when there is
no fine-grained connection, the matchmaker does not forward data items) is more ef-
ficient than directly filtering data items after they entered the continuous queries or
the SPE. From the important perspective of runtime performance, it is beneficial to
compute fine-grained connections via the matchmaker. Additional costs only occur
for matchmaking in an offline manner. The superiority of Esper M to Esper 2 clearly
shows that the filter mechanism being inherent in the matchmaker is very efficient and
performs better than the filter mechanism of continuous queries executed in a SPE.

254

16.6 Evaluation

16.6.2 Evaluation of Matching Techniques

Among all three solutions to the matchmaking problem, there are three different tech-
niques for checking whether two schemas match and, if so, computing the projec-
tion and the permutation of the corresponding mapping (brute force matching, nested
loops matching and zig-zag matching). To determine the costs only of matching, the
setup of the next experiments was as follows. There were absolutely no transforma-
tions defined so that every transformation tree consisted only of the root node keeping
the original producer schema. One run of the experiment comprised exactly one in-
vocation of matchmaking. Therefore, we registered exactly one data producer and ex-
actly one data consumer at the matchmaker. This led to exactly one call of f , because
there was only one producer-consumer pair that must have been checked. Lastly, the
schemas of the data producer and consumer had the same number x of attributes in
total (thus, the same size) and were defined to not match.

For different total numbers of attributes x, Figure 16.12 shows the results using
the brute force matching of naïve matchmaking. The results of this experiment clearly
confirm what had already been indicated by the study of the time complexity of naïve
matchmaking: brute force matching becomes costly very quickly. For example, a pro-
ducer schema consisting of 12 attributes in total (which is not a large number in many
real-world applications) already required 3.4 minutes for iterating over the powerset
of the schema and over all permutations for each element of the powerset. Every fur-
ther increase of x led to totally unacceptable runtimes for matching. Recall that match-
ing is only one part of matchmaking. In general, the transformation tree consists of
many nodes and matching must be performed for each single node.

Total Number of Attributes

C
om

pu
ta

tio
n

T
im

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1s
1m

1h
1d

0.
00

3
se

co
nd

s

0.
00

3
se

co
nd

s

0.
00

4
se

co
nd

s

0.
00

4
se

co
nd

s

0.
00

4
se

co
nd

s

0.
00

8
se

co
nd

s

0.
01

9
se

co
nd

s

0.
04

7
se

co
nd

s

0.
17

9
se

co
nd

s

1.
5

se
co

nd
s

16
 s

ec
on

ds

3.
4

m
in

ut
es

48
 m

in
ut

es

12
 h

ou
rs 8
da

ys

Figure 16.12: Brute force matching

255

16 Automatic Matchmaking in Real-Time Data Stream Processing

1 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0
20

0
40

0
60

0
80

0
10

00

Nested Loops Matching
Zig−Zag Matching

Total Number of Attributes

C
om

pu
ta

tio
n

T
im

e
in

 m
s

Figure 16.13: Nested loops matching and zig-zag matching

Figure 16.13 shows the results for nested loops matching which is used in optimized
matchmaking and for zig-zag matching which is used in fast matchmaking. Both
matching techniques completed the computation within milliseconds, even for ex-
tremely large schemas. In case of small schemas, the results show that both of the tech-
niques were sufficiently fast. However, zig-zag matching clearly outperformed nested
loops matching and scaled significantly better with the total number of attributes.

16.6.3 Evaluation of Pruning Techniques

The following experiments were performed to investigate the pruning techniques and
the influence of external parameters. Our experimental setup consisted of a single
consumer and a single producer, again. The schemas of both had ten attributes and
zig-zag matching was always used for matching. We generated multiple sets of ac-
tive transformations. Each generated set had a different size, consisted of one percent
potentially applicable transformations with respect to the producer schema, and con-
tained no superfluous transformations with respect to the consumer schema.

Figure 16.14 shows the average matchmaking time for different total numbers of
active transformations. In particular, we compared the procedure TRANSFORM which
creates and traverses entire transformation trees (Without Redundant Pruning) to the
improved procedure TRANSFORMFAST which prunes redundant nodes in transfor-
mation trees (With Redundant Pruning). As the figure shows, the effect of redundant
pruning was significant. For instance, matchmaking with redundant pruning required
less than 50 milliseconds for 1,000 active transformations, whereas matchmaking with-
out redundant pruning required more than 15 seconds.

256

16.6 Evaluation

In the next experiments, we kept the basic setup but performed always fast match-
making. With respect to the consumer schema, many transformations are superfluous
in practice. Therefore, we relaxed the artificial condition that there are no superfluous
transformations and made a certain fraction of active transformations superfluous.
Figure 16.15 presents the results for different numbers of active transformations and
fractions of 10 %, 33 % and 67 % superfluous transformations. The figure shows that
already 33 % superfluous transformations led to a clearly better performance. A set of
transformations containing 67 % superfluous transformations resulted in significantly
lower computation time. In this configuration, fast matchmaking with 2,500 active
transformations finished within 13 milliseconds on average.

0 100 200 300 400 500 600 700 800 900 1000

0
10

50
20

0
1k

15
k

Without Redundant Pruning
With Redundant Pruning

Total Number of Transformations

C
om

pu
ta

tio
n

T
im

e
in

 m
s

Figure 16.14: Effect of redundant pruning

0 500 1000 1500 2000 2500

0
10

50
20

0
1k

9k

10 %
33 %
67 %

Total Number of Transformations

C
om

pu
ta

tio
n

T
im

e
in

 m
s

Figure 16.15: Effect of superfluous pruning

257

16 Automatic Matchmaking in Real-Time Data Stream Processing

0 500 1000 1500 2000

0.
25

0.
5

1
2

5
10

25

Group Size = 2
Group Size = 3
Group Size = 4

Total Number of Non−Independent Transformations

C
om

pu
ta

tio
n

T
im

e
in

 s

Figure 16.16: Effect of non-independence

Non-independence of transformations is another influencing parameter we had to ex-
amine, because non-independence potentially prevents the application of redundant
pruning (see Theorem 6). We used the same basic setup as in the last experiments. But
the set of active transformations was fixed this time and always consisted of 2,500 ac-
tive transformations. In addition, a fixed fraction of 33 % of all active transformations
was superfluous with respect to the consumer schema. Among all 2,500 active trans-
formations, we varied the amount of non-independent transformations. Figure 16.16
shows the results for different configurations of this experiment. On the x-axis, the
total number of non-independent transformations is given. For example, a value of
1,000 means that 1,000 of the 2,500 active transformations were non-independent. The
non-independent active transformations were generated as follows. We partitioned
all active transformations that should become non-independent in groups of 2, 3 or
4 active transformations each. Within each group, the active transformations were
made non-independent in the form of a chain. For instance, in a group {τx, τy, τz} of
size 3, the transformation τy was dependent on τx and τz was dependent on τy such
that τy could be only applied after τx and τz only after τy. Note that in real-world ap-
plications non-independent transformations tend to be part of longer chains, because
users are forced to express one complex transformation in the form of multiple basic
transformations (recall that only conversion, split and merge are supported). Figure
16.16 shows that an increasing amount of non-independent active transformations re-
duced the effect of redundant pruning. However, the degree of reduction became less
influencing the longer the chains of non-independent transformations were.

258

16.7 Related Work

16.7 Related Work

The proposed component for automatic matchmaking touches on multiple different
research areas. In this section, we give an overview of all relevant related work and
discuss the similarities as well as the differences to automatic matchmaking.

Schema Matching. Schema matching has gained much attention in the past and is
related to automatic matchmaking, because automatic matchmaking includes schema
matching as an integral part. Most proposed techniques only support the process of
manual matching (e.g., via graphical user interfaces or electronic advisors). Auto-
matic schema matching requires additional context data (corresponding instances of
schemas for example) besides schema definitions [RB01]. However, automatic schema
matching is quite complex and, more importantly, approximate using some distance
measure. In contrast, the schema matching part of automatic matchmaking is simple
and exact. In fact, it is a problem of join processing rather than a problem of auto-
matic schema matching. For the handling of differences between schemas, automatic
matchmaking includes the powerful concept of transformations.

Schema Mapping. Schema mapping deals with the problem of creating a query that
maps between two disparate schemas [MHH00]. It is related to automatic matchmak-
ing in two different ways. First, a suitable mapping must be found in schema mapping
at first. This is similar to the concept of transformations used by the matchmaker. Our
presented matchmaker uses a set of user-defined transformations and tries to combine
them accordingly so that two originally disparate schemas match. Second, a found
mapping must be applied in schema mapping as final step. In schema mapping, a
found mapping is applied in the form of a query. Of course, this approach would also
be applicable in case of the matchmaker. But we decided to apply the mappings within
the matchmaker component rather than by CQs within the used SPE, because our ex-
perimental evaluation showed that mappings can be applied by the matchmaker as
efficiently as or even more efficiently as by CQs within a SPE.

Implicit Type Conversions. The concept of transformations is inspired by program-
ming languages that convert types automatically. In almost all programming lan-
guages, different numeric built-in types can be combined in computations without
explicitly converting them to a common supertype. Moreover, some modern pro-
gramming languages such as Scala allow to define such implicit type conversions also
for non-primitive built-in types (e.g., lists) and arbitrary user-defined types [OSV11].

259

16 Automatic Matchmaking in Real-Time Data Stream Processing

Semantic Web. In the Semantic Web [BHL01], also designated as the next generation
of the Web aka Web 3.0 [Hen09], machines are able to interpret information produced
by humans (or other machines) and to make use of it in any kind of processing. One
of the most important technologies of the Semantic Web is the resource description
framework (RDF). Via RDF, it is possible to represent data in such a way that machines
can easily process it. The specific representation is quite simple but powerful. Every
atomic information is stored as a triple consisting of an entity (or resource), a key
(or predicate) and a value. Because a collection of RDF triples forms a graph, it is
easy to determine whether and how an object is related to another object. Automatic
matchmaking implements the main idea of RDF in the form of properties. But instead
of using a central storage that keeps all context information as triples, properties are
stored as key-value pairs directly at the entities in automatic matchmaking.

Publish/subscribe. Publish/subscribe is a paradigm in which distributed elements
exchange messages anonymously via a centralized mediator without specifying or
knowing the receivers of a message. The result is the entire decoupling of elements
in time, space and synchronization [Eug03]. This kind of decoupling and flexibility
is necessary in large-scale systems that are distributed across a complex computing
network. While the decoupling of data producers and data consumers in space via
a central broker is also implemented by automatic matchmaking, the decoupling in
time and synchronization would conflict the requirements of real-time processing. In
contrast to publish/subscribe where distributed elements exchange arbitrary and po-
tentially heterogenous messages, stream processing requires the transport of masses
of data items, which are homogenous per producer, in real-time. Type-based pub-
lish/subscribe and topic-based publish/subscribe are quite the same as state-of-the-
art stream processing that models data streams to represent a certain type or topic
and, thus, are also too inflexible. In contrast, content-based publish/subscribe is at-
tractive due to the resulting flexibility. However, computing all receivers for every
single incoming data item individually imposes high runtime overhead that violates
the stream processing requirements and is unacceptable therefore [Kal05]. Content-
based publish/subscribe also contradicts the fact that stream processing deals with
relatively stable connections that change not or only with a low frequency (compared
to the frequency of data items). Therefore, automatic matchmaking solves the match-
making problem per producer-consumer pair only once instead for every singly data
item. As long as producer and consumer of a connection do not change, the connec-
tion between them keeps established and leads to a very efficient flow of data.

260

16.7 Related Work

Multisensor Data Fusion. Multisensor data fusion combines data from multiple
(and maybe heterogenous) sensors to achieve improved accuracies and more specific
inferences than could be achieved by the use of a single sensor alone [HL97]. Be-
cause of the fine-grained connections that are allowed to have individual mappings,
the matchmaker is also able to merge data coming from multiple (and maybe het-
erogenous) sensors. However, multisensor data fusion goes further. It also handles
uncertainty and conflicts that can arise by combining different sensors [BN09].

TelegraphCQ. Adaptive routing of data items was addressed intensively by Tele-
graphCQ [Cha03]. So-called Eddies are used to dynamically route data items between
query operators. This allows for re-optimzation of query execution in an online man-
ner and on per data item basis. However, Eddies are only able to change the execution
order at runtime and do not implement a single feature of the proposed matchmaker.
Moreover and as already stated two paragraphs before, decision making on per data
item basis introduces tremendously overhead.

Complex Event Processing. The concept of matchmaking was previously proposed
by Luckham as an important component of complex event processing (CEP) [Luc02].
To the best of our knowledge, this matchmaker has been never implemented.

Summary

This chapter introduces automatic matchmaking that enables stream processing appli-
cations to manage all connections automatically and dynamically at runtime in order
to achieve self-adaptivity. In strong contrast to content-based publish/subscribe, data
consumers select entire streams of data items and not single data items in the con-
cept of automatic matchmaking. We present algorithms and several optimizations
for the efficient computation of fine-grained connections between the data producers
and data consumers of a stream processing application. Connections are established
between not only data producers and data consumers that perfectly match, but also
data producers and data consumers that slightly differ in semantics. Therefore, we
propose the powerful concept of transformations that resolve semantical differences.
Once established, a connection transfers the data items from a producer to a consumer
without any significant overhead and respects the important real-time requirements
of stream processing therefore. Experiments prove that our proposed approach is able
to compute connections in reasonable time.

261

17
Event Stores

Outline
17.1 Introduction . 264

17.2 Event Store Interface . 265

17.3 JDBC Event Store . 267

17.4 In-Memory Event Store . 268

17.5 B+-Tree Event Store . 268

263

17 Event Stores

17.1 Introduction

One of the main characteristics of data stream processing is that data items are kept
in main memory and only as long as they are needed for processing. From a tech-
nical point of view, this is due to the large (potentially unbounded) volume of data
streams as well as the high performance requirements in terms of low latency and
high throughput. And from the view of an application, older data items (e.g., log en-
tries) are very often of no or only little interest. For all these reasons, a data item is
discarded when it is no longer needed for the evaluation of continuous queries. How-
ever, there are also several good reasons for archiving data items:

Data Provenance. Stream processing systems are popular and the first choice in
time-critical applications because of their low latency. They are able to detect op-
portunities and risks in near real-time. However, quick response to such situations
requires not only fast detection, but also fast reaction. Usually, the outputs of contin-
uous queries are consumed by software or hardware components that automatically
trigger reactions which can have a huge impact. For instance, algorithmic trading
applications could buy stocks for billions of dollars or monitoring applications could
control public infrastructure autonomously (e.g., shutting down a power plant). Be-
cause of the scope of such decisions, it is important to be able to exactly reproduce why
an action was triggered by a system (particularly in case of suboptimal decisions). For
this reason it must be known which data entered the system and which were the (in-
termediate) results of computations [BKT00, GD07, SPG05].

High Availability. Some systems must be available at all times (e.g., monitoring sys-
tems in safety-critical domains such as nuclear power plants). For achieving high
availability, there are two common approaches. In one approach, a second system
which is an exact copy of the original system is running in parallel. If one of the two
systems fails, the other can take over immediately. The other approach also requires a
second system but is more economical, because the second system is not running until
the original system fails. Only then it is started and replaces the original system. If
the systems have a state such as an EP provider, the rescue system first must reach a
consistent state. Until then both systems are not available. In many cases the start-up
time of the rescue system can be dramatically reduced, if the most recent history is re-
peated. This requires to always keep (the most recent) historical data. In Chapter 18,
we use historical data to quickly start and update continuous queries.

264

17.2 Event Store Interface

Historical Analysis. In many application domains, it is necessary to analyze his-
torical data. Some important use cases are forecasting and anomaly detection. For
example, an anomaly can be specified (and, thus, detected) only if the normal state
is known. Very often, the normal state is defined as the state that was valid in the
past [Den87]. Therefore, historical data is needed to compute models describing the
normal state. Historical analysis and stream processing are complementary. Derived
models can be used to define continuous queries that detect anomalies.

IT Compliance. Enterprises are forced by law to store some data for a certain period
of time. For example, data related to financial transactions must be kept in almost all
countries. It is needed to check the annual financial statements. If important data is
not available, many countries such as Germany punish enterprises and responsible
managers personally with harsh penalties according to the law.

JEPC can optionally record external event streams as well as output event streams of
EPAs. If recording is enabled, JEPC stores events via an interface that abstracts from
so-called event stores. This interface specifies simple methods for recording and query-
ing event streams and can be implemented via adapters by a wide range of existing
storage systems. In the next section, we describe the event store interface at first. The
subsequent sections then present three different implementations of it.

17.2 Event Store Interface

The event store interface is designed to be simple and general in order to enable as
many as possible different types of storage systems to (efficiently) implement it. Al-
most all methods are for the purpose of either recording or querying events. The core
of JEPC itself utilizes only a few methods for the recording of event streams. But
applications and extensions on top of JEPC have access to a connected event store.
Therefore, more methods than needed by JEPC core are specified and provided.

The most important methods for recording event streams are shown in Table 17.1.
Before an event stream can be recorded, it must be registered via REGISTERSTREAM.
The unique name of the event stream must be given as argument. Also its schema
is expected as argument. This is because some types of storage systems (e.g.,
relational database systems) require this information. Registered event streams
can be unregistered (UNREGISTERSTREAM), removed (REMOVESTREAM), suspended
(SUSPENDSTREAM) and resumed (RESUMESTREAM). The meanings of these methods
are as follows. While UNREGISTERSTREAM makes an event stream unavailable until it

265

17 Event Stores

Method Description

REGISTERSTREAM(n,s) Registers the event stream named n having schema s
UNREGISTERSTREAM(n) Unregisters the event stream named n
REMOVESTREAM(n) Removes the event stream named n
SUSPENDSTREAM(n) Suspends the recording of the event stream named n
RESUMESTREAM(n) Resumes the recording of the event stream named n
GETSTREAMS(n) Gets a set containing the names of all registered event streams
GETSCHEMA(n) Gets the schema of the event stream named n
GETEVENTCOUNT(n) Gets the total number of stored events for the event stream n
GETLATESTTIMESTAMP(n) Gets the latest timestamp of the stored event stream named n
PUSHEVENT(n,p,ts ,te) Inserts a new event (p, ts ,te) into the event stream named n

Table 17.1: Methods for recording event streams

Method Description

GETHISTORY(n) Gets an iterator over the event stream named n
GETHISTORYINVERSE(n) Gets an inverse-directed iterator over the event stream

named n beginning with the latest event
GETHISTORYMOSTRECENT(n,t) Gets an iterator over the event stream named n

beginning at time instant t
GETHISTORYTIMEPOINT(n,t) Gets an iterator over all events being valid at time

instant t of the event stream named n
GETHISTORYTIMERANGE(n,t1 ,t2) Gets an iterator over all events being valid in [t1 : t2] of

the event stream named n
QUERYATTRIBUTES(n,t1 ,t2 ,m) Gets an iterator over all events being valid in [t1 : t2]

and fulfilling m of the event stream named n
QUERYSQL(q) Gets an iterator over the result set of the query q

Table 17.2: Methods for reloading and querying recorded event streams

is registered again, REMOVESTREAM also deletes all recorded events of it. Suspending
an event stream means that recording of new events is paused. The event stream itself
is still available (e.g., it can be queried). Recording of suspended event streams can be
continued by calling RESUMESTREAM. Furthermore, the interface specifies methods
to obtain all registered event streams, the schema of a registered event stream, the to-
tal number of recorded events and the latest timestamp of a registered event stream.
Lastly, new events are inserted via PUSHEVENT. This method expects an event with
time-interval semantics as argument. Internal events of JEPC have already the correct
format. For external events, we set te to ts + 1.

266

17.3 JDBC Event Store

Table 17.2 shows the most important methods for reloading and querying historical
data. The method GETHISTORY simply returns an iterator over all recorded events of
a stream. Events are iterated in temporal order starting with the oldest recorded event.
The method GETHISTORYINVERSE also gets an iterator over all recorded events, but
this time events are iterated in inverse direction. If not stated otherwise, all following
methods return iterators that give events in temporal order. The method GETHISTO-
RYMOSTRECENT again returns an iterator but it starts at a user-defined point in time.
Thus, this method can be used to get all events being valid between some past point
in time and now. The method GETHISTORYTIMEPOINT gets an iterator over all events
that are valid at a user-defined point in time. GETHISTORYTIMERANGE returns an it-
erator over all events being valid within a user-defined time interval. An extension of
this method is QUERYATTRIBUTES that requires selected events to fulfill user-defined
conditions in addition. Therefore, users can define for each attribute an arbitrary set of
desired values. Then, only events having the desired values for all restricted attributes
are returned. Lastly, QUERYSQL is provided for transmitting arbitrary textual queries.
This method has been added, because many storage systems have a declarative query
language. Analogues to JDBC, QUERYSQL simply forwards a textual query definition
directly to the underlying storage system and returns the result set.

17.3 JDBC Event Store

We implemented one adapter that maps the event store API to JDBC. Since the pay-
loads of events are already tuples, each event stream can be stored in its own database
table with the name and schema of the event stream. All query methods of the event
store API can be expressed in the form of simple standard SQL queries.

Via this adapter, every standard database system can be used as event store. This
gives all the advantages of standard database systems. In particular, recorded event
streams can be accessed by almost every data analytics tool via powerful SQL queries.
But there is also a remarkable downside. Standard database systems have an ex-
tremely poor write performance. This is because they are simply not designed for
recording high-speed data streams [SÇ05, Sto07a]. In addition, there is a tremendous
overhead imposed by components and features not directly related to data record-
ing and processing. Most of the overhead is caused by logging, locking, latching
and buffer management [Har08]. Because of the poor write performance, standard
database systems can only serve as event stores in JEPC applications that deal with
low-speed event streams. Otherwise, the event store becomes a bottleneck.

267

17 Event Stores

17.4 In-Memory Event Store

The in-memory event store is a tailor-made implementation of the event store inter-
face. It keeps each recorded event stream in a standard Java list and, thus, in main
memory. Obviously, recorded events are not written to external storage and only
small amounts of events can be kept, because the size of main memory is quite limited.
Eventually a maximum amount of events has been recorded so that the oldest must be
discarded to record new events. For all these reasons, the in-memory event store can-
not be used for all purposes that are listed in the introduction. However, it still became
a part of the JEPC core and is the default event store. One reason is its very good write
performance since no external storage is involved. It does not become a bottleneck in
JEPC applications therefore. Also its read performance is good. The in-memory event
store is provided mainly for supporting fast query starts and updates (see Chapter 18)
in JEPC applications that do not need events to be archived on external storage.

17.5 B+-Tree Event Store

So far, there are two different event stores. Unfortunately, none of them fulfills the
two most important requirements (use of external storage and excellent write perfor-
mance) at the same time. In this section, we present a high-performance implementa-
tion of the event store interface that writes events to external storage with near-optimal
write performance and achieves good read and query performance.

The B+-tree event store is highly optimized for fast recording of event streams and
fast reloading of their most recent histories. It was implemented using the XXL library
[BDS00, Ber01] that is a toolbox for building custom-tailored databases. Each event
stream is stored in its own B+-tree [GUW08] on the temporal dimension. Because
events arrive ordered by time per stream, the B+-tree event store is designed as an
append-only database [Ter92] and exploits the order to insert new events efficiently.
For each B+-tree, a certain number of full disk pages are buffered in main memory.
Once a buffer is full, a bulk insertion [BSW97, DeW94, Gra06] moves the buffered disk
pages from main memory into the B+-tree. This leads to the following advantages:
random I/Os are avoided because always multiple disk pages of the same index are
written in a sequence, the bulk insertion has linear I/O complexity and the space is
utilized optimally because leaf nodes can be filled up completely. The existing B+-tree
implementation of the XXL library was slightly extended for the B+-tree event store.
At the leaf level, we are using a double-linked list of disk pages (for time travels in

268

17.5 B+-Tree Event Store

Available on DiskDeleted Available in Buffer

Bulk
 Dele

tio
n

B+-Tree

Bulk Insertion

Buffer

Figure 17.1: Jumping B+-tree on event stream

both directions) and keep a reference to the disk page with the last inserted event.
Besides their use for bulk insertions, the buffers also allow to directly access the most
recent disk pages without querying the B+-trees. The B+-tree event store is scalable
by distributing the indexes across multiple disks. In the best case, each event stream
is written to its own and dedicated disk resulting in the highest possible write per-
formance. Because event streams are potentially unbounded, we have to remove the
oldest events when the available disk space is completely utilized. A different strat-
egy would be to aggregate them. The indexes support fast temporal point and range
queries that can be used to efficiently explore the B+-tree event store.

Figure 17.1 illustrates all important characteristics of our so-called jumping B+-tree,
which is tailor-made for recording and indexing high-speed event streams. Note that
new events are appended right-hand side in the figure. The most recent events of a
stream are stored in disk pages that are buffered in main memory. When the buffer
overflows, the B+-tree is purged first, if necessary, to free enough space on disk. There-
fore, the left branches of the B+-tree are removed by deleting all corresponding disk
pages and adapting the root node. Then, all buffered disk pages are moved from main
memory to the leaf level of the jumping B+-tree and a bulk insertion is performed to
efficiently create the branches at the right side of the tree.

To give some details about the performance of the B+-tree event store, we car-
ried out the following experiment. The test setup consisted of N parallel running
event streams. Each test event had a size of 28 bytes. A disk page had a size of
4 KiB and could keep 145 test events besides the metadata. Test events were pushed
evenly into all N event streams. The B+-tree event store used only one commodity
disk (WD1002FAEX with average access time of 8.9 ms) for recording all streams and
accessed it as a raw device. Each buffer had a size of exactly 100 disk pages.

269

17 Event Stores

1 500 1000 1500 2000 2500 3000

0
0.

25
0.

5
0.

75
1

Total Number of Requested Disk Pages

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds

Figure 17.2: Read performance of the event store

We pushed test events at the maximum possible rate and made the following observa-
tions and measurements. First, the number of parallel running event streams N (we
tested different configurations ranging from 1 to 100 parallel running event streams)
had no significant impact on the write performance, even when all indexes were
placed on the same disk. Second, the B+-tree event store recorded about three mil-
lion events per second on average.1 This means that the B+-tree event store wrote
events at a rate of about 80 MiB per second, which is close to the maximum write rate
of the used disk. During the experiment, the CPU utilization was quite low so that
the disk was clearly the limiting factor. Thus, the write performance can be scaled up
by using multiple disks. For examining the read performance, we made travels from
the end of a recorded event stream back in time (i.e., disk pages were requested in in-
verse order of their writing). Figure 17.2 shows the average time for reloading events
from the B+-tree event store as a function of the number of requested disk pages. The
costs for reading 1,000 disk pages were about 200 milliseconds. This corresponds to a
read performance of more than 725,000 events per second. Before the point 50 (that is
exactly half the size of the buffers) on the horizontal axis (marked by a dashed line),
almost all disk pages were delivered by the buffer located in main memory. After the
marked point, disk I/Os were necessary in general. Therefore, the needed time scaled
linearly with the number of requested disk pages starting at the point 50.

1Relational standard database systems reached a write performance in the order of a few thousand
events per second on the same machine.

270

17.5 B+-Tree Event Store

Summary

Despite the fact that stream processing is a main memory technology, there are good
reasons for archiving entire event streams or at least their most recent histories. JEPC
meets the requirements of applications that need to archive events by supporting the
connectivity to event stores. In this chapter, we introduce the interface used to ab-
stract from event stores and present three different implementations in total. One
implementation is based on JDBC and allows to use any standard database system
as event store. Another implementation maintains recorded events in list data struc-
tures in main memory. Because the first implementation has poor write performance
and the second does not durable store events, we present a third implementation that
records event streams with respectable write performance on external storage. It is
tailor-made and stores events in B+-trees on disk. Because of the append-only nature
of streams, we add events efficiently in batches via bulk insertions.

271

18
A General Approach to

Efficiently Updating Continuous

Queries On-the-Fly

Outline
18.1 Introduction . 274

18.2 Background . 274

18.3 Update Method . 278

18.4 Use Cases . 286

18.5 Related Work . 289

273

18 A General Approach to Efficiently Updating Continuous Queries On-the-Fly

18.1 Introduction

Today’s SPEs are not able to dynamically adapt to semantic changes in the application
context. This becomes a serious problem in context-sensitive applications. For exam-
ple, the normal total traffic in a computer network may differ noticeably between days
during the week and days at weekend so that suspicious values during the week could
be totally normal at weekends and vice versa. Because parameters are time-varying
in context-sensitive applications, CQs must also be time-varying.

In this chapter, we present a general approach to efficiently updating the defini-
tions of CQs at runtime. It achieves both efficiency and correctness at the same time
by utilizing a database for keeping the most recent histories of data streams. In partic-
ular, the recorded histories of data streams are exploited to completely fill up operator
states of newly created CQs rapidly. Our proposed approach allows to trigger query
updates as a reaction to changes in the application context and makes stream process-
ing applications adaptive therefore. Its implementation can be purely on top of a SPE
without the need to modify a single line of the source code.

18.2 Background

A serious problem with existing SPEs is that applications implemented with them
are static during runtime. The matchmaker (see Chapter 16) already overcomes the
problem of static connections. But still, no existing SPE allows to arbitrarily adapt the
processing logic (i.e., the set of all running CQs) to semantic changes in the application
context on-the-fly. This is due to the lack of functionality for updating CQs.

18.2.1 Problem Description

The problem of static CQs prevents the use of modern SPEs in some interesting appli-
cation domains. On closer inspection, also many application domains addressed by
modern SPEs are context-sensitive. For example, the support of anomaly detection
became an indispensable requirement for security monitoring applications [Bau15,
Gar12] and many other real-time monitoring applications. Anomalies are defined as a
remarkable difference from some normal state [CBK09]. Because a normal state may
be valid only within a certain context and change over time, static CQs are not an
appropriate foundation to support anomaly detection [HS13]. In fact, because stream
processing applications are intended to be long-term running (for weeks, months or
even years), most applications will require adjustments sooner or later.

274

18.2 Background

1 5 10 15 20 25 30 35

Lo
w

H
ig

h Historical Data Prediction

Time in Days

To
ta

l N
et

w
or

k
Tr

af
fic

Figure 18.1: Total network traffic of an ISP

Figure 18.1 plots the real total network traffic of an Internet service provider (ISP) in
England as a time series.1 The solid line is a section of the time series in the range
of three weeks. Obviously, the time series has different normal states. At five days a
week the total network traffic was significantly higher than at the other two days. The
two days with lower traffic were the days at weekend. For detecting anomalies (e.g.,
DDoS attacks), users could wish to deploy the query shown in Listing 18.1.

1 (SELECT ∗

2 FROM (SELECT AVG(traffic) AS avgTraffic

3 FROM TotalNetworkTraffic WINDOW(TIME 10 MINUTES)

4) AS AvgQuery

5 WHERE avgTraffic < normalTra f f ic - tolerance
6 OR avgTraffic > normalTra f f ic + tolerance
7) AS AnomalyDetectionQuery

Listing 18.1: Anomaly detection query

The listed query first computes the average total traffic within a time window of size
10 minutes. This is simply for smoothing the time series in order to become insensi-
tive to noise. Then, the averaged total network traffic is checked whether it is normal.
The normal value is specified by normalTra f f ic while tolerance is any positive num-
ber that allows for small deviations. This example definition is typical for anomaly
detection queries that check measurements whether they exceed a threshold. How-
ever, normal values are often not static and depend on the context (e.g., time, location,

1Data made available by [Cor12].

275

18 A General Approach to Efficiently Updating Continuous Queries On-the-Fly

or states of other objects). Figure 18.1 clearly shows that the value of normalTra f f ic is
dynamic and depends on the time. Therefore, the query definition must be periodi-
cally updated. In case of the example query above, the value of normalTra f f ic can be
predicted by a model we created specifically for the presented time series. On basis of
the history of the time series, we trained a hidden Markov model (HMM) [RJ86] ac-
cording to [WWW11]. In short, we segmented the time series via the Douglas-Peucker
algorithm [DP73]. The resulting segments were combined by using hierarchical clus-
tering [MR10]. Finally, we used the clusters to train a HMM. This model can be used
to forecast the future values of the time series for a given sequence of values. The
predictions made by our model are indicated as a dashed line in Figure 18.1.

Because arbitrary query updates are not supported by existing SPEs, anomaly de-
tection queries cannot be executed properly. In practice, there exist workarounds for
still executing some of them. One common workaround involves obtaining the cur-
rent value of normalTra f f ic from a databases system via a join operation. But this
workaround not only decreases the query performance because of the database query-
ing, it is also quite limited. It can only update constant values and only at places in
a query definition where database access is supported. Another naïve workaround is
substituting query updates by stopping the outdated query and starting a new one
that has the updated query definition. But this procedure has serious consequences.
Many queries including the query shown in Listing 18.1 are stateful. A newly started
stateful query needs some time until it produces semantically correct results. For in-
stance, a newly started query with the definition shown in Listing 18.1 requires 10
minutes until it reports semantically correct results. In the meantime, results must be
ignored. A monitoring system would be blind and not able to detect anomalies such
as denial of service attacks on the network. The issue becomes even more critical, if
the query state requires more time to become consistent than the time between two
updates. Then, a query will never reach a consistent state, because it is always re-
placed by a new one before. In the motivating example, this is true when the normal
total network traffic changes from low to high and from high to low. These changes
are gradually and require multiple updates of normalTra f f ic in a very short time.

Note that not only filter values should be updatable. Fully dynamic query defini-
tions must also allow to modify everything else. For example, it must be supported
to change the sizes of windows, to replace aggregates, and to completely redefine pat-
terns. Furthermore, it must be possible to replace, add and remove entire operators.
In extreme cases, a query definition must be exchanged for a completely different one.
Since the problem is vacant in all existing SPEs, a general solution is desirable.

276

18.2 Background

18.2.2 Dynamic Event Processing

In the future, event processing applications will be required to be more and more
adaptive at runtime. This, of course, includes the entire interconnection of all ele-
ments of an application that can be made adaptive by using the matchmaker. But
for fully dynamic EP applications also queries must be adaptive. The combination of
both results in a new kind of event processing that we call dynamic event processing
(DEP). Despite the fact that DEP can be implemented via extensions, we think that
every general-purpose SPE should have native functionality for (efficiently) updating
CQs at runtime. The importance of update functionality becomes clear when SPEs
are compared with their counterpart that are standard database systems. On the one
hand, DBMSs and SPEs have common roots. On the other hand, the paradigms of
both classes of information systems are inverse to each other. Data items are persis-
tent and queries are volatile in DBMSs. In contrast, the roles of data items and queries
are interchanged in SPEs so that queries are persistent and data is volatile. The set of
all persistent objects in an information system (data items in DBMSs and CQs in SPEs)
represents the current knowledge base and has a lifecycle that should be manageable
via basic methods to add, remove and update persistent objects. Table 18.1 compares
DBMSs and SPEs with respect to the supported lifecycle management methods.

Database systems Stream processing engines

Adding data items Adding continuous queries
Removing data items Removing continuous queries
Updating data items —————————————–

Table 18.1: Natively supported basic lifecycle management methods

As shown in Table 18.1, adding and removing of data items in DBMSs and of CQs in
SPEs are an essential part of their basic functionality, but updates are natively sup-
ported only by DBMSs. While an update can be substituted by a remove operation
followed by an add operation in case of DBMSs, this procedure cannot be used in case
of SPEs for the following reasons. First, a running CQ cannot be simply replaced by
a new one because CQs are stateful in general. Removing a running stateful CQ re-
moves also its state so that there is a loss of information. In addition, a stateful updated
version of a CQ starts with an empty state and produces incorrect results until its state
is completely filled up. Second, it is nearly impossible to perform updates determinis-
tically and reproducibly this way. Both problems are not acceptable in business-critical
applications. Therefore, CQs definitely require a native update method.

277

18 A General Approach to Efficiently Updating Continuous Queries On-the-Fly

RunningDestroyed

create /
quick-create

destroy

update

Figure 18.2: States and transitions of continuous queries

Figure 18.2 shows the most important states in which a CQ can be and all possible
transitions between them. A CQ starts in the state Destroyed. This means that the CQ
is neither running nor even known by the SPE. The state changes to Running, when
the CQ is initially created or quick-created (a technique for quickly starting a new
query is part of the update method presented in the next section). A running CQ can
be destroyed at any time. Then, its state changes to Destroyed. The last transition is for
updating a CQ on-the-fly. Thus, the CQ does not leave the state Running.

18.3 Update Method

In this section, we present our general update method. The only restriction is that a
new definition must preserve the output schema of the query being updated. Note
that this restriction ceases to exist when the matchmaker is used (see Chapter 16).
When a query is updated, there is usually the requirement to enable its new definition
as fast as possible. Therefore, our update method replays the most recent histories of
the input streams of a new query definition to quick-load all contained operator states
immediately after its creation. The switch from one definition of a query to a another
one should be deterministic and reproducible. This aspect also influenced our design
of an update method. Furthermore, we wanted our update method to be universally
implementable in as well as purely on top of different SPEs. The latter forced us to use
only basic data structures and functionality offered by all modern SPEs.

18.3.1 Preliminaries

The main algorithm of our update method needs some preparations that are described
in the following. Data streams must be enriched with additional information. A spe-
cial data sink is needed to maintain different running versions of the same query. We
also have to integrate a database for recording and replaying data streams. Finally, a
special data source that allows for quick-loading of queries is introduced.

278

18.3 Update Method

CQ

Filter
SinkCQ

CQ
Current Version = CQ

Switch Time = X

X

′

′′
′′

Figure 18.3: Filter sink

18.3.1.1 Data Streams

The first preparations concern the output schemas of all CQs. They are extended by
additional attributes. The first attribute that is added is named version. It is needed be-
cause CQs can exist in different versions and only one of the versions is allowed to be
active at a time. Therefore, each output data item of a CQ contains the version number
of the CQ by which it was created. To set the version information, a simple map oper-
ation is integrated into every query definition automatically. Another attribute must
be added only for data streams that do not contain an external time information. In
such cases, the missing time attribute is added to the schema and each incoming data
item is timestamped by the system clock.

18.3.1.2 Filter Sinks

Whenever a completely new CQ (i.e., the initial version) is created, a so-called filter
sink is created automatically and added simultaneously. A filter sink is implemented
as an ordinary data sink. Its task is to filter incoming data items on basis of its current
state. The state of a filter sink consists of a version information (Current Version)
as well as a temporal information (Switch Time). It can be set and updated from
the outside. Each filter sink consumes the output stream of its corresponding CQ and
also the output streams of all updated versions of the corresponding CQ. The version
information of the state of a filter sink determines the latest version of the CQ and
the temporal information determines the instant of time when the latest version has
or will become valid. With the help of a filter sink, we can forward all output data
items that were produced by the valid version of the corresponding CQ and block all
output data items coming from an outdated version or a version that is not valid yet.
In Figure 18.3, this use of a filter sink is illustrated for a CQ and two updated versions
of it. Algorithm 28 describes how a filter sink handles incoming data items.

279

18 A General Approach to Efficiently Updating Continuous Queries On-the-Fly

Algorithm 28: PUSHFILTERSINK((p, t))
Input: Data Item: (p, t)
Data: Timestamp: switchTime, clock,

Number: currentVersion

1 if (p.version = currentVersion and t ≥ switchTime)
2 or (p.version = currentVersion− 1 and t < switchTime) then
3 clock← t;
4 Payload p′ ← REMOVEVERSIONATTRIBUTE(p);
5 FORWARD((p′, t));

A filter sink works as follows. If the timestamp (in case of time intervals the start
timestamp) of an incoming data item is equal to or greater than the point in time
specified by switchTime, then the incoming data item is forwarded to the output if
and only if it was produced by the version that is specified by currentVersion. And if
the timestamp of an incoming data item is less than the instant of time specified by
switchTime, then the incoming data item is forwarded to the output if and only if it
was produced by the predecessor of the latest version (currentVersion - 1). In other
words, to achieve a clear, deterministic and reproducible switch from one version to
a new one, a certain point in time (switchTime) is defined for it. Before this instant of
time, the original version is the valid one. And beginning from the defined instant of
time, the new version is the valid one. Figure 18.3 shows a filter sink in action with its
corresponding CQ, an update of the CQ (CQ′) and an update of the updated version
(CQ′′). The output stream consisted of events from CQ at its beginning. At some later
point in time, the filter sink switched from CQ to CQ′. From this point in time, the
output stream consisted of data items from CQ′ while all data items from CQ were
blocked. The latest switch happened at the point in time x and enabled CQ′′. Thus,
data items coming from CQ as well as CQ′ were blocked and data items coming from
CQ′′ were forwarded starting at the point in time x.

Every filter sink makes available all valid incoming data items in the form of a new
data stream and removes the version attribute beforehand. Note that the timestamp
of an output data item clearly identifies the version of its corresponding CQ, because
at most one version is valid at a point in time in our approach. All data sinks and all
CQs that consume the output of a CQ are redirected to the output stream of its corre-
sponding filter sink. The last feature of a filter sink is that it can report the timestamp
of the last data item it put into its output stream (clock).

280

18.3 Update Method

18.3.1.3 Stream Store

For efficiency reasons, our update method requires a database system, called stream
store in the following, capable of recording and reloading data streams. To support
fast updates and high update rates, our update method needs access to the most recent
histories of data streams. Of course, we use one of the provided event stores in case of
JEPC (see Chapter 17). The output streams of all external data sources and the output
streams of all filter sinks must be recorded (i.e., all data streams than can be queried).
A replay of a data stream always begins at some past point in time t and gives all
events that happened since then in temporal order. In case of time-instant semantics,
a temporal range query that returns all data items in correct order is sufficient. But in
case of time-interval semantics, a replay is a bit more complex. At first, all events that
were valid at t must be reloaded in correct order. Note that the start timestamps of
those events can be any points in time before t. Then, a temporal range query gives all
events that started after the point in time t. The performance of updatable CQs (i.e.,
the time that is needed to enable a new definition) and the overhead (i.e., how much
is the overall throughput decreased) depend on the read and write performance of
the used stream store. Thus, the use of a high-performance stream store such as our
in-memory and B+-tree event stores is crucial in challenging applications.

18.3.1.4 Merge Sources

We developed a special kind of data source that we call merge source. A merge source
consumes exactly one existing output stream of either a CQ or an external data source
and forwards every incoming data item to its output stream. Merge sources are con-
nected with the used stream store. After its creation, a merge source loads the most
recent historical data items of its input stream from the stream store. A parameter
that was set when the merge source was created specifies how much historical data is
loaded. Inside a merge source all incoming data items (historical data items as well as
data items from the live input stream) are put into a heap data structure that sorts them
by time. The result is that the output stream of a merge source consists of historical
data at its beginning followed by the live input stream (see Figure 18.4).

The necessary amount of historical data to completely fill up all operator states
of a query is specified in the form of a past timestamp tmin from which on the most
recent history of the corresponding data stream must be replayed. This past point in
time must be determined by analyzing the CQ to load and the recorded data streams
in general. Moreover, it depends on the query semantics and, thus, on the underlying

281

18 A General Approach to Efficiently Updating Continuous Queries On-the-Fly

Stream
Store

Input
Merge
Source

Heap

Figure 18.4: Merge source

system. In the special case of JEPC, we initially set tmin to the current clock of the
corresponding event stream. Then, we propagate it from the input to the output of
the operator plan of the query to load and update it at each operator. At a time-
based window operator of size w, we reduce tmin by the size of the time window w.
And at a count-based window operator of size N, we reduce tmin by the size of the
time range which is the union of the time intervals of the N most recent events of
the corresponding stream. At filter EPAs tmin is not updated at all and at aggregation
EPAs it is reduced by one time instant. This is because filter EPAs are stateless and
aggregation EPAs delay the clock by one time instant. At a pattern matching EPA, we
reduce tmin by the size of the within condition. And at a correlation EPA, we set tmin to
the minimum clock among the clocks of all input streams of the correlation EPA (the
clocks of all other input streams of the query to load are propagated simultaneously
and, thus, known). Once tmin reaches the output of the query to load, it has its final
value that is used to replay the correct amount of historical events.

If the stream store cannot provide all necessary historical data, a merge source
waits until the live data stream has delivered the missing amount of data. Obviously,
this increases the wall-clock time to load a query. However, stream processing appli-
cations are long-term running and it can be assumed that sufficiently many (external)
data items have been recorded in general. The only exception is that the input data
stream of a merge source is the output stream of another CQ that has been initially
created not long ago. But in this special case, a copy of that CQ can be executed on
historical data in order to generate the needed historical data items.

Eventually, a merge source pushed all historical data items into its output stream.
Then, a heap is no longer necessary because new data items are coming only from the
live input stream that is correctly ordered by default. In this case, a merge source can
push the entire heap into the output stream, delete the heap and directly connect the
input stream to the output stream for performance reasons.

282

18.3 Update Method

18.3.2 Algorithm

Our method for updating CQs on-the-fly combines the components introduced in the
last section as shown in Algorithm 29. It requires the identifier of the CQ to update
and the new query definition. At first, merge sources are created for all input data
streams (lines 1–4). Each input data stream must be replaced by a new merge source
that provides not only the corresponding input data stream, but also its most recent
history. Therefore, the algorithm iterates over all input data streams (that can be the
output data streams of data sources as well as other CQs) of the new query defini-
tion. The needed amount of historical data is determined individually for each input
data stream and the result is used to configure a new merge source. Finally, the new
query definition is modified by exchanging an input data stream for its corresponding
merge source. After all merge sources have been created and integrated into the new
query definition, a new CQ on the basis of the new and modified query definition is
created (line 5) and connected with the associated filter sink (lines 6–7). Then, the al-
gorithm waits until the new CQ is completely loaded. In particular, this means that
every merge source must have pushed sufficiently much data from the stream store
and, if necessary, from the live data stream. As soon as the new CQ is completely
loaded, the state of the associated filter sink is updated to finish the query update

Algorithm 29: UPDATEQUERY(C,D)
Input: Query Identifier: C, Query Definition: D
Output: Timestamp: switchTime

1 foreach Input Stream stream ∈ D do
2 Timestamp tmin ← DETERMINEREQUIREDHISTORY(stream, D);
3 Merge Source mergeSource← NEWMERGESOURCE(stream, tmin);
4 D.REPLACE(stream, mergeSource);

5 Continuous Query CQ′ ← CREATEQUERY(D);
6 Filter Sink f ilterSink← GETFILTERSINK(C);
7 CQ′.ADDDATASINK(f ilterSink);
8 while not ISLOADED(CQ′) do
9 WAIT();

10 Timestamp switchTime← f ilterSink.clock + 1;
11 f ilterSink.currentVersion← CQ′;
12 f ilterSink.switchTime← switchTime;
13 return switchTime;

283

18 A General Approach to Efficiently Updating Continuous Queries On-the-Fly

(lines 10–12). To update the state of the filter sink, the version information is set to
the new CQ and the temporal information is set to the first point in time of the future.
Finally, the algorithm returns the point in time at which the switch to the new query
definition will happen. On basis of this information, it can be clearly identified which
version of a query produced a specific output data item. The choice of the point in
time f ilterSink.clock + 1 for the handover is discussed in the following.

Theorem 7. The point in time f ilterSink.clock + 1 is the earliest one that guarantees a de-
terministic and reproducible switch to the updated query definition. That is, for each point in
time there is at most one version of the query that produced all output data items.

Proof. The original version of a query being updated has not reached this point in
time yet, because otherwise the requested clock of the filter sink would be greater than
f ilterSink.Clock. Both the original and the updated version of the query are running
in parallel and are in consistent states. So it is correct to set the temporal information
to f ilterSink.clock + 1, because this ensures that for each point in time there is at most
one version of the query that produced all results. Setting the temporal information to
f ilterSink.clock or to an earlier point in time would lead to a non-deterministic and not
reproducible switch. Because the filter sink reported f ilterSink.clock, there are already
results produced by the original version with timestamp set to f ilterSink.clock and
forwarded to the output. If the switch to the updated version of the query happens im-
mediately, it might be possible that results of it with timestamp set to f ilterSink.clock
are forwarded to the output too. As a consequence, there might be results from differ-
ent versions at the same instant of time. This is neither deterministic nor reproducible
and therefore not a correct switch. In summary, a switch from the original version to
the updated version of a query at the point in time f ilterSink.clock + 1 is deterministic
and f ilterSink.clock + 1 is the earliest point in time that ensures determinism.

Figure 18.5 illustrates the algorithm by example.2 The query CQ2 consumes the output
streams of a data source and CQ1. As explained earlier, whenever the output stream of
a query is requested, the consumer is redirected to its associated filter sink. The output
stream of CQ2 is consumed by CQ3 and a data sink. An update of CQ2 creates CQ′2.
For each of the input streams of the updated version (the new version consumes the
same data streams but is not forced to) a merge source is created. Finally, the updated
version is connected with the filter sink of the original version. As soon as possible,
the output stream of this filter sink will contain results produced by CQ′2.

2Note that the presented update of the query CQ2 is not supported by the only competing method
presented in [She11], because CQ2 has multiple inputs.

284

18.3 Update Method

Data
Source

CQ

CQ CQFilter
Sink

Data
SinkStream

Store

Filter
Sink

Merge
Source

Merge
Source

CQ

Data
Source

CQ

CQ CQFilter
Sink

Data
SinkStream

Store

Filter
Sink1

2 3

1

2 3

2
′

Figure 18.5: Update of CQ2 at runtime (top before, bottom after the update)

18.3.3 Implementation

The general design of our update method enables it to be implemented purely on top
of any modern SPE (this is why we refer to it as general). Independent of specific SPEs,
data sources and data sinks are external components that can be user-defined via ar-
bitrary code. Therefore, the implementations of the merge source and the filter sink
as well as the bidirectional connectivity (recording and reloading) with a stream store
are generally possible. The update algorithm itself can also be on top of a SPE. It de-
pends only on a method to create new CQs within the SPE. However, such a method
is part of the basic functionality of all SPEs. By now, we have already implemented the
filter sink, the merge source and the update algorithm on top of the SPEs Esper [Esp],
Odysseus [App12] and webMethods Business Events [web]. For performance reasons,
we added a garbage collection (GC) to destroy outdated query versions automatically.
A version of a query becomes outdated when the switch to a newer version has hap-
pened (i.e., not immediately when the update algorithm terminates). If the outdated
version was an update itself (i.e., it is not the initial version), all corresponding merge
sources are removed too. We also implemented a slightly modified variant of our
update method within the matchmaker extension (see Chapter 16).

285

18 A General Approach to Efficiently Updating Continuous Queries On-the-Fly

In our current design and implementation, the behavior of the update method is
greedy. Once an update has been initialized, it is enabled as fast as possible. This
behavior has sound semantics, because the update method returns the point in time
when the switch between the two versions will be performed. Fast but fuzzy update
execution is not only an important requirement of most applications, but also compli-
ant with the behaviors of the add and remove methods in most SPEs. An alternative
behavior, which would require only slight modifications of the method, would be to
let users specify a concrete future point in time at which the switch will happen.

18.4 Use Cases

A method to arbitrarily exchange definitions and plans of continuous queries at run-
time allows to holistically manage their life cycles and has a broad range of applica-
tions. Three of them are discussed in this section.

18.4.1 Anomaly-Based Detection

Besides signature-based and behavior-based detection, anomaly-based detection
[CBK09] is one of the most important monitoring paradigms and essential for many
application domains. In case of anomaly-based detection, the current behaviors of ob-
jects are compared to their individual normal behaviors. If the current behavior of an
object differs significantly from its normal one, then it is classified as anomalous. One
challenge of anomaly-based detection is that the normal behaviors usually depend on
the context such as time, location or states of other objects and may evolve over time.
There is no static normal behavior of an object in general. A simple but illustrative
example is given in Section 18.2.1. To support anomaly-based detection in EP appli-
cations adequately, it is important to be able to change the processing logic when the
context changes. Therefore, CQs must be updatable on-the-fly [HS13].

18.4.2 Elastic Windows

Today’s SPEs force users to specify fixed sizes for all windows. When looking at join
queries for example, fixed-sized windows result in variable output sizes. This is due
to variable input rates of data items in the special case of time windows and due
to the content of incoming data items in conjunction with the user-defined join con-
dition in general. In contrast, provided that the output size shall be fixed, sizes of
windows must be variable. This kind of elastic windows is not provided by existing

286

18.4 Use Cases

SPEs [LGP10], but is made possible by a method to update queries at runtime. Fixed
output sizes of continuous queries might be a quality of service (QoS) requirement of
applications. In particular, too large output sizes of continuous queries not only result
in waste of system resources (e.g., CPU, main memory, network, disk space), but also
may cause problems for subsequent consumers. For example, screens and humans can
process only a certain amount of results at once. Screens are limited by their size and
resolution. They can show only a limited number of results at a time. Also humans
are limited. They are only able to gather and analyze a few results within a short pe-
riod of time. In many applications, SPEs can only be used to prepare or preselect data
items. Final decisions must be made by a human expert that analyzes the prepared
or preselected data items on a screen. A common task of monitoring applications is
to find the k most interesting elements within a large quantity of different elements.
Three examples are discussed in the following. In case of an online auction, a profes-
sional trader could constantly seek the most up-to-date k most interesting auctions.
Or in case of Twitter [Twi], a journalist could invariably look for the most up-to-date
k most interesting Tweets. We decided to discuss how to find the k most interesting
stocks as an detailed example. The query in Listing 18.2 shows a reasonable approach
to finding the most interesting stocks in a data stream StockPrices that contains the
latest exchange prices (price) of different stocks (stockID).

1 (SELECT ∗

2 FROM (SELECT stockID, MAX(price)/MIN(price) AS fluc

3 FROM StockPrices WINDOW(TIME x SECONDS)

4 GROUP BY stockID) AS ElasticWindow

5 WHERE fluc > 1.025

6) AS FixedOutputRate

Listing 18.2: Elastic time window

Assume that every second a new data item is pushed into the data stream for each
individual stock. In Listing 18.2, the inner query definition contains a time-based
sliding window with a size of x seconds on StockPrices. The window is used to
compute the minimum and maximum exchange prices within the last x seconds per
stock. These values are simple but important key performance indicators (KPI) in
the field of financial analysis. A stock is classified as interesting if its exchange price
fluctuated significantly (more than 2.5 % in case of the listed query) within a short
period of time. The outer query definition selects all interesting stocks and forwards
them to a screen which shows them to human experts. Ultimately, the human experts
are responsible for deciding which of the reported stocks should be sold or bought.

287

18 A General Approach to Efficiently Updating Continuous Queries On-the-Fly

Since screens as well as human experts can process only a limited number of data items
at a time, we only want the most up-to-date k most interesting stocks to be reported
every second. But the number of results is variable, because it depends on the content
of incoming data items as well as the size x of the time window. Additionally, the
number of incoming data items at each point in time could be highly variable and
this would also influence the output size. The content of incoming data items and the
input rates cannot be influenced, but the window size x can be changed in the presence
of an update method for continuous queries. Therefore, another continuous query
counts all stocks reported by the listed query within the last second. If the second
query detects more than k reported stocks within the last second, an update of the
listed query is triggered and the size x of the time window is decreased. Similarly, an
update of the listed query increases x, if less than k stocks were reported within the last
second. Changing the sizes of windows is an appropriate way to express such queries.
This approach not only optimizes the utilization of system resources, but also finds an
optimal setting for time constraints. Because the content constraint is fixed in the
example (i.e., the fluctuation must be greater than 2.5 %), the time constraint (i.e., the
size x of the time window) must be tightened and relaxed to control the output size,
because the computed minimum and maximum prices of each stock move together
when x is decreased and move apart from each other when x is increased.

Another meaningful application of elastic windows is given in [LGP10]. Here, the
sizes of time windows are adapted to the individual lengths of periods contained in
monitored time series. Such time series that include periods with individual lengths
occur, for example, in heart acceleration streams that come from body sensors.

18.4.3 Query Optimization

Because continuous queries are long-term running and important characteristics of
incoming data streams can change over time, the query plans of continuous queries
must be optimized not only before execution, but also occasionally during execution.
Dynamic plan migration (DPM) techniques have been developed to allow for continu-
ous query optimization. In particular, DPM techniques exchange the plan of a running
query for an optimized but semantically equivalent one.

The presented update method for continuous queries allows to exchange a query
plan for any other query plan. Of course, this includes all semantically equivalent
ones. Therefore, DPM is only a special case of the problem addressed by our update
method. In fact, the JEPC query optimizer (see Chapter 19) supports the continuous
optimization of queries by utilizing our update method for DPM.

288

18.5 Related Work

18.5 Related Work

Our problem of updating the definitions of CQs on-the-fly is related to the problem
of dynamic plan migration [Krä06, Yan07, ZRH04]. Because the workloads of CQs
may change over time, their query plans can become suboptimal. DPM replaces the
query plan of a CQ by another equivalent one at runtime. This allows to optimize CQs
continuously by exchanging active query plans for more efficient ones whenever they
become suboptimal. Approaches to dynamic plan migration assume that the input
data streams of a query, the operators of a query plan as well as the sizes of windows
are not changed so that the new query plan is semantically equivalent to the old one
but has a different structure. For example, the order of join operators can be changed
via DPM. While dynamic plan migration is at a technical level and does not modify the
semantics of CQs, our update problem is at the application level. We explicitly want
to change the definitions of CQs as reactions to semantic changes in their context.
Query updates include DPM as a special case, but are much wider applicable than
DPM. Because the assumptions made by DPM prevent arbitrary query updates, all
proposed DPM techniques cannot perform arbitrary query updates.

To the best of our knowledge, there has been proposed only one approach to up-
dating CQs so far. This approach [She11] lets users decide how to deal with the prob-
lem of operator states during an update. It provides basically two different strategies
to users. One strategy is exactly the naïve one discussed in Section 18.2.1. That is, an
update is a completely new CQ that becomes immediately valid. Due to empty oper-
ator states, this CQ produces incorrect results until all states are completely filled up.
The other strategy delays the handover between the original version and the updated
one. That is, both CQs run in parallel until the updated one starts producing correct
results. Then, the handover can be performed. So there is always a trade-off between
correctness and performance. Either the update is fast and incorrect or it is correct
and slow. In contrast, our approach is correct and fast at the same time. There are
also other issues with the approach of [She11]. It requires the modification of built-in
operators and the feature to push control elements [Tuc03] in data streams. Therefore,
a complete rewrite of the SPE is necessary. In contrast, our approach can be easily
implemented on top of any modern SPE without the need for modifying a single line
of its source code and does not depend on system-specific functionality. An important
disadvantage of [She11] is that this approach can only update queries with exactly
one input data stream. Already queries consisting of a single join operator cannot be
updated. Our approach is able to update any query.

289

18 A General Approach to Efficiently Updating Continuous Queries On-the-Fly

Summary

This chapter presents an approach to updating continuous queries at runtime. Because
continuous queries are running for weeks, months or even years, such an approach is
needed in order to manage their lifecycles. The proposed approach achieves both high
performance and correctness at the same time by utilizing a database system, whereas
the state-of-the-art approach is only able to achieve correctness or performance but
not both at the same time. Furthermore, the presented approach is general and can
be implemented purely on top of existing SPEs for adding the functionality of query
updates. As a consequence, SPEs can finally get a rich and complete set of methods
to manage the lifecycles of implemented applications. SPEs that have a method for
updating queries provide a powerful data stream processing infrastructure which al-
lows for dynamically changing its processing logic. Different use cases show possible
applications and the benefits of this kind of adaptive stream processing.

290

19
Query Optimization

Outline
19.1 Introduction . 292

19.2 Optimization Techniques . 293

19.3 Implementation . 304

19.4 Evaluation . 306

291

19 Query Optimization

19.1 Introduction

In expressive query languages, a complex query has multiple semantically equivalent
query plans in general. End-users specify queries in languages such as SQL or directly
as query plans usually with focus on correctness rather than on performance. Never-
theless, queries should be executed ideally not only semantically correct, but also with
high performance. This requires that only efficient query plans are executed. There-
fore, a query optimizer that transforms query plans into efficient ones before their
execution is part of the query compilers of almost all database systems.

JEPC Bridge

EPA

EPA

EPA EPA

Raw EP Provider

CQ

CQ

CQ

CQ

b) Event Processing Networka) Event Processing Agent

JEPC Bridge

Raw EP Provider

CQ

Post-
Processing

Pre-
Processing

Figure 19.1: Translation and interconnection of EPAs

Although optimization of continuous queries has gained much attention in the past,
today’s general-purpose stream processing engines support almost no built-in query
optimization at the query plan level [GV04, Hei08, Rie08, SHG13]. Moreover, a raw
EP provider of JEPC must not necessarily be a stream processing engine (e.g., the
JEPC-to-JDBC bridge from Chapter 9 or the native EP provider from Chapter 10) so
that the existence of an optimizer for CQs cannot be assumed. But even if a raw EP
provider has a sophisticated query optimizer, it cannot be used because it is disabled
by JEPC. This is due to the fine-grained translation of EPNs and the interconnection of
EPAs completely in the middleware layer as it is illustrated in Figure 19.1. JEPC maps
each single EPA of an EPN separately to a CQ running within the raw EP provider.
All input events of an EPA are forwarded to the corresponding CQ. And the output
stream of the corresponding CQ is directly received by JEPC where it is redirected to
subsequent EPAs. Thus, the interconnection of EPAs is only known by JEPC. Raw EP
providers just see a set of isolated and simple CQs that must be executed.

292

19.2 Optimization Techniques

In this chapter, we present a powerful optimizer for JEPC queries that implements es-
sential rule-based and cost-based techniques for transforming query plans. We mainly
adopted techniques from query optimizers of database systems that are proven to be
effective. However, work done in the database area focuses on one-time optimization
of ad-hoc queries and on query plans that consist only of operators of the relational
algebra. In contrast to traditional optimizers, the JEPC optimizer also works continu-
ously and implements novel techniques to improve pattern matching EPAs.

19.2 Optimization Techniques

Because the semantics of JEPC queries is based on the powerful concept of snapshot-
reducibility, well-known transformations of query plans can be performed without
changing the output of a query [Sno87, SJS01]. In particular, algebraic laws of the rela-
tional algebra [GUW08] can be directly taken over. Those laws serve as a foundation
for most techniques implemented by the query optimizer of JEPC.

19.2.1 Predicate Ordering

In JEPC, predicates can be combined via the logical connectors ∧ and ∨ to arbitrarily
complex Boolean expressions that are used as arguments to configure all basic EPA
types except the aggregation EPA. The evaluation of a (nested) Boolean expression
is typically done from left to right (and from the inside to the outside). Thus, there
is an evaluation order of predicates. On basis of the commutative, associative and
distributive laws that all apply to Boolean expressions, the order of predicates can be
safely changed within a Boolean expression. The key idea of our first optimization
technique is to order the predicates of a Boolean expression such that disqualifying
events are detected with a minimum number of predicate evaluations. As soon as an
event surely disqualifies, all remaining predicates must not be evaluated. Of course,
predicates that discard more events on average than the other predicates should be
evaluated first. This property of a predicate is determined by its selectivity Sel, which
is one of the standard measures in query optimization. The selectivity simply gives
the ratio between the number of output events and the number of input events:

Sel :=
|EL

out|
|EL

in|
The lower the selectivity, the more events are discarded. Therefore, an optimal evalu-
ation order of predicates is an order according to increasing selectivity. Among others,
this kind of optimization is also performed by Eddies [AH00] for example.

293

19 Query Optimization

19.2.2 Filter Push-Down

Because a filter EPA does not create any new events but potentially discards events
and reduces the size of the corresponding stream therefore, it is generally beneficial
to place filter EPAs as close as possible to the sources of a query. This is analogous to
the selection push-down in the relational algebra. As our evaluation clearly shows,
every single EPA of a query plan including the relatively cheap filter EPAs causes
costs. The filter push-down technique allows not only to discard events earlier, but
also to integrate filter EPAs into other EPAs and, thus, to eliminate them.

19.2.2.1 Filter EPAs

At first, we focus on the case where a filter EPA is adjacent to another filter EPA. The
most important algebraic laws regarding to this case are as follows:

σϕ1(σϕ2(EL)) = σϕ1∧ϕ2(EL)

σϕ1(σϕ2(EL)) = σϕ2(σϕ1(EL))

The first law allows to completely integrate a succeeding filter EPA into its predeces-
sor by combining the filter conditions. Alternatively, the second law allows to swap
adjacent filter EPAs and, thus, to change their evaluation order. Thus, the second law
can be used to order filter EPAs by their selectivities similar to predicate ordering.
However, the first law eliminates a filter EPA and our experiments clearly showed
the superiority of this kind of transformation in all situations. Therefore, the JEPC
optimizer always combines adjacent filter EPAs according to the first law.

19.2.2.2 Correlation EPAs

From an algebraic point of view, every correlation EPA is composed of the Cartesian
product1 followed by a simple filter EPA which checks the correlation condition:

./ϕ (EL
1 , EL

2) = σϕ(×(EL
1 , EL

2))

Hence, the algebraic laws for adjacent filter EPAs can be simply reused:

σϕ1(./ϕ2 (EL
1 , EL

2)) = σϕ1(σϕ2(×(EL
1 , EL

2))) = σϕ1∧ϕ2(×(EL
1 , EL

2)) = ./ϕ1∧ϕ2 (EL
1 , EL

2)

As a consequence, the same effects are achieved. Therefore, a succeeding filter EPA
can be integrated into a correlation EPA so that the query plan is reduced by one EPA.

1The Cartesian product × can be simply defined as ×(EL
1 , EL

2) := ./TRUE (EL
1 , EL

2).

294

19.2 Optimization Techniques

Besides the above filter push-down technique, the query optimizer of JEPC also sup-
ports a second technique that can be applied directly to correlation EPAs. It is based
on the following algebraic law:

./ϕ1∧ϕ2 (EL
1 , EL

2) = ./ϕ1 (EL
1 , σϕ2(EL

2))

This law assumes that ϕ2 refers only to attributes of EL
2 . Then, the law allows to push

down the correlation condition (or parts of it) to the arguments of the correlation EPA.
Of course, both techniques for correlation EPAs can be combined. A following filter
EPA can be first integrated into a correlation EPA. Then, as many subexpressions as
possible can be moved from the correlation condition to the sources.

19.2.2.3 Aggregation EPAs

The aggregation EPA is the only type of EPA that does not have parameters of the
type Boolean expression. Therefore, the integration of succeeding filter EPAs is not
possible. But if a succeeding filter EPA refers completely or partly to group attributes,
then it can be moved completely or partly in front of a preceding aggregation EPA
according to the following algebraic law:

σϕ1∧ϕ2(αa(EL)) = σϕ1(αa(σϕ2(EL)))

Assuming that ϕ2 refers only to group attributes, the law allows to check the filter
condition before the aggregation. If ϕ1 is empty, the entire filter EPA can be moved.

19.2.2.4 Pattern Matching EPAs

Since the pattern matching EPA is not part of the relational algebra, there are no alge-
braic laws that can be taken over. But because the pattern a pattern matching EPA is
looking for is a sequence of symbols each defined via a Boolean expression, a pattern
matching EPA can be roughly seen as a sequence of filter EPAs. Moreover, at the po-
sition of the last Boolean expression, all values of potential output events are known.
This is, because output events consist purely of global variables and their values can
only be set within a pattern. On basis of this observation, the following algebraic law
holds without any further conditions:

σϕ(ρs1[ϕ1]s2[ϕ1]...sn[ϕn](EL)) = ρs1[ϕ1]s2[ϕ2]...sn[ϕn∧ϕ](EL)

According to this law, a succeeding filter EPA can be eliminated by integrating its
filter condition into the Boolean expression that defines the last symbol in a pattern.
This transformation can be applied without deep analysis of the pattern definition.

295

19 Query Optimization

But if the pattern itself is analyzed, filter conditions can be pushed further down the
sequence of symbol definitions. In particular, a filter condition ϕ can be moved to
the directly preceding symbol definition, if and only if the directly preceding symbol
definition does not set global variables to which ϕ refers. That is, ϕ can be safely
placed in front of symbol definitions that do not set global variables used in ϕ:

ρs1[ϕ1]s2[ϕ2]...sn−1[ϕn−1]sn[ϕn∧ϕ](EL) = ρs1[ϕ1]s2[ϕ2]...sn−1[ϕn−1∧ϕ]sn[ϕn](EL)

The above law allows to push down ϕ from the definition of sn into the definition of
sn−1 if no global variable used in ϕ is set by the symbol sn−1. Successively applied,
this law allows to move filter conditions as close as possible to the input of ρ.

The transformations presented in this section altogether allow to push down filter
conditions close to the sources in not only simply query plans, but also complex ones.
In the latter case, it is often possible to push down a filter condition multiple times.
Our experiments showed that the performance improvement of most filter push-down
techniques is significant. This is consistent with traditional database systems where
the selection push-down technique is one of the most powerful optimizations.

19.2.3 Correlation EPA Ordering

Multiway correlations that comprise three or more event streams can only be imple-
mented in the form of multiple correlation EPAs, because correlation EPAs are binary.
In this section, we focus only on left-deep trees of correlation EPAs in which the right
child node of every internal node that is a correlation EPA is an input event stream.
The advantage of left-deep trees is that they correspond to an order of input event
streams and vice versa. For correlating N input event streams, N − 1 binary correla-
tion EPAs are required. In total, there are N! different orders of the input event streams
and, thus, also left-deep trees. The question is how to order event streams such that
the left-deep tree representing a multiway correlation is executed with high perfor-
mance. As in database systems, our strategy is to pick the order which minimizes the
sizes of intermediate event streams. This can be done by adopting the algorithms used
in database systems. Because this optimization is cost-based, we first have to define a
cost model. Our cost model is derived from traditional cost models, but considers also
some special properties of the JEPC middleware. The function Size gives the estimated
size of every event stream that is involved in a multiway correlation:

Size(EL) :=

Sel(ϕ) ∗ Size(EL
1) ∗ Size(EL

2) if EL = ./ϕ (EL
1 , EL

2)

AvgValidEvents(EL) otherwise

296

19.2 Optimization Techniques

In case of an input event stream that already exists, Size returns the average number
of valid events at a point in time. This measure corresponds approximately to the
average number of events within the state of an correlation EPA on the event stream.
The value returned by AvgValidEvents is obtained by analyzing the history of the
given event stream. In case of an intermediate event stream, we have to estimate its
average size because it is not an existing event stream whose history can be analyzed.
Therefore, Size returns the size of the Cartesian product of the incoming event streams
multiplied with the selectivity of the correlation condition.

The final cost function Costout we use for scoring trees of correlation EPAs is based
on the well-known cost function Cout [CM95] that is simple but effective:

Costout(EL) :=

Size(EL) + Costout(EL
1) + Costout(EL

2) if EL = ./ϕ (EL
1 , EL

2)

0 otherwise

This cost function is symmetric and fulfills the ASI property [MS79] that guarantees
the optimal solution (according to the cost function) to be computable in polynomial
time [AK80, CM95, IK84, KBZ86]. Furthermore and in contrast to many proposed cost
models for join ordering, it does not assume a disk-based access model. This is impor-
tant because we use it in the context of stream processing. Lastly, it captures the most
important properties of the JEPC processing model (see Figure 19.1). It assigns no ad-
ditional costs to the input event streams, because all input event streams must be pro-
cessed completely in every case. Each intermediate event stream is considered twice.
This is a good estimation of the real costs in the special case of JEPC for the follow-
ing reason. Assume two correlation EPAs in sequence. Then, the intermediate event
stream produced by the first correlation EPA is send to the JEPC middleware. Because
this event stream is handled by JEPC in the same way as an input event stream, it
causes costs for the first time. JEPC sends back the entire intermediate event stream
to the raw EP provider where it serves as input event stream of the second correlation
EPA. Hence, the intermediate event stream causes costs for the second time.

We adopted three traditional join ordering algorithms [Moe09] for the JEPC query
optimizer. Two of them are greedy algorithms that do not guarantee to find a good
or even the optimal order, whereas the third algorithm is a dynamic programming
approach that always finds the optimal order. The first greedy algorithm is quite sim-
ple and makes only partly use of the cost model. It is shown in Algorithm 30 and
requires an array inputStreams containing all N input event streams as well as the
correlation condition ϕ. At first, the input event streams are ordered according to
their average sizes (line 1). Next, the resulting order is directly used to create a tree

297

19 Query Optimization

Algorithm 30: CORRELATORORDERING1(inputStreams, ϕ)
Input: Array of Event Streams: inputStreams, Boolean Expression: ϕ

Output: EPN: bestTree
Data: Function: Size

1 inputStreams← SORT(inputStreams, Size);
2 EPN bestTree← inputStreams[1];
3 for i← 2 . . . N do
4 Boolean Expression ϕ′ ← GETSUBEXPRESSION(ϕ, bestTree, inputStreams[i]);
5 bestTree← ./ϕ′ (bestTree, inputStreams[i]);

6 return bestTree;

(lines 2–5). GETSUBEXPRESSION gives all parts of the correlation condition that can
be assigned to the correlation EPA currently being created. The first argument must
be an entire correlation condition and the other two must be event streams. Then,
GETSUBEXPRESSION returns a subexpression including all predicates that can be eval-
uated for the given event streams and that are not already assigned to a correlation
EPA. Obviously, Algorithm 30 does not utilize the cost function Costout and takes into
account only input event streams but no intermediate event streams.

The second greedy algorithm, shown in Algorithm 31, improves the first one by
actually using the cost function and by searching for an order in a significant larger
search space (that still does not contain all possible orders). It starts with allocating an
array that can store as many different candidate trees as there are input event streams
(line 1). For each input event stream, it generates exactly one candidate tree which
begins with that stream (lines 2–16). Therefore, every input event stream creates a
new candidate tree (line 3). Then, an order for all remaining event streams is generated
(lines 4–15). This is done by successively adding the input event stream that minimizes
the size of the intermediate event stream resulting from the correlation between itself
and the candidate tree generated so far. After all candidate trees have been generated,
the cost function is used to determine the best one (lines 17–18).

The final algorithm is based on dynamic programming [Cor09]. With respect to
the cost function, it finds always the optimal left-deep tree. This is, because a tree
must have optimal subtrees for being optimal [GUW08, Moe09]. The correlation EPA
ordering problem has optimal substructure therefore. Using dynamic programming,
we can find those optimal subtrees in a bottom up fashion so that the optimal tree is
generated at the end. Note that this is true for not only left-deep trees, but also all
other types of trees. Moreover, the correlation EPA ordering problem has also over-

298

19.2 Optimization Techniques

Algorithm 31: CORRELATORORDERING2(inputStreams, ϕ)
Input: Array of Event Streams: inputStreams, Boolean Expression: ϕ

Output: EPN: bestTree
Data: Function: Size, Costout

1 Array of EPNs candidates← NEWARRAY(N);
2 for i← 1 . . . n do
3 EPN epn← inputStreams[i];
4 Set of Event Streams streams← NEWSET(inputStreams);
5 streams.REMOVE(inputStreams[i]);
6 while SIZEOF(streams) > 0 do
7 Event Stream e′ ← NULL;
8 Boolean Expression ϕ′ ← TRUE;
9 for e∗ ∈ streams do

10 Boolean Expression ϕ∗ ← GETSUBEXPRESSION(ϕ,epn,e∗);
11 if e′ = NULL or Size(./ϕ∗ (epn, e∗)) < Size(./ϕ′ (epn, e′)) then
12 e′ ← e∗;
13 ϕ′ ← ϕ∗;

14 streams.REMOVE(e′);
15 epn← ./ϕ′ (epn, e′);

16 candidates[i]← epn;

17 candidates← SORT(candidates, Costout);
18 EPN bestTree← candidates[1];
19 return bestTree;

lapping subproblems. Instead of enumerating and scoring all possible left-deep trees
one another, we remember intermediate trees (which take part in multiple larger trees)
and reuse them for generating and scoring larger trees. Algorithm 32 shows how the
JEPC query optimizer finds the best left-deep tree via dynamic programming. It cre-
ates an array that is capable of storing the optimal tree for each subset (except the
empty set) of the input event streams (line 1). We use a binary representation of the
array index to encode the set of event streams for which the optimal tree is stored.
The position of a bit corresponds to the position of an input event stream and its value
indicates whether that stream is in the set. If the bit is set to one, then the associated
event stream is included. For example, the array holds at position 21 (=101012) the
optimal tree for the correlation of the first, the third and the fifth input event streams.
The algorithm uses GETBIT for looking up the bit at the position given as argument

299

19 Query Optimization

Algorithm 32: CORRELATORORDERING3(inputStreams, ϕ)
Input: Array of Event Streams: inputStreams, Boolean Expression: ϕ

Output: EPN: bestTree
Data: Function: Costout

1 Array of EPNs trees← NEWARRAY[2N − 1];
2 for i← 0 . . . N − 1 do
3 trees[2i]← inputStreams[i + 1];

4 for b← 1 . . . 2N − 1 do
5 if trees[b] = NULL then
6 for i← 1 . . . N do
7 if b.GETBIT(i) = 1 then
8 b.FLIPBIT(i);
9 Boolean Expression ϕ′ ←

GETSUBEXPRESSION(ϕ,trees[b],inputStreams[i]);
10 EPN epn← ./ϕ′ (trees[b], inputStreams[i]);
11 b.FLIPBIT(i);
12 if trees[b] = NULL or Costout(trees[b]) > Costout(epn) then
13 trees[b]← epn;

14 EPN bestTree← trees[2N − 1];
15 return bestTree;

and FLIPBIT for flipping the bit at the position given as argument. Initially, the ar-
ray contains only NULL values. For each subset of input event streams that contains
only a single input event stream, the optimal tree is given by the only existing input
event stream (lines 2–3). Between the array positions 2j and 2j+1, the (j + 1)-th bit is
always one. Therefore, the trees at those positions contain always the (j + 1)-th input
event stream and a subset of {EL

1 , EL
2 , . . . , EL

j }. All empty positions in the array are
filled from left to right (lines 4–13). As a consequence, the optimal trees for the first
k + 1 input event streams are computed after the optimal trees for the k input event
streams have been determined (i.e., trees are generated in a bottom-up fashion). This
allows to reuse the optimal solutions for the first k input event streams to determine
the optimal trees for the first k + 1 input event streams (lines 6–13). Two alternative
trees for the same set of input event streams are compared on basis of the cost function
(lines 12–13). Once all optimal trees are finally computed, the last position in the array
contains the optimal tree for all input event streams (all bits are one).

300

19.2 Optimization Techniques

19.2.4 Optimization of Pattern Matcher EPAs

We already mentioned and exploited the fact that a pattern matching EPA can be seen
as a collection of filters (each individual symbol definition introduces a new filter).
Therefore, a pattern matching EPA is more costly than a single filter EPA in general.
Due to its cheapness, it is almost always a good idea to push down a filter EPA in
front of a more costly EPA such as an aggregation or correlation EPA. Then, the filter
EPA reduces the number of events that enter the succeeding costly EPA. In case of a
pattern matching EPA, the same positive effect is expected if we can successfully move
a filter EPA in front of it. Fortunately, pattern matching EPAs inherently contain filter
conditions and allow for extraction of filter conditions therefore.

1 (SELECT ∗

2 FROM RunnerLocation

3 MATCH_RECOGNIZE_SEQUENTIAL (

4 PATTERN ABCD

5 DEFINE A AS checkpoint = "Staten Island",

6 B AS checkpoint = "Queens",

7 C AS checkpoint = "Bronx",

8 D AS checkpoint = "Manhatten"

9 WITHIN 5 HOURS

10) AS RunnerTrackingQuery

Listing 19.1: Runner tracking query

The pattern matching EPA shown in Listing 19.1 is adopted from [WTA10]. It is a good
example to explain our general idea. This EPA checks whether a runner has legally
finished a race through New York City. Every time the monitored runner reaches a
checkpoint, an event of type RunnerLocation is emitted. Such an event contains
the name of the checkpoint. A runner must pass through all checkpoints in the correct
order to legally finish the race. Then (and only then) the query produces an output
event. In this particular example, every symbol is defined by a Boolean expression
that only refers to event attributes. Therefore, it could also be evaluated by a filter
EPA in front of the pattern matching EPA. Note that symbol definitions that refer
to global variables and definitions of symbols which must not necessarily be emitted
cannot be extracted. However, there arise several questions and problems. First of
all, we need a strategy to decide deterministically which symbol definition should be
extracted in case of multiple options. The JEPC query optimizer always chooses the
symbol definition with lowest selectivity. This ensures that the number of events en-
tering a pattern matching EPA is minimized. In case of the example query, the symbol

301

19 Query Optimization

Pattern:

Candidate
Sequence

Candidate
Sequence

Candidate
Sequence

Figure 19.2: Selecting potentially matching event sequences

with lowest selectivity is D, because the last checkpoint is most difficult to reach. Fur-
thermore, we need a transformation rule for query plans that does not affect query
results. If we simply push down the chosen symbol definition as in the case of corre-
lation EPAs (i.e., the chosen symbol definition is removed from the pattern matching
EPA), then the pattern will break. Therefore, a copy of the chosen symbol definition
must be used as filter condition for a preceding filter EPA in order to preserve the
pattern to detect. Last but not least, selecting only single events affects query results
because of the following reason. Suppose a filter EPA that selects only events which
fulfill symbol definition D is placed in front of the pattern matching EPA. Then, no
events that emit one of the symbols A, B and C will enter the pattern matching EPA.
Obviously, the output event stream will be empty in every case.

The JEPC query optimizer solves the last problem by using a modified version of
the filter EPA. Actually, the extracted filter condition points to an entire sequence
of events that potentially matches the pattern rather than to only a single event.
Figure 19.2 illustrates this issue. It shows a stream of events each fulfilling exactly
one of the definitions of the symbols circle, box, diamond, and triangle. The pattern to
detect is “diamond followed by circle followed by box”. Let the definition of the sym-
bol circle be the most selective one (this symbol occurs with lower frequency than the
others in the figure). Then, this symbol definition is used as filter condition for a filter
EPA being placed in front of the pattern matching EPA. Applied to the shown event
stream, this filter EPA selects a circle event three times. Because such an event must
occur in every matching event sequence, those are the locations of potentially match-
ing sequences. However, not only the selected circle events must be forwarded to the
pattern matching EPA, but also a certain amount of preceding and succeeding events.
Because the pattern to detect has a fixed size of three events and circle is the second
symbol that must be emitted, a candidate sequence consists of a circle event and its
adjacent events. Each candidate sequence must be processed by the pattern matching
EPA in order to decide whether a candidate sequence is a matching sequence. In the

302

19.2 Optimization Techniques

figure, the first and third candidate sequences are matching sequences, whereas the
second is not. All events that are not part of a candidate sequence cannot be part of
a matching sequence. They can be safely prevented from entering a pattern matching
EPA. Therefore, the JEPC query optimizer implements the following novel rule:

ρP(EL) = ρP(σ
∗
ϕ(EL))

This rule can be applied if the pattern being detected contains a symbol definition
ϕ ∈ P which can be extracted. Then, an extended filter EPA σ∗ can be placed in front
of the pattern matching EPA. An extended filter EPA selects not only events that fulfill
ϕ, but also all other events of their corresponding candidate sequences.

Our basic idea to optimize pattern matching EPAs by filtering their input event
streams is inspired by the system Z-Stream [MM09]. This system is primarily for
detecting sequential event patterns. Instead of using an NFA, which forces a fixed
evaluation order of symbol definitions according to the occurrence order within the
pattern to detect, Z-Stream utilizes tree-based operator plans that allow for different
evaluation orders. Z-Stream exploits this property by evaluating symbol definitions
with low selectivity before symbol definitions with high selectivity. However, this
method is only applicable in the special case of Z-Stream. It is no universal opti-
mization technique. In particular, it cannot be adopted by NFA-based approaches to
pattern matching. On basis of Z-Stream, we developed a universal optimization tech-
nique of pattern matching queries that is independent of the implementation of the
pattern matching EPA. Furthermore, Z-Stream is only able to speed up single pattern
matching queries. In contrast, our technique can be extended to speed up a set of pat-
tern matching queries over the same event stream. A set of pattern matching EPAs
may have a common symbol definition that can be extracted. If so, we can extract
this common symbol definition and use it to configure an extended filter EPA that is
responsible for all pattern matching EPAs at the same time, instead of optimizing each
single EPA of the set by extracting its most selective symbol definition. More formally:

{ρPi}(EL) = {ρPi}(σ
∗
ϕ(EL))

The above rule assumes that ϕ is a symbol definition that can be extracted from all pat-
terns Pi of the set. Then, the event stream which is consumed by all pattern matching
EPAs can be filtered by using only a single extended filter EPA. Because the lengths of
the patterns Pi as well as the positions of the symbols defined by ϕ within the patterns
may differ, candidate sequences selected by the extended filter EPA must be chosen
such that they are candidate sequences for all patterns Pi.

303

19 Query Optimization

19.3 Implementation

In today’s database systems, the query optimizer is an integral part of the query com-
piler and cannot be disabled or arbitrarily configured in most cases. We decided to
not make the query optimizer a permanent feature of the JEPC core. Instead, the JEPC
query optimizer was implemented as an extension that may or may not be used. The
core of JEPC executes query plans without performing any modifications, which gives
users and extensions full control over query execution. In addition, the JEPC query
optimizer allows to specify in detail which optimizations to apply to a certain query.

JEPC Core Query Optimizer

Query

Query*

Figure 19.3: Query optimizer as JEPC extension

Figure 19.3 illustrates the implementation of the query optimizer as an extension. The
JEPC core executes query plans exactly as they are defined by users and extensions.
But users and extensions are free to send a new query plan Query to the query opti-
mizer and to execute the returned optimized query plan Query* instead.

Continuous queries over data streams with potentially time-varying characteris-
tics require not only one-time optimization before execution, but also continuous op-
timization during execution. Besides that, some of the presented optimization tech-
niques need to know selectivities (e.g., of single predicates or of complete Boolean
expressions) or to integrate extended filter EPAs into query plans for the optimization
of pattern matching EPAs. We first describe how we support continuous optimization
of queries via query monitors. Then, we introduce extended filter EPAs.

Query Monitor

Event
Store

JEPC Query

Figure 19.4: Query monitor

304

19.3 Implementation

If a user wants a JEPC query to be optimized continuously, the JEPC query opti-
mizer returns a one-time optimized query plan wrapped in a so-called query monitor
as shown in Figure 19.4. While the query monitor is executed within the JEPC mid-
dleware, the query plan is translated and executed by the underlying raw EP provider
as usual. Thus, JEPC queries with query monitor are still independent of the used
raw EP provider. A query monitor sees every event that enters or leaves an EPA of its
associated query plan. This allows to continuously determine the current selectivities.
Of course, the monitoring imposes little runtime overhead. To reduce the overhead,
a query monitor provides two options. First, the determination of selectivities can be
done only for sections of event streams. This means that a query monitor updates
all selectivities by processing a certain amount of events and shuts down afterwards.
It then sleeps for a user-defined period of time. Second, a query monitor must not
determine selectivities by itself. If available, it can simply query the event store (see
Chapter 17). This option obviously requires an event store to be present, but leads to
almost no overhead. If selectivities have changed so that another equivalent query
plan is better, the query plan in execution must be modified. A query monitor modi-
fies its query plan on-the-fly via our query update method (see Chapter 18).

An extended filter EPA is integrated into query plans in the form of a user-defined
EPA that runs in the middleware layer (see Section 7.3). It primarily looks for incom-
ing events that fulfill its filter condition. Since such an event is just one element in
a candidate sequence, a certain amount of preceding events must be buffered and a
certain amount of succeeding events must be forwarded unconditionally. For a single
pattern matching EPA, the exact sizes of those amounts depend on the pattern. The
symbol the extended filter EPA is looking for (pivot symbol) divides the pattern into
two parts. The first part begins at the first symbol and extends to the pivot symbol,
whereas the second part begins at the pivot symbol and extends to the last symbol. We
only discuss how to determine the amount of events for the first part. The second part
is handled totally analogous. We need to determine either the exact number of events
or the maximum range of time the first part covers. If the first part of the pattern has
a fixed length (i.e., no Kleene operators are applied), the exact number of events to
buffer can be determined simply by counting the symbols of the first part. Then, the
buffer behaves like a count-based sliding window keeping always an exact number of
events. But if the first part of the pattern has variable length, the buffer must behave
like a time-based sliding window with size set to the size of the within-condition of
the pattern. To preserve pattern matching with low latency, an extended filter EPA im-
mediately forwards events when the pivot symbol is detected. At first, it releases the

305

19 Query Optimization

buffer containing all relevant events preceding the pivot symbol. Then, it forwards
the event that is associated with the pivot symbol. Lastly, it directly forwards new
events until a complete candidate sequence has been passed through. If an extended
filter EPA is responsible for multiple pattern matching EPAs at the same time, the first
part with maximum size among all patterns determines the size of the buffer and the
second part with maximum size among all patterns determines the amount of events
that must be forwarded after the pivot symbol. In the case that an event store is avail-
able, buffering of events is not necessary. After the pivot symbol has been detected, all
preceding events of the candidate sequence can be obtained from the event store. This
is particularly important in case of very large within-conditions and variable length
patterns. Because pattern matchers are usually implemented in the form of NFAs,
they do not keep events. Therefore, within-conditions can cover amounts of events
that are significantly larger than the available main memory.

The extended filter EPA passes through candidate sequences one another and dis-
cards all events in-between. This leads to a serious problem. The end of a candidate
sequence may start new matching instances that are successfully finished by the be-
ginning of the next candidate sequence. To avoid false positive matches, the extended
filter EPA outputs dummy events, which reset all active matching instances, between
two candidate sequences that do neither overlap nor meet.

19.4 Evaluation

In an experimental evaluation we examined the effects of the implemented optimiza-
tion techniques that are applied purely in the middleware layer. The experiments
were conducted on a single machine with an Intel i7-2600 CPU and 8 GiB main mem-
ory running JEPC in an Oracle Java HotSpot VM (1.8.0_25). Furthermore, the JEPC
bridge to the SPE Esper (4.9.0) was used in all experiments.

19.4.1 Predicate Ordering

At first, we present the evaluation of the technique that optimizes the order of predi-
cates within Boolean expressions. The setup consisted of a single filter EPA that con-
sumed an event stream with 100 attributes each of type 32-bit integer number. Dif-
ferent total numbers of predicates were combined via conjunctions into Boolean ex-
pressions which were used by the EPA as filter conditions. Each predicate referred
to two different attributes and had a different pre-defined selectivity. Within the gen-
erated Boolean expressions, all predicates were ordered by selectivity from high to

306

19.4 Evaluation

low. This order of predicates is the worst case from a performance point of view. The
event stream was generated in a way that kept the chosen selectivities of predicates
constant. We studied three different configurations of this experiment. In the first
configuration, we directly executed the EPA using the worst case order of predicates
(Non-Optimized). In the second configuration, we let the JEPC query optimizer re-
arrange the predicates and apply a query monitor that permanently determined the
current selectivity of each predicate (Optimized + Monitor). This configuration was
for identifying the runtime overhead imposed by an active query monitor that deter-
mines selectivities by itself. However, a query monitor determines selectivities only
for sections of the event stream and is inactive for most of the time in practice. There-
fore, we shut down the query monitor in the third configuration (Optimized).

5 10 25 50 75 100

0
1M

2M
3M

Non−Optimized
Optimized + Monitor
Optimized

Total Number of Predicates

E
ve

nt
s

/ S
ec

on
d

Figure 19.5: Effect of predicate ordering

Figure 19.5 shows the achieved throughputs for different total numbers of predicates.
As the number of predicates increased, the throughput of the non-optimized filter EPA
decreased because of an increasing number of unnecessary predicate evaluations. The
configuration with an optimized predicate order and a permanently active query mon-
itor was nearly not affected by an increasing number of predicates. When the query
monitor was shut down, the throughput could be further increased by a constant fac-
tor. The difference of the two graphs (Optimized and Optimized + Monitor) gives the
overhead that was caused by an active query monitor. Our results show that even for
few predicates the additional overhead could be compensated by the effect of opti-
mization. Note that filter EPAs are relatively cheap in contrast to the other types of
EPAs. Therefore, the overhead imposed by active query monitors is comparatively
higher in case of filter EPAs than in case of the other EPA types.

307

19 Query Optimization

19.4.2 Filter Push-Down

The JEPC query optimizer provides at least one filter push-down technique for each
basic type of EPA. Since most filter push-down techniques are applicable with no and
the remaining filter push-down techniques with only little limitations, they play an
important role in real-world JEPC applications in general. In the experiments pre-
sented in the following, we examined the effects of the filter push-down techniques
for filter, correlation, aggregation and pattern matching EPAs.

In case of filter EPAs, the corresponding filter push-down technique transforms
EPNs that contain multiple filter EPAs in a row. For studying the effect of this trans-
formation, we executed a query consisting of two filter EPAs σϕ1 and σϕ2 . Both filter
EPAs were combined into the EPN σϕ2(σϕ1(EL)). The event steam EL consisted of
events with six randomly generated 32-bit integer numbers as payload. We ran this
experiment several times for different selectivities of the filter conditions ϕ1 and ϕ2.

0.00.20.40.60.81.0

0.0 0.2 0.4 0.6 0.8
1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Selectivity of Filter 1 Selectivity of Filter 2

1M
 E

ve
nt

s
/ S

ec
on

d

0.5

1.0

1.5

2.0

2.5

3.0

Figure 19.6: Effect of filter push-down on filter EPA (non-optimized)

308

19.4 Evaluation

Figure 19.6 shows the achieved throughputs (z-axis) of all tested configurations (x-axis
and y-axis respectively). The overall throughput was heavily affected by the selectiv-
ity of the filter condition of the first EPA and only slightly by the selectivity of the
filter condition of the second. This was because the more events had passed through
the first EPA, the more events had to be processed by the second.

In another setup of the experiment, the JEPC query optimizer transformed every
EPN before its execution. After its transformation, each optimized test query consisted
of only a single filter EPA with ϕ1 ∧ ϕ2 as filter condition. Figure 19.7 shows the results
of the experiment using the new setup. Except the cases where the selectivity of the
first filter condition was zero, the overall throughput was significantly higher and did
not decrease so heavily as in the setup with non-optimized test queries. Note that the
impacts of both filter conditions were nearly identical to each other in this setup (the
graph in Figure 19.7 is approximately symmetric).

0.00.20.40.60.81.0

0.0 0.2 0.4 0.6 0.8
1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Selectivity of Filter 1 Selectivity of Filter 2

1M
 E

ve
nt

s
/ S

ec
on

d

1.0

1.5

2.0

2.5

3.0

Figure 19.7: Effect of filter push-down on filter EPA (optimized)

309

19 Query Optimization

0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0
10

0k
20

0k
30

0k

Non−Optimized
Optimized (Lazy)
Optimized (Aggressive)

Selectivity of Filter Condition

E
ve

nt
s

/ S
ec

on
d

Figure 19.8: Effect of filter push-down on correlation EPA

In our next experiments, we focused on the filter push-down techniques for correla-
tion EPAs. Here, we had to investigate two different applications of it. First, a fil-
ter EPA directly succeeding a correlation EPA is completely pushed down and, thus,
eliminated. Second, all predicates of a correlation condition that only refer to one in-
put event stream are extracted and evaluated by an additional filter EPA in front of
the correlation EPA. The test query used in this experiment was the EPN σϕ f (./ϕc

(ωcount
100 (EL

1), ωcount
100 (EL

2))). Each event of the event streams EL
1 and EL

2 had three ran-
domly chosen 32-bit integer numbers as payload. The correlation condition ϕc referred
to attributes of both event streams and had a fixed selectivity of 0.01. In contrast, the
filter condition ϕ f referred only to attributes of E1 and we tested different selectivi-
ties of it. In lazy mode, the JEPC query optimizer integrated the filter condition into
the correlation EPA so that the transformed EPN was ./ϕc∧ϕ f (ω

count
100 (EL

1), ωcount
100 (EL

2)).
And in aggressive mode, the JEPC query optimizer further transformed the EPN. It
analyzed the new correlation condition ϕc ∧ ϕ f and further pushed ϕ f so that the
transformed EPN was ./ϕc (σϕ f (ω

count
100 (EL

1)), ωcount
100 (EL

2)).
Figure 19.8 shows the achieved throughputs as a function of the selectivity of ϕ f .

The lazy optimized query performed better than the non-optimized query. However,
the effect disappeared for extremely high selectivities of ϕ f . For low selectivities of ϕ f ,
the aggressively optimized query achieved throughputs that were higher by multiple
times than the achieved throughputs of the other queries. This was due to the fact that
the filter EPA prevented most events from entering the costly correlation EPA. Again,
its effect also disappeared for extremely high selectivities of ϕ f .

310

19.4 Evaluation

1 5 10 25 50 100

0
50

0k
1M

1.
5M

2M

Non−Optimized
Optimized

Total Number of Groups

E
ve

nt
s

/ S
ec

on
d

Figure 19.9: Effect of filter push-down on aggregation EPA

For examining the filter push-down technique for aggregation EPAs, we used the EPN
σgroupID=1(αgroupID,max(attr)(ω

time
x (EL))) as test query over a stream EL of events that

had six 32-bit integer numbers as payload. Five of them (including attr) were ran-
domly generated. The values of the attribute groupID were not random. This attribute
was used to identify the group an event belonged to. At first, the test query computed
the maximum value of the attribute attr per group within a sliding time window. After
the aggregation, a filter EPA selected only the results that belonged to the first group.
As a consequence, the selectivity of the filter EPA depended on the total number of
groups. We generated several input event streams with different numbers of equally
sized groups. In particular, each event stream was generated so that for each group
there were constantly 100 events within the sliding time window.

Figure 19.9 shows the achieved throughput of the test query for different numbers
of groups (non-optimized). Since event aggregation is a more expensive operation
than event filtering, the overall costs were dominated by the costs of the aggregation
EPA. At a first glance, the throughput of the aggregation EPA was approximately con-
stant, because every input event led to the computation of a max aggregate for a state
consisting of exactly 100 events in our experimental setup. But on closer inspection,
the throughput decreased slightly with an increasing number of groups (from one
group to 100 groups the performance drop was 26 %). This was due to the overhead
caused by grouping. Because of its placement, the succeeding filter EPA whose filter
condition became more selective when the number of groups was increased could not
compensate the overhead. This changed after we let the JEPC query optimizer trans-
form the test query before its execution. Then, the filter EPA was moved to the front

311

19 Query Optimization

of the aggregation EPA (optimized). Obviously, this transformation had no effect for a
single active group. The selectivity of the filter EPA was 1 in this case. However, when
the number of active groups was increased also the throughput increased significantly,
because more and more events were prevented from entering the costly aggregation
EPA. As a pleasant side effect, there was no overhead imposed by grouping. The
aggregation EPA had to manage only a single group in every case.

For pattern matching EPAs, there are three different applications of the filter push-
down technique. First, a succeeding filter EPA is integrated into the symbol condi-
tion of the last symbol of a pattern (lazy mode). Second, a filter condition is further
pushed down within a pattern (aggressive mode). Third, a filter condition that al-
ready was pushed down within a pattern definition is extracted and evaluated before
pattern matching. The optimization technique that extracts filter conditions is studied
in Section 19.4.4. In our next experiment, we examined only the first two applications.
The EPN σϕ f (ρP)(EL) served as test query in this experiment. Furthermore, the event
stream EL consisted of events with six randomly chosen 32-bit integer numbers as
payload and the pattern to detect was defined as follows:

P := a[ϕa]b[ϕb]c[ϕc]d[ϕd]e[ϕe]

The symbol conditions ϕa and ϕb had a fixed selectivity of 1 and all others had a fixed
selectivity of 0.5. Every symbol definition also included the setting of exactly one
global variable. Symbol a set the only global variable used in the filter condition ϕ f .
Thus, the filter condition ϕ f could be pushed down at most to symbol b.

0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0
25

0k
50

0k
75

0k
1M

1.
25

M

Non−Optimized
Optimized (Lazy)
Optimized (Aggressive)

Selectivity of Filter Condition

E
ve

nt
s

/ S
ec

on
d

Figure 19.10: Effect of filter push-down on pattern matching EPA

312

19.4 Evaluation

Figure 19.10 presents the achieved throughputs for different selectivities of the filter
condition ϕ f . In case of the optimized test queries, the maximum event throughput
was higher in comparison to the original test query. This was mostly due to the elimi-
nation of the filter EPA in the EPNs. For low selectivities, the aggressive optimization
that pushed down the filter condition to symbol b was superior to the lazy optimiza-
tion that pushed down the filter condition only to symbol e. This confirms that a
pattern matching EPA can be seen as a series of filters. Therefore, filter conditions
should be pushed down as far as possible in order to maximize the performance.

Altogether, the filter push-down techniques should be applied in every case, be-
cause they never had a negative effect on the performance. On the contrary, they im-
prove the overall query performance significantly in general. And in the worst case,
they simply have no effect. Note that the worst case scenarios require extremely high
selectivities. Because filter conditions with selectivities close to 1 contradict the pur-
pose of event filtering, it can be expected that the filter push-down techniques will
speed-up query execution in almost all real-world applications.

19.4.3 Correlation EPA Ordering

In order to study the effects of the algorithms for correlation EPA ordering, we gener-
ated EPNs in the form of left-deep trees consisting of N − 1 correlation EPAs for dif-
ferent numbers N of input event streams. Each input event stream contained events
with three randomly chosen 32-bit integer numbers as payload. All correlation EPAs
of a left-deep tree except the topmost one, which kept the entire correlation condi-
tion, had TRUE as correlation condition. Note that joins are commonly expressed this
way in standard SQL and, thus, our test queries represented the naïve translation of
such query specifications. The correlation condition of each test query consisted of
2N predicates that were connected via conjunctions. Each of the predicates referred to
two randomly chosen attributes and also the type of a predicate was randomly cho-
sen. Generated correlation conditions that always evaluate to FALSE were discarded
and replaced by a completely new generated correlation condition. On average, every
correlation EPA had 70 events of each input event stream in its state.

Figure 19.11 shows the achieved throughputs of the test queries and their opti-
mized versions for different numbers N on the x-axis. The results clearly show that
each ordering algorithm of the JEPC query optimizer improved the performance no-
ticeably. In every case, Greedy2 was superior to Greedy1. As expected, the dynamic
programming approach always outperformed the two greedy algorithms.

313

19 Query Optimization

3 4 5 6

Total Number of Streams

E
ve

nt
s

/ S
ec

on
d

0
20

00
0

60
00

0
Non−Optimized
Greedy1

Greedy2
Dynamic

Figure 19.11: Effect of correlation EPA ordering

19.4.4 Optimization of Pattern Matching EPAs

In this final section, we present experiments which we conducted to examine the op-
timization technique for pattern matching EPAs. We applied one or more pattern
matching EPAs on an event stream that contained exactly one event per time instant in
this experiments. Each single event had six randomly chosen 32-bit integer numbers
as payload. At first, we investigated the optimization technique for a single pattern
matching EPA. For this purpose, exactly one pattern matching EPA was executed in
each run of the experiment. The pattern to detect was defined as follows:

P := a[ϕa]b[ϕb]c[ϕc]d[ϕd]e[ϕe]

All symbol conditions except ϕc had a fixed selectivity of 0.5. For the symbol con-
dition ϕc, which could be extracted by the JEPC query optimizer, we tested different
selectivities ranging from 0 to 1. Furthermore, every symbol definition included the
assignment of global variables. The within condition was set to 100 time instants.

Figure 19.12 shows the achieved throughputs of the non-optimized and the opti-
mized query plans for different selectivities of ϕc. In case of low selectivities which
are the rule rather than the exception in meaningful pattern definitions, the optimiza-
tion technique was able to speed up the pattern matching query by multiple times.
However, the performance was slightly worse for high selectivities. Beginning from
a selectivity of about 0.3, the optimized query plan achieved a throughput that was
lower by a few percent in comparison to the non-optimized query plan. This was due
to the fact that a large amount of events passed through the additional filter EPA in
front of the pattern matching EPA. The additional filter EPA could not discard suffi-
ciently many events to compensate the overhead imposed by it.

314

19.4 Evaluation

0.0 0.1 0.2 0.4 0.6 0.8 1.0

0
1.

5M
3M

4.
5M

Non−Optimized
Optimized

Selectivity of Symbol c

E
ve

nt
s

/ S
ec

on
d

Figure 19.12: Effect of filter extraction on a single pattern matching EPA

In our last experiment, we studied the effect of the optimization technique for a set of
pattern matching EPAs. Therefore, the query workload of the following experiment
consisted of multiple pattern matching EPAs that had a symbol condition in common.
The pattern of the i-th pattern matching EPA of N pattern matching EPAs in total was
defined as follows:

Pi := a[ϕi
a]b[ϕ

i
b]c[ϕ

i
c]d[ϕ

i
d]e[ϕ

i
e]

All symbol conditions except ϕi
c were randomly generated, had a randomly chosen

selectivity in [0.5 : 1.0], and referred to global variables that were selected by random.
The symbol condition ϕi

c was fixed in all patterns, had a fixed selectivity of 0.01, and
did not refer to global variables. In other words, each pair of pattern matching EPAs
had pattern definitions in which the conditions of symbol c were identical while all
other symbol conditions differed from each other. Furthermore, every symbol defini-
tion also included the assignment of exactly one global variable. The within-condition
of each pattern matching EPA was set to 100 time instants. According to this specifica-
tion of the query workload, the JEPC query optimizer was able to extract the condition
of symbol c for every generated set of pattern matching EPAs.

Figure 19.13 shows the achieved throughputs for different numbers of pattern
matching EPAs on the x-axis. At a first glance, it is obvious that the application of
the optimization technique for multiple pattern matching EPAs had a strong effect.
When the total number of active pattern matching EPAs was increased, the through-
put decreased in both cases. However, the performance drop of the optimized query
workload was significantly lower. For example, the maximum event throughput of the

315

19 Query Optimization

1 5 10 20 30 40 50

0
50

0k
1M

1.
5M

2M
2.

5M

Non−Optimized
Optimized

Total Number of Pattern Matcher EPAs

E
ve

nt
s

/ S
ec

on
d

Figure 19.13: Effect of filter extraction on a set of pattern matching EPAs

optimized query workload consisting of 50 active pattern matching EPAs was about 20
times higher than the maximum event throughput of the non-optimized query work-
load that also consisted of 50 active pattern matching EPAs. Note that the optimized
query workload consisting of 20 active pattern matching EPAs achieved almost the
same maximum event throughput as the non-optimized query workload consisting of
only a single active pattern matching EPA.

Summary

This chapter presents a query optimizer for the JEPC middleware. The JEPC query
optimizer is designed as an external adviser that may or may not be used. It supports
not only one-time optimization before the execution of a query, but also continuous
optimization during its execution, and takes over well-established optimization tech-
niques from the area of database systems such as the powerful selection push-down
and the ordering of multiway joins. In addition, it also implements novel optimization
techniques for pattern matching queries. An experimental examination confirmed the
positive effect of each implemented optimization technique.

316

20
Parallel and Federated Event

Processing

Outline
20.1 Introduction . 318

20.2 Parallelization of JEPC . 318

20.3 Distribution of EPAs . 320

20.4 Implementation . 327

20.5 Evaluation . 327

20.6 Related Work . 329

317

20 Parallel and Federated Event Processing

20.1 Introduction

Generally speaking, data is processed in parallel mostly for one of two reasons. One
reason is to improve the overall performance in order to handle large and huge work-
loads. And the other reason is achieving high availability by introducing redun-
dancy. Unfortunately, both objectives of parallelization are contradictory. A paral-
lel infrastructure designed for high performance has poor availability and a parallel
infrastructure designed for high availability has poor performance. But recently, hy-
brid approaches such as are implemented by MapReduce [DG08, Läm07] and many
NoSQL/NewSQL database systems [Gro13] became popular. Hybrid approaches are
proven to achieve a reasonable trade-off between performance and availability.

In this chapter, we focus on increasing the overall performance of JEPC by process-
ing events in parallel (high availability is out of the scope of this thesis). The key idea
is to use multiple instances of EP providers (EPP) that run in parallel. This general
concept can be further extended if we allow the instances to be of different types of
EP providers. Such heterogenous configurations are called federations in the follow-
ing. The advantage of a federation is that the different strengths and weaknesses of
different types of EP providers can be exploited. Our experimental evaluation clearly
shows that "one size fits all" [Sto07b, LHB13] is also not true for EP providers.

20.2 Parallelization of JEPC

We describe in Section 1.2 and illustrate in Figure 1.1 that the query workload of any
stream processing system in general and of JEPC in particular can be modeled as a
directed operator graph. In case of JEPC, the nodes of an operator graph are single
EPAs and the directed edges represent the flow of events. Basically, there are three
different methods to partition operator graphs and to distribute the resulting parts
across a set of multiple workers running on, e.g., different machines connected to the
same network or different cores of a multi-/many-core CPU [Gul10, Gul12]. First,
subgraphs of an operator graph that represent entire queries are distributed across
workers (query parallelization). Second, single operators of an operator graph (i.e.,
EPAs) are distributed across workers (operator parallelization). Third, arbitrary but
disjoint subgraphs of an operator graph (i.e., EPNs that are not necessarily identical to
entire queries) are distributed across workers (operator-set parallelization). The latter
approach has been proven to be superior, because it is able to optimally balance the
degree of parallelization and the communication overhead [Gul10, Gul12].

318

20.2 Parallelization of JEPC

EPP (Federation Manager)

EPPEPP

EPA

EPA

EPA EPA

EPP

EPA

EPA

EPA

EPA

Figure 20.1: Parallel processing of EPAs using JEPC

We developed a so-called federation manager that automatically distributes queries ac-
cording to the operator-set parallelization as a JEPC extension. At first, the best worker
is determined for each EPA of a given operator graph. The federation manager as-
sumes workers to be instances of EPPs that potentially have different performance
profiles. Then, EPAs which are adjacent in the operator graph and assigned to the
same EPP instance are merged into a subgraph to reduce communication overhead.
The responsibility for each resulting partition is given to its assigned EPP instance.
Figure 20.1 gives a high-level overview of the federation manager. The entire opera-
tor graph that shall be executed is illustrated in the upper part. Since the federation
manager is not able to execute EPAs by itself, it delegates the execution to available
instances of EPPs shown at the bottom. During execution, the federation manager
redirects events and forwards output events to the outside world.

The federation manager has full control over multiple instances of ideally different
types of EPPs that run somehow in parallel (e.g., on different CPU cores, on different
machines, or on different components of a machine such as CPU and GPU). At the
same time, the federation manager itself acts as an EPP. This leads to several advan-
tages. Most importantly, the federation manager can be used like any other EPP, while
the internal complexity of the federation is completely hidden from users and exten-
sions (decorator design pattern [Fre04, Gam95]). Moreover, a federation manager can
also use other federation managers as workers so that hierarchies of federations can
be created. The only remarkable difference to other types of EPPs supported by JEPC
is that events can be concurrently injected into the federation manager.

319

20 Parallel and Federated Event Processing

Federation Manager

EPP1

EPP2

EPPn

...
...

Figure 20.2: Overall architecture of the federation manager

Figure 20.2 shows the overall architecture of our implemented federation manager.
All available instances of EP providers EPP1 to EPPn are executed in parallel. Each
available instance has an assigned queue for transferring events. An event is allowed
to arrive concurrently with other events. Every input event is added to the queues
of all instances that execute partitions which require the event. At the other side of a
queue, an extra thread pulls events out of it and pushes them into the corresponding
EPP instance. This ensures that the EPP instances get events concurrently. The same
threads are also used for receiving events from the instances. Output events are simply
pushed back into the federation manager as new input events.

20.3 Distribution of EPAs

The main task of the federation manager is to distribute EPAs across a set of potentially
heterogeneous instances of EPPs in a way that maximizes the overall event through-
put. We define the optimal distribution as follows. First, every single EPA is executed
by the type of EPP that is best suited from a performance point of view. Second, the
load is balanced. Third, the communication overhead is minimal. Note that these
three optimization goals contradict each other. The communication overhead is mini-
mal if we place all EPAs on the same EPP instance. But then some EPAs are executed
poorly and the EPP instance is overloaded. If we assign every EPA to the best suited
EPP, the communication overhead is not minimal and the load is not balanced. And if
we perfectly balance the load, EPAs are executed poorly and the communication over-
head is not minimal. So, the federation manager is in charge to find a good trade-off
between the three optimization goals.

320

20.3 Distribution of EPAs

The federation manager does not transform operator graphs. This is the task of a log-
ical query optimizer which, of course, may be applied before (see Chapter 19). The
federation manager performs physical query optimization by selecting a good imple-
mentation for each EPA of an operator graph. Different implementations to choose
from are provided by different available types of EPPs. For the assignment of EPAs
to EPP types that execute them efficiently, a method to determine the best type of EPP
for a given EPA is needed. There are two different approaches common in physical
query optimization [Moe09]. The performance a given EPA is expected to achieve
when executed by a certain type of EPP can be either estimated or determined via a
simulation. While the estimation approach is fast but can lead to supoptimal deci-
sions, the simulation approach always converges to the optimal decision but is time
consuming (especially in case of a large search space). However, both approaches can
be combined [Moe09]. An estimation can be made to quickly find a good starting
point. Through simulation this decision can be successively improved until it is opti-
mal. In the case of the federation manager, we preferred to implement the estimation
approach in order to be able to immediately start new CQs. Since CQs are long-term
running, a simulation-based approach can be used in addition to successively improve
the assignments of EPAs during runtime. The distribution of EPAs can be changed on-
the-fly via dynamic plan migration [Krä06, Yan07, ZRH04] using the update method
of JEPC (see Chapter 18) and is out of the scope of this chapter therefore.

20.3.1 Classification

We use a classifier in the form of an ordinary decision tree to assign EPAs to types of
EPPs. The specific decision tree which is used by default (and which was also used
in our experiments) is based on both expert knowledge and benchmarking. Because
of our experience with JEPC, its bridges and the supported raw EP providers, we
already had some knowledge about their individual strengths and weaknesses. We
then performed a series of benchmarks in order to concretize our impressions and to
potentially reveal hitherto unknown strengths and weaknesses.

In total, we performed more than 200 different benchmarks for four different types
of EPPs. Those four types of EPPs were taken from the set of available JEPC bridges,
but are not named because also commercial products were included. We simply refer
to them as EPP1, EPP2, EPP3 and EPP4 in the following. Not all benchmarks led to
new findings. But still, it is not possible to report the results of all relevant benchmarks
in their full breadth. Instead, we present a simplified version of our final decision tree
that is an aggregation of the benchmarking results. There were two important criteria

321

20 Parallel and Federated Event Processing

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
25

0k
50

0k
75

0k
1M

EPP1
EPP2

Rate of Simultanous Events in %

E
ve

nt
s

/ S
ec

on
d

Figure 20.3: Effect of simultaneous events on pattern matchers of different EPPs

that mainly separated the tested types of EPPs. First, the size of an operator state was
an influencing factor. This was because different raw EP providers contain different
algorithms, different implementations, or/and different optimization techniques. In
many cases, the performances of different EPP types changed differently when the size
of a state was varied. Second, the performances of some types of EPPs were affected by
simultaneous events. On the one hand, some raw EP providers exploit simultaneous
events. On the other hand, the corresponding JEPC bridge might introduce noticeable
overhead due to the alignment of semantics (at present this is true for a few types of
EPPs in case of the pattern matching EPA, see Section 8.3.2).

In the following, we present the results of two specific benchmarks that not only
revealed different performances of different types of EPPs, but also determined a con-
crete threshold value simultaneously. We show and discuss the results of each bench-
mark only for selected types of EPPs. In the first benchmark, a pattern matching EPA
searching for a simple sequential event pattern was executed over a generated test
event stream. The results are shown in Figure 20.3 for two different types of EPPs.
We ran the benchmark for different rates of simultaneous events shown on the x-axis.
For example, a value of 1 % means that with probability of one percent there was an
additional event at a time instant at that an event already occurred. The graphs show
clearly that EPP2 was strongly affected while EPP1 was not affected at all. But in case
of almost no simultaneous events, EPP2 was superior to EPP1. So, EPP2 should be
used if there are (almost) no simultaneous events and EPP1 should be used otherwise.
This outcome led to the creation of a new node in our decision tree (note that we use
only abstract thresholds throughout this chapter for ease of presentation).

322

20.3 Distribution of EPAs

5 50 100 200 500 1000

10
0

1k
10

k
15

0k

EPP1
EPP2
EPP3

Window Sizes

E
ve

nt
s

/ S
ec

on
d

Figure 20.4: Effect of window sizes on correlators of different EPPs

Figure 20.4 shows the results of the second benchmark that also led to a node in our
decision tree. It plots the achieved performances of a correlation EPA executed by dif-
ferent types of EPPs. The correlation EPA checked events of two different test event
streams for a simple correlation condition and had two equally sized count-based slid-
ing windows on its input event streams. We ran this benchmark for different sizes of
the windows shown on the x-axis. Of course, as the sizes increased also the state of
the EPA increased. But the benchmark further revealed that different types of EPPs
reacted differently on an increasing size of the state. In case of a small state EPP1

and EPP2 performed much better than EPP3 and in case of a large state the opposite
was true. For instance, for window sizes of 5 events EPP1 achieved a throughput that
was more than 4 times higher than the throughput of EPP3. Also EPP2 was almost
twice as fast as EPP3. But when the window size was increased to 1,000 events, EPP3

outperformed EPP1 by factor 10 and EPP2 by factor 12. These results are a good ex-
ample of a performance gap caused by the raw EP providers themselves, because the
corresponding JEPC bridges introduced no notable overhead.

On basis of all benchmarks, we manually created a decision tree that is shown in
simplified form in Figure 20.5. It gets a single EPA as input and returns an ordered
list of EPP types. The list keeps the EPP types in decreasing order of their expected
performances. Therefore, an EPA is placed best on the first type of EPP that is avail-
able. Available means that there are instances of that EPP type in the federation and
at least one of them has enough free resources for executing the EPA. If a certain EPP
type is not available, then the next type of EPP in the list is tried. At the root of the

323

20 Parallel and Federated Event Processing

Type of EPA?

Simultaneous Events?

Pattern Matcher

EPP2
EPP1
EPP3
EPP4

EPP1
EPP3
EPP4
EPP2

No Yes

EPP4
EPP2
EPP1
EPP3

Filter

State Size?

Aggregator

EPP4
EPP1
EPP2
EPP3

EPP4
EPP2
EPP1
EPP3

Small Large

EPP1
EPP4
EPP2
EPP3

EPP2
EPP1
EPP4
EPP3

EPP3
EPP2
EPP1
EPP4

State Size?

Correlator

Tiny Medium Huge

Figure 20.5: Classifier for assigning EPAs to EPP types

decision tree, incoming EPAs are separated by their types. Depending on its type, an
EPA might be further classified until a leaf node that holds the ordered list of EPP
types is reached. In case of filter EPAs there are no further criteria, neither of the EPA
itself nor of the underlying event stream, that influence the ranking of types of EPPs.
Thus, there is always the same order of EPP types. For all other types of EPAs, one fur-
ther criterion is taken into account. As argued before, the expected performance of a
pattern matching EPA may depend on the fact whether there are simultaneous events
possible. According to this parameter, the order of EPP types differs significantly (e.g.,
EPP2 is in one case the best choice and in the others the worst). For aggregation and
correlation EPAs the size of the state influences the order of EPP types.

Ignoring a few results that were influenced by overhead due to JEPC and its
bridges, we identified remarkable and potentially context-dependent differences in
the performances of existing systems. The revealed performance gaps clearly show
the potential that lies in federated EP infrastructures. In fact, already the presented
benchmarks prove that a federation is superior to the parallelization of a single type
of EPP. Federated EP becomes even more important, if we consider special imple-
mentation platforms such as GPUs or FPGAs in addition. Some types of EPAs can
be expected to perform extremely well on those platforms (e.g., correlation EPAs with
large states and complex correlation conditions [TM11]), while others might perform
poorly (e.g., filter EPAs) in comparison to CPU-based implementations.

324

20.3 Distribution of EPAs

20.3.2 Load Balancing

The classifier presented in the last section determines only the type of EPP that is
considered to be the best for a given EPA. But within a concrete federation, there
might be no, one, or multiple instances of that type available. In the first case, the EPA
cannot be placed on the best suited type of EPP. Then, the next best EPP type must
be tried until an available EPP type has been found. In the second case, there are no
further choices to make. The EPA is directly placed on the only available instance.
In the last case, there are multiple instances by which the EPA could be executed. To
clearly determine one of the eligible instances, we tried the most common selection
strategies including random selection and round robin selection. Unfortunately, those
strategies often resulted in a very uneven distribution of the load.

Therefore, we developed and implemented a selection strategy which better bal-
ances the load. In contrast to the common selection strategies, our so-called lowest-
load-least-selected strategy requires continuous monitoring of all EPP instances of a
federation. In particular, all resources that are limited and exclusively used by an
EPP instance must be monitored. What resources that are is determined by the de-
ployment model of a federation. If all EPP instances are running on different cores
of a multi-/many-core CPU of the same machine, only the CPU utilization is impor-
tant, because all other resources are shared. But if a federation runs on a cluster of
interconnected machines, also the memory and network utilizations must be taken
into account. The lowest-load-least-selected strategy chooses the EPP instance with
the lowest load among all EPP instances that are selectable. If multiple EPP instances
qualify because they have identical loads, then the EPP instance running the least
number of EPAs is selected. However, if still no clear selection can be made, an EPP
instance is chosen via round robin selection from the remaining EPP instances.

20.3.3 Clustering

Up to now, EPAs are deployed and executed individually. In particular, the federa-
tion manager deploys every single EPA on a highly suited and not overloaded EPP
instance. During execution, the federation manager redirects all relevant incoming
events to the EPP instance of an EPA and receives all its output events that are then
forwarded to succeeding EPAs and output processors. Figure 20.6a illustrates this
kind of deployment of EPAs. Because every deployed EPA needs at least two con-
nections (at least one for receiving events from the federation manager and one for
sending results), there are 2N or more connections in total for N deployed EPAs. This

325

20 Parallel and Federated Event Processing

EPP (Federation Manager)

EPP

EPA EPA EPA

EPA EPA EPA

EPP (Federation Manager)

EPP

EPA EPA EPA

EPA EPA EPA

a) Without clustering b) With clustering

Figure 20.6: Clustering of adjacent EPAs being deployed on the same EPP instance

approach is fine in general and due to the distributed character of parallel and fed-
erated event processing. However, this kind of deployment is not optimal for EPAs
being adjacent in the operator graph and deployed on the same EPP instance as in
Figure 20.6a. As long as the output of one EPA is required only by succeeding EPAs
deployed on the same EPP instance, there is no reason why the federation manager
should receive the output events, because it would simply send back all events to the
EPP instance, which causes unnecessary data transfer. Instead, a subgraph of EPAs
such as the one in Figure 20.6a can be handled autonomously by the corresponding
EPP instance in order to minimize communication overhead.

The federation manager clusters an operator graph before it is finally deployed
and executed. A cluster is created for each set of EPAs that are adjacent in the operator
graph and assigned to the same EPP instance. Such clusters are then deployed and
executed as an atomic unit. The transfer of events changes as follows. The federation
manager is only in charge of forwarding all input events of the root EPAs of a cluster
and receives only output events from the leaf EPAs of a cluster. Figure 20.6b shows
how the three adjacent EPAs are clustered by the federation manager. As a result, the
communication costs reduce significantly. After clustering, only 2 instead of 6 connec-
tions between the federation manager and the EPP instance are necessary. The impact
of this optimization depends on the deployment model of a federation. On a single
machine, a connection is established between two threads and, thus, relatively cheap.
But on a cluster of interconnected machines, a connection is established between two
machines and relatively costly. However, reducing the transfer of events has a notice-
ably positive effect on the overall performance in every case.

326

20.4 Implementation

20.4 Implementation

We implemented the federation manager as an additional EP provider of JEPC. This
means that it can be used like any other EP provider of JEPC. Our implementation is
arbitrarily configurable, but comes also with a default configuration that works well
in most situations. Since the federation manager cannot execute EPAs by itself, it must
be wrapped around a set of EPP instances that are able to execute EPAs. In contrast
to the other EP providers of JEPC, the federation manager is thread-safe and, thus,
allows events to be concurrently injected (see Figure 20.2).

1 EPProvider federation = new FederatedEngine(

2 TypeSelector typeSelector,
3 InstanceSelector instanceSelector,
4 EPProvider epp1, EPProvider epp2, . . ., EPProvider eppn

5);

Listing 20.1: Creating a federation of EP providers in JEPC

Listing 20.1 shows how to create a new federation in JEPC. Of course, a federation
consists of multiple EPP instances epp1, epp2, . . ., eppn that potentially are of different
types. Such an EPP instance can be any EP provider of JEPC, even another instance
of FederatedEngine. The parameter typeSelector is a user-defined classifier that
assigns every EPA to a list of types of EPPs (see Section 20.3.1). If it is not specified, our
default decision tree is used. The parameter instanceSelector is a user-defined selection
strategy for choosing a concrete EPP instance in the case that multiple instances of the
same type are available (see Section 20.3.2). If it is not specified, EPP instances are
chosen according to our lowest-load-least-selected strategy.

20.5 Evaluation

We conducted several experiments that all confirmed our claim that a federated EP
infrastructure is able to execute queries more efficiently than a single type of EPP run-
ning in parallel. In the following, we present one of those experiments. On the basis
of a simple test query, it clearly shows the superiority of a federation. The experiment
was performed on a single machine with an i7-2600 CPU consisting of 4 cores, 8 GiB
main memory and running 64-bit HotSpot VM (1.7.0_13). Each tested configuration
consisted of one federation manager, which used the default parameters and had con-
trol over exactly four EPP instances running in parallel on the multi-core CPU.

327

20 Parallel and Federated Event Processing

α

σ

./ ρ

Figure 20.7: Test query

EPP2 EPP3 EPP4 EPP1 Federation

1k
 E

ve
nt

s
/ S

ec
on

d

0
50

15
0

25
0

35
0

Figure 20.8: Performance of the test query for different configurations

The selected test query we present the detailed results for was one query of a larger
set of queries we tested and is depicted in Figure 20.7. It was quite simple but already
sufficient to let a federation clearly outperform all homogenous configurations. The
test query consisted of four different EPAs that were combined into a single EPN. At
first, an aggregation EPA and a filter EPA consumed exactly the same test event stream
that contained events which had three 32-bit integer numbers as payload. There were
no simultaneous events. A succeeding correlation EPA joined the two output streams
and forwarded its own results to a pattern matching EPA. We executed this test query
for five different configurations of the federation manager. In four configurations, all
four EPP instances were of the same type (EPP1, EPP2, EPP3, or EPP4) and, thus, rep-
resented the parallelization of a single type of EPP. The fifth configuration consisted
of a federation that had exactly one instance of each EPP type.

Figure 20.8 plots the achieved throughputs of all configurations. The results clearly
show that the federation outperformed every homogenous configuration by many
times. Note that if only one EPA of a query is executed poorly, it becomes a bottle-
neck and the performance of the entire query decreases.

328

20.6 Related Work

20.6 Related Work

The federation manager touches on several different topics of the parallel and feder-
ated data processing areas in which a lot of interesting work has been done in the past.
Therefore, the related work to discuss is diverse.

Cyclops. The Cyclops platform [LHB13] is intended to be used on top of different
types of data processing and data storage systems. For example, the configuration
used in the cited paper integrates a centralized stream processing system, a distributed
batch processing system, and a distributed stream processing system. The optimizer
of Cyclops delegates the execution of a continuos query to that system which is ex-
pected to perform best. As in the case of the federation manager, the optimizer of
Cyclops is implemented as a classifier that is based on performance benchmarks. The
motivating examples focus only on continuous jumping window aggregation queries.
In its evaluation, Cyclops demonstrates that depending on the event stream charac-
teristics and the specification of the jumping window (it can be defined being close to
stream processing, close to batch processing, or somewhere in-between), the best per-
forming processing paradigm differs. In contrast to the federation manager, Cyclops
does not deal with arbitrary multi-operator queries. Moreover, it focuses on differ-
ent processing paradigms and not on different implementations of systems belonging
to the same paradigm. Nevertheless, Cyclops supports our main statement that im-
plementations among different existing EP providers, different processing paradigms
(e.g., batch processing and stream processing), and different implementation plat-
forms (e.g., CPUs and GPUs) can be combined into very powerful infrastructures.

Federated DBMS. A federated DBMS is a meta database system which has control
over multiple and potentially heterogenous DBMSs that are called component DBMSs
[SL90]. Thus, the overall picture is the same as in our definition of a federated EP sys-
tem. But in the case of a federated DBMS, the integration of the different component
DBMSs is in focus rather than the optimization of queries. This is mainly because of
the assumption that the distribution of data is naturally given due to the existence
of several component DBMSs and not done on purpose with the aim to optimize the
overall performance or availability. The analogous problem to federated DBMS is the
integration of different existing EP providers. However, this problem has been already
solved by the core of JEPC.

329

20 Parallel and Federated Event Processing

Intra-operator Parallelization. One approach to parallelization often implemented
by parallel database systems is intra-operator parallelization [DG92]. In this approach,
the data a single operator has to process is partitioned and each partition is processed
in parallel by multiple instances of that operator. This approach is proven to work fine
for operators of the relational algebra and can be taken over to the filter, the aggrega-
tion and the correlation EPAs therefore. In addition, recent research results showed
how also the pattern matching EPA can be parallelized [Bal13]. Intra-operator par-
allelization of the EPAs of JEPC is on our agenda for future work. However, intra-
operator parallelization is a completely different kind of query parallelization and
does not enable federated EP. Note that the distribution of EPAs for parallel execution
and intra-operator parallelization can be used in combination without any problems.
Therefore, they are complementary and no competing approaches.

MaxStream. There has been already done research close to federated stream pro-
cessing in the MaxStream project [Bot09, Bot10]. MaxStream is a platform mainly for
integrating DBMSs and DSMSs that operate on time-varying relations. Therefore, it is
comparable to cyclops that also integrates different processing paradigms into a fed-
eration. MaxStream is designed and implemented as an extension to SAP MaxDB,
which is a federation engine for DBMSs. Since MaxStream is based on a federation
engine for databases, DSMSs are integrated in the same way as databases and used
to continuously execute traditional database queries. However, MaxStream focuses
purely on the integration of DBMSs and DSMSs. The possibility to optimize query
execution in the context of a federation is not considered at all [LHB13].

StreamCloud. The framework StreamCloud [Gul10, Gul12] parallelizes a DSMS by
running multiple instances distributed across a set of machines. StreamCloud splits
the operator graphs of queries according to the operator-set approach and deploys
the resulting parts on different nodes. The strategy used to partition query graphs
is simple but effective. Before each stateful operator the graph is cut and falls into
pieces. Contrary to StreamCloud that supports only a single type of DSMS at a time,
the federation manager of JEPC assumes a federation of EP providers each potentially
having different strengths and weaknesses. For this reason, the federation manager
implements the operator-set approach differently in order to fully exploit the differ-
ent characteristics of different EP providers. It first assigns every single EPA to the
instance that is best suited and then creates clusters of EPAs.

330

20.6 Related Work

Summary

In this chapter, we present a JEPC extension that manages parallel and federated EP
infrastructures on basis of JEPC. We introduce a federation manager that decomposes
operator graphs and distributes the resulting parts across multiple parallel running
and potentially heterogenous (i.e., a federation) EP providers. Each part of a decom-
posed operator graph, which can be a single EPA, multiple connected EPAs or an
entire query plan, is deployed on the EP provider that is expected to execute it with
highest possible performance. Simultaneously, the federation manager also balances
the load. Experimental evaluations confirmed that a query can be executed more effi-
ciently by a federation than by parallel running EP providers of the same type.

331

21
Conclusions

This part presented several extensions to EP technology on basis of the JEPC middle-
ware. JEPC was extended by a novel pattern matching EPA named TPStream, which is
more expressive than traditional pattern matchers. We showed how to enhance JEPC
to support the processing of spatial data. A matchmaker was introduced to create
self-adaptive EP applications. This component establishes all connections between
the elements of an EP application automatically and is able to handle differences in
meanings. We proposed a method to update continuous queries on-the-fly which is
the first one that is safe and efficient at the same time. It relies on a high-performance
storage system for recording and reloading event streams. Therefore, we introduced
the B+-tree event store that is a storage system being capable of recording millions of
events per second by exploiting the append-only nature of streams. The optimizer we
presented improves the performance of JEPC queries significantly. It applies not only
techniques known from databases, but also novel techniques for pattern matching
queries that were confirmed to be highly effective. Lastly, a framework was presented
to further improve the performance by distributing the workload across parallel run-
ning instances of JEPC. It also supports federations of heterogenous instances thanks
to the unification of JEPC. We showed that a federation can execute queries with a
performance that is not achievable via the parallelization of a single type of system.

333

Part IV

Thesis Conclusions and Future

Research

335

22
Thesis Conclusions

The constantly growing diversity of data models, query languages, and entire systems
in the area of event processing (EP) over the past years leads to serious problems today.
Applications often need multiple different components of EP technology. Besides this,
it is a frequent occurrence that a component must be exchanged for a different one.
At present, the necessary integration work is purely manual, highly error-prone and
extremely costly. Because it cannot be expected that there will be established any
standards in the near future, a reasonable solution lies in platforms that are able to
integrate different components of EP technology.

In this thesis, we presented the design and implementation of a novel middleware
for EP named Java Event Processing Connectivity (JEPC). This middleware abstracts
from different EP providers, including their data models and query languages, and
offers a uniform platform for developing EP applications. It is the first of its kind
and proves the feasibility of powerful integration platforms for EP. We specified JEPC
as a virtual EP provider that has its own data model and query language. Existing
EP providers are integrated via individual bridges that map the JEPC specification
to the corresponding specifications of existing EP providers. We showed that JEPC
bridges allow to integrate not only different existing stream processing engines, but
also standard database systems. Moreover, we used a native implementation of the

337

22 Thesis Conclusions

JEPC specification to bring in high-performance algorithms and implementations for
important components of EP. Thanks to the unification, this native EP provider can
seamlessly work together with every integrated EP provider. This approach can also
be used to perform selected tasks on special implementation platforms (e.g., GPUs).
Note that not only applications benefit from the advantages of the middleware. Also
components developed on top benefit from JEPC to the same extent.

We extended the state-of-the-art method for event pattern matching. Existing ap-
proaches capture the temporal nature of EP only insufficiently. Therefore, we pre-
sented a novel approach to event pattern matching that allows to derive and correlate
high-level events with time-interval semantics. On basis of the derived high-level
events, arbitrarily complex temporal event patterns can be detected. We implemented
the novel event patten matcher as a JEPC extension so that it can be used in conjunc-
tion with all other components that are supported by the middleware.

Since applications are becoming more and more dynamic, today’s static EP
providers are not able to adequately support many emerging applications. There-
fore, we developed the concept of dynamic event processing and implemented it in
the form of JEPC extensions. Dynamic event processing comprises two features. First,
we presented a matchmaker that fully automatically manages the entire interconnec-
tion of all elements of a dynamic EP application. Second, because the context changes
constantly in dynamic EP applications, also the processing logic must change con-
stantly. However, existing EP providers do not support adaptive processing logics.
Therefore, we introduced an approach to efficiently and safely updating arbitrary
parts of the processing logic at runtime. Because the efficiency of our approach re-
lies on a fast storage system for recording and reloading event streams, we presented
a high-performance event store that writes event streams with nearly maximum pos-
sible write rate to disk. Simultaneously and almost for free, an index is created to
support fast replaying and querying of recorded event streams.

We developed a query optimizer that transforms the query plans of JEPC queries
at the middleware level. Because different EP providers can be used at the same time
and in parallel, JEPC allows to choose from different implementations of the same
component in the first place. We found out that different implementations perform
quite differently in certain situations. In order to exploit this fact, we presented a novel
optimizer that assigns every part of a query plan to the EP provider that is best suited
from a performance point of view. An experimental evaluation clearly showed that
a federation of different EP providers is more powerful than a parallel infrastructure
consisting of one type of EP provider only.

338

23
Future Research

Outline
23.1 Introduction . 340

23.2 Additional JEPC Bridges . 340

23.3 What-If Analysis and Query Quality . 341

23.4 Application of Dynamic Event Processing . 342

339

23 Future Research

23.1 Introduction

Because this thesis presents the design and implementation of a novel EP middleware
providing unique functionality via its extensions, it opens a wide range of interesting
future research. In the next sections, we give an overview of the most attractive topics
we could not work on intensively enough owing to the lack of time.

23.2 Additional JEPC Bridges

In principle, future work on the core of JEPC can be done in two different ways. First,
the core itself can be extended in order to get a more powerful and expressive foun-
dation of JEPC. Second, the existing set of JEPC bridges can be extended by addi-
tional JEPC bridges to currently unsupported EP providers. However, we think the
first way is not very promising and advisable. An extension of the core itself by new
features (e.g., new types of EPAs) will cause serious consequences. Extending the
core itself means extending the JEPC specification. Thus, all existing JEPC bridges
must be extended simultaneously by implementing the new features. Furthermore,
the effort for implementing new bridges will grow. In the worst case, a new feature
forbids a JEPC bridge to some EP providers that can be supported without that new
feature. We are convinced that our specification of the JEPC core is a good compro-
mise between compatibility and expressive power. For instance, the current set of
basic EPAs contains all types of EPAs the event processing community considers to be
essential [EB09, EN10]. This ensures both sufficient expressiveness and wide support
by raw EP providers, which enables the implementation of JEPC bridges to them. In-
stead of extending the JEPC core, the development of additional JEPC bridges seems
more worthwhile. Additional JEPC bridges can be developed for not only dedicated
EP systems and general-purpose stream processing engines, but also more exotic EP
providers. For example, distributed stream processing infrastructures such as Storm
[Tos14] are becoming increasingly popular nowadays. Furthermore, highly parallel
hardware architectures such as many-core CPUs [Vaj11], graphics cards [Ven03] and
FPGAs [WTA10] become more and more important and are promising platforms for
high-performance event processing [TM11]. The native EP provider of JEPC is de-
signed for traditional CPUs and cannot be ported to fundamentally different architec-
tures. Instead, EPA implementations that exploit highly parallel hardware are needed.
To fully benefit from such hardware, research on inter- and especially intra-operator
parallelism [DG92, MD95] with respect to the basic EPAs of JEPC is needed.

340

23.3 What-If Analysis and Query Quality

23.3 What-If Analysis and Query Quality

It is possible to execute JEPC queries over recorded or synthetically generated event
streams stored in a standard database, because the JEPC semantics is compatible with
standard database systems. The EPAs filter, aggregator and correlator are snapshot-
reducible to operators of the relational algebra. Pattern matching is not part of the
relational algebra. However, in Chapter 9 we show how to perform pattern matching
purely via SQL. Note that there arise possibilities for optimization, when an event
stream or the relevant part of it is known in advance. For instance, an index can be
created in order to read and process only events of candidate sequences (see page 301
in Section 19.2.4). In addition, JEPC provides a query language and supports the con-
nectivity to several event stores. Therefore, everything that is needed to support the
evaluation of JEPC queries over stored event streams is already present. Together with
the sound JEPC semantics, this is an ideal basis for the design and implementation of
a simulation environment in which JEPC queries can be safely, isolated and efficiently
executed over historical events of a real EP application. One important use case of
such a simulation environment is What-If analysis. Going one step further, the overall
quality of JEPC queries can be measured and improved in such an environment. We
think that the use of a simulation environment raises interesting research questions
(rather than its design and implementation) and is important for the integration of
event processing technology into business-critical applications.

What-If analysis is performed in many different ways in the context of databases
today [LÖ09] and it can also be performed in many different ways in the context of
event processing. On basis of recorded event streams of a real EP application, different
queries and slightly different definitions of a query can be tested and successively
improved. For example, precision and recall of a query with respect to the detection
of SoIs can be determined in a test phase. In a following optimization phase, different
configurations of a query (e.g., different window sizes, different thresholds in filter
conditions) can be compared in order to find the best one. The other way around,
recorded event streams can be modified to check existing queries for the ability to
detect SoIs on different data. For instance, additional SoIs can be added by hand
or event streams of high quality can be enriched with noise. However, working out
different useful types of What-If analysis in the context of event processing is part
of future research. In addition, future research should also develop methodologies
and techniques that allow for the implementation of electronic assistants which guide
users or even perform some tasks (semi-)automatically.

341

23 Future Research

In the last paragraph, we indicated that it is currently not possible to give measure-
ment methods for the quality of continuous queries and advices for the management
of the life cycles of continuous queries, quite simply because there has not been done
intensive research on these topics yet [HS13]. Since in stream processing the roles of
data and queries are interchanged in comparison to database systems, the quality of
continuous queries running in a stream processing system is as important as the qual-
ity of data stored in a database systems. There has been done much work on managing
data quality [Lee06]. The management of query quality should be elaborated in the
same way. We think that interesting new research is possible due to the unique proper-
ties of continuous queries. However, existing work focusing on data quality can serve
as a starting point. For example, most dimensions of data quality [PLW02] can also be
used for a set of continuous queries. Just as the set of all data stored in a database, the
set of all running queries should be complete, up-to-date and free of error.

23.4 Application of Dynamic Event Processing

In this thesis, we proposed dynamic event processing to enable the use of event pro-
cessing technology in applications with constantly changing contexts. Dynamic event
processing makes applications (self-)adaptive and comprises two novel features from
a technical point of view. First, an additional matchmaker component manages the
entire interconnection of all elements fully automatically during runtime. Second, an
extra method allows, in conjunction with a high-performance event store, to safely
and quickly update continuous queries on-the-fly. However, the latter subject was
only addressed at a technical level in this thesis. For getting the best out of dynamic
event processing, it is crucial to utilize the update method properly.

We outlined a general and powerful way of exploiting the update method on page
274 in Section 18.2.1. Basically, models (particularly context models [Bet10, SL04] and
statistical models [McC02]) can be used to capture the behavior of the application
context including individual monitored objects to deploy and update queries for the
detection of SoIs. Especially behavior not in conformity with the expected behavior
can be detected this way and is of high interest in anomaly detection. However, two
important questions that require extensive investigation arise. First, how to get and
maintain suitable models? One possible research direction would be applying data
mining methods to historical data recorded by the event store [Bis06, FPS96, WFH11].
Second, how to utilize the models? A simple but effective way is the use of prepared
query definitions whose parameters are maintained by the models [HS13].

342

Appendices

343

A
Development and Evaluation

Details

Outline
A.1 Introduction . 346

A.2 Unit Tests . 346

A.3 Evaluation Framework . 346

345

A Development and Evaluation Details

A.1 Introduction

While we were working on JEPC, several bridges to different raw EP providers have
been implemented and manifold extensions have been developed. To ensure the qual-
ity of our implementations and novel concepts, we conducted extensive and profound
checks for errors as well as performance evaluations.

A.2 Unit Tests

On basis of the sound and formal foundation of the JEPC semantics, the output and
the behavior of JEPC can be deterministically and exactly predicted for a given set of
queries and a given set of input event streams. This allows for the implementation of
unit tests that execute certain workloads and check the output and behavior of JEPC
for correctness. While there are unit tests for almost every component of JEPC, we par-
ticularly focused on the JEPC bridges for two reasons. First, the JEPC bridges are the
most critical and error-prone part, because they map the semantics of JEPC to the po-
tentially different semantics of raw EP providers. Hence, a JEPC bridge must possibly
align the different semantics of a raw EP provider. The problem is that the alignment
techniques a JEPC bridge applies must work correctly in every setup. Therefore, we
created a lot of different test setups in order to cover as many situations as possible.
Second, JEPC is expected to get additional JEPC bridges in the future. The design and
implementation of a JEPC bridge is much easier and faster when comprehensive unit
tests that can reveal errors immediately at development time are available.

A.3 Evaluation Framework

The method of unit testing is perfect for revealing errors, but it is not suitable for per-
formance evaluations. Unit tests are as compact as possible and have usually small as
well as specially prepared workloads that do not correspond to real-world workloads
in general. For plausible performance evaluations, massive workloads with the char-
acteristics of real-world applications are required. Therefore, we developed an evalua-
tion framework specifically for performance evaluations of JEPC and its components.
This framework became a toolbox that can be used to generate massive workloads
which have certain characteristics. Its cornerstones are described in the following.

346

A.3 Evaluation Framework

A.3.1 Random Number Generator

At the lowest level of the evaluation framework, there is a random number generator
(RNG) which can be used in many different ways to create workloads for experiments.
The RNG is for obtaining a set of random numbers that follow a certain probability
distribution within a user-defined range of values. In particular, users have to spec-
ify a range of values [Low : High], a probability distribution and the total number of
random numbers to generate. Then, the RNG returns a set of numbers that fulfill the
given specifications. In the following, all available and used probability distributions
are listed. Most of them are parameterized and, of course, it is possible to freely set
parameters in the evaluation framework. However, for each available probability dis-
tribution there is at least one predefined parameter setting provided. Note that there
are different types of probability distributions. Some are discrete, others are contin-
uos. Also the domains vary. Some have a fixed and finite range of numbers as domain
(e.g., [0 : 1]), others have all real numbers as domain. Because we forced all distri-
butions to implement our RNG interface, there are some small side-effects. First, if
the underlying probability distribution is discrete, the returned random numbers are
also discretized. There is no interpolation or other procedure applied. Second, the
domain of the underlying probability distribution is mapped to [Low : High] via a
transformation consisting of a translation and a scaling operation. Third, if the do-
main of the underlying probability definition is unbounded at one or both sides, the
transformation includes not only a scaling and a translation, but also a clipping.

Uniform and Fixed Distributions. The uniform and fixed distributions do not have
any parameters. Therefore, our presets UNNIFORM and FIXED must be used. When
choosing the uniform distribution [Bis06, ES10, For11], the numbers in the returned
set have been generated using the same constant probability. The probability density
function (PDF) is given by funi f orm.

funi f orm(x) =

1/(High− Low) if x ∈ [Low : High]

0 if x 6∈ [Low : High]

The fixed distribution is a special case. Here, always the number Low/2 + High/2 is
returned. The corresponding probability density function is given by f f ixed. Figure A.1
shows these two non-parameterized probability distributions.

f f ixed(x) =

1 if x = Low/2 + High/2

0 if x 6= Low/2 + High/2

347

A Development and Evaluation Details

Low Low/2+High/2 High

0
1/

(H
ig

h−
Lo

w
)

1
UNIFORM
FIXED

Numbers

D
en

si
ty

Figure A.1: Uniform and fixed distributed numbers

Triangular Distribution. In the case of the triangular distribution [ES10, For11], the
probability density function is a triangular defined by Low, High and a free parame-
ter c. From Low to c the function increases linearly, and from c to High it decreases
linearly. The PDF of the triangular distribution is given by ftriangular.

ftriangular(x) =



0 if x < Low
2(x−Low)

(High−Low)(c−Low)
if Low ≤ x < c

2(High−x)
(High−Low)(High−c) if c ≤ x ≤ High

0 if x > High

Besides the option to freely set c to any value in (Low : High), there are three prede-
fined configurations provided. In TRIANGULAR1, c is set to the value that is one quar-
ter away from Low and three quarters away from High. The preset TRIANGULAR3
uses the exactly opposite weights. In TRIANGULAR2, the middle of the user-defined
value range is used to set c. Figure A.2 shows all three presets.

Normal Distribution. The normal distribution [Bis06, ES10, For11] is a symmetric
and bell-shaped probability distribution. It is the most widely used probability distri-
bution in statistics [Bis06, For11]. The corresponding PDF fnormal has the mean µ and
the standard deviation σ as parameters.

fnormal(x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ)2

348

A.3 Evaluation Framework

Low Low/2+High/2 High

0
1

2

TRIANGULAR1 (c = Low+(High−Low)/4)
TRIANGULAR2 (c = Low/2+High/2)
TRIANGULAR3 (c = Low+3(High−Low)/4)

Numbers

D
en

si
ty

Figure A.2: Triangular distributed numbers

Low Low/2+High/2 High

0.
0

0.
4

NORMAL (µ = Low/2+High/2, σ2 = 1)

Numbers

D
en

si
ty

Figure A.3: Normal distributed numbers

While the standard deviation σ can be freely set, the mean µ defines the center and is
always given by Low/2+ High/2 in our evaluation framework. Figure A.3 shows the
only provided preset NORMAL in which σ is set to one.

Beta Distribution. Another widely used probability distribution is the beta distri-
bution [Bis06, ES10, For11] whose corresponding PDF is given by fbeta. It is based on
and named after the beta function B(α, β). The parameters α and β can be freely set.
Figure A.4 shows our three predefined configurations of the beta distribution.

fbeta(x) =
xα−1(1− x)β−1

B(α, β)
, with B(α, β) =

∫ 1

0
uα−1(1− u)β−1 du

349

A Development and Evaluation Details

Low Low/2+High/2 High

0
1

2
3

BETA1 (α = β = 0.5)
BETA2 (α = β = 2)
BETA3 (α = 2, β = 5)

Numbers

D
en

si
ty

Figure A.4: Beta distributed numbers

Low Low/2+High/2 High

0.
0

0.
1

BINOMIAL1 (p = 0.10)
BINOMIAL2 (p = 0.25)
BINOMIAL3 (p = 0.40)

Numbers

D
en

si
ty

Figure A.5: Binomial distributed numbers

Binomial Distribution. The binomial distribution [Bis06, ES10, For11] is important
for the modeling of stochastic processes. Its PDF is given by fbinomial . While n is fixed
in our implementation, the parameter p can be freely chosen from (0 : 1). Figure A.5
shows all predefined configurations of the binomial distribution.

fbinomial(x) =
(

n
x

)
px(p− 1)n−x

350

A.3 Evaluation Framework

Low Low/2+High/2 High

0.
0

0.
7

CAUCHY1 (b = 0.5)
CAUCHY2 (b = 1.0)
CAUCHY3 (b = 2.0)

Numbers

D
en

si
ty

Figure A.6: Cauchy distributed numbers

Cauchy Distribution. The Cauchy distribution [Bis06, ES10, For11] is important in
physics and has the PDF fcauchy with free parameter b. Figure A.6 shows our three
predefined configurations.

fcauchy(x) =
1

bπ
(

1 +
(

x−Low/2+High/2
b

)2
)

Chi-Squared Distribution. In statistical inference, the chi-squared distribution
[ES10, For11], which has the probability density function fchi−squared with free
parameter v, is widely used. Figure A.7 shows three configurations being predefined
in our evaluation framework.

fchi−squared(x) =
1

2v/2Γ(v/2)
x(v−2)/2e−x/2 ,

with Γ(r) =
∫ ∞

0
ur−1e−u du

Zipf Distribution. The Zipf distribution [ES10] is capable of modeling many real-
world phenomena. Its PDF is given by fzip f with free parameter s. Figure A.8 shows
the only provided preset in which s is set to 1.0.

fzip f (x) =
x−(s+1)

ξ(s + 1)
, with ξ(w) =

1
Γ(w)

∫ ∞

0

uw−1

ew − 1
du

351

A Development and Evaluation Details

Low Low/2+High/2 High

0.
0

0.
5

CHI_SQUARE1 (v = 0.5)
CHI_SQUARE2 (v = 4.0)
CHI_SQUARE3 (v = 9.0)

Numbers

D
en

si
ty

Figure A.7: Chi-squared distributed numbers

Low Low/2+High/2 High

0.
0

0.
1

ZIPF

Numbers

D
en

si
ty

Figure A.8: Zipf distributed numbers

Many of the available probability distributions are not symmetric. In order to increase
the number of options, we provide a higher-order function fmirror that mirrors a given
probability density function at Low/2 + /High/2.

Note that in all experiments which are presented in this thesis and made use of the
evaluation framework, only the presented presets were used. In general, we tested all
available predefined probability distributions whenever the underlying distribution
of a parameter had an effect.

352

A.3 Evaluation Framework

A.3.2 Event Generators

The random number generator following a user-defined probability distribution is
perfectly suited for generating the payloads of events. Therefore, we defined event
schemas such that they consisted only of numeric attributes in general. Then, the
payloads of events were points in a hypercube whose positions could be generated in a
controlled way by using one instance of the random number generator for each single
event attribute. In addition, also the timestamps of events can be generated by random
resulting in a certain distribution of events along the timeline. All event generators we
implemented for our experiments became part of the evaluation framework.

A.3.3 Query Generators

The generation of continuous queries is not less important than the generation of
events. But the possible applications of the random number generator are more di-
verse in this case. We mostly used the random number generator to create parameters
of EPAs in a controlled way. For instance, we used three different random number
generators to create filter conditions for evaluating the query indexes in Chapter 11.
One instance of the generator was in charge for selecting a subset of all event attributes
for that between predicates were defined. Because between predicates restrict the at-
tribute domain to a certain range being identical to a one-dimensional interval, we
used a second instance for generating the positions of intervals and a third instance
for generating the sizes of intervals. For each of the three instantiated generators, the
underlying probability distribution as well as the parameters Low and High can be set
separately. This results in a large range of different query workloads that we could
use in our experiments. As in the case of event generators, also all our implemented
query generators became part of the evaluation framework.

353

B
Matchmaker Example

Outline
B.1 Introduction . 356

B.2 Wrapping Instances of JEPC . 356

B.3 Transformations . 356

B.4 Creating Queries . 360

B.5 Registering External Producers . 362

B.6 Processing of Events . 363

B.7 Runtime Adaptivity . 364

355

B Matchmaker Example

B.1 Introduction

Chapter 7 of this thesis outlines the API of JEPC that is nothing extraordinary since
the JEPC middleware is a virtual EP provider designed to meet the behavior and feel
of existing stream processing systems which are familiar to informed readers. Things
change when our matchmaker extension is used. Then, the notion of a data or event
stream is completely removed from the API. In order to illustrate the new behavior
and feel, we present a complete and detailed example of an EP application that utilizes
the matchmaker in this chapter. The example application is oriented towards the ex-
amples used in Chapter 16. Because we want to give a good impression in a nutshell,
we do not use our high-level query language JEPC-QL.

B.2 Wrapping Instances of JEPC

The matchmaker extension has been designed as a wrapper for single instances of
JEPC. Listing B.1 shows how to create a new matchmaker for an existing JEPC in-
stance. In the first line, a new JEPC instance is created (an EP provider of type Esper
in the concrete example). Next, a new matchmaker is created for the recently created
JEPC instance in line 2. Note that the matchmaker can be used with any type of an EP
provider. This explicitly includes federations of multiple and potentially different EP
providers that are EP providers again.

1 EPProvider epProvider = new EsperEngine();

2 Matchmaker matchmaker = new Matchmaker(epProvider);

Listing B.1: Wrapping an instance of JEPC

B.3 Transformations

We introduced transformations to increase the power and flexibility of the match-
maker as well as the quality and robustness of resulting applications. At first, we show
how to create basic transformations that are the only supported types of transforma-
tions in JEPC. Then, we demonstrate how the matchmaker automatically composes
basic transformations to arbitrarily complex transformations.

356

B.3 Transformations

B.3.1 Basic Transformations

In our formal specification as well as in our implementation of the matchmaker we
only support basic transformations (namely conversion, merge and split). Beginning
on page 236 in Section 16.4.1, we give a concrete example for each type of basic trans-
formation. The listings presented in the following show how to express these concrete
example transformations in JEPC.

1 Attribute requiredAttribute = new Attribute("temperature", DataType.FLOAT)

2 .setProperty("Unit of measurement", "Degrees Celsius");

3 Attribute imageAttribute = new Attribute("temperature", DataType.FLOAT)

4 .setProperty("Unit of measurement", "Degrees Fahrenheit");

5

6 ConversionFunction<Float,Float> celsiusToFahrenheitFunc =

7 new ConversionFunction<Float, Float>() {

8 @Override

9 public Float apply(Float input) {

10 return (input * 9) / 5 + 32;

11 }

12 };

13

14 Conversion celsiusToFahrenheit = new Conversion("Celsius -> Fahrenheit",

15 requiredAttribute, imageAttribute, celsiusToFahrenheitFunc);

Listing B.2: Conversion in JEPC

Recall that every transformation consists by definition of two components, a schema
transformation and a data item transformation. Listing B.2 shows the example conver-
sion being expressed in JEPC. The first four lines define the schema transformation. In
the case of a conversion, exactly one required attribute (requiredAttribute) and
exactly one attribute of the image (imageAttribute) must be defined. The meaning
is that the transformation is only applicable to schemas that have an attribute which
matches the required attribute. Then, the transformation exchanges the matching at-
tribute of the schema for the attribute of its image. Besides the schema transformation,
we must define an additional function which performs a corresponding transforma-
tion of all values belonging to the attribute being converted. In the concrete example,
this is the function celsiusToFahrenheitFunc that converts temperature values
from degrees Celsius into degrees Fahrenheit. Finally, all parts are put together for
creating the complete conversion in lines 14–15 ("Celsius -> Fahrenheit" is the
user-defined identifier of the transformation that is needed to remove the transforma-
tion from the matchmaker at any time).

357

B Matchmaker Example

Listing B.3 shows the example merge in JEPC. To be applicable to a schema,
it requires the schema to have a matching attribute for every single attribute in
requiredAttributes. Note that requiredAttributes has set semantics dur-
ing matchmaking. Due to the permutation being mandatory in every mapping, the
order of attributes does not matter in general. However, the order of attributes in
requiredAttributes determines the order of arguments of the data item trans-
formation addAreaFunc (i.e., the order of values in Object[] input). After the
merge has been applied to a suitable schema, the resulting schema has a new attribute
imageAttribute. The data item transformation addAreaFunc defines how the val-
ues of that new attribute are computed.

1 Attribute[] requiredAttributes = new Attribute[] {

2 new Attribute("width", DataType.INTEGER)

3 .setProperty("Unit of measurement", "Inch"),

4 new Attribute("height", DataType.INTEGER)

5 .setProperty("Unit of measurement", "Inch"),

6 };

7 Attribute imageAttribute = new Attribute("area", Attribute.DataType.LONG)

8 .setProperty("Unit of measurement", "Square inch");

9

10 MergeFunction addAreaFunc = new MergeFunction() {

11 @Override

12 public Object apply(Object[] input) {

13 long width = (long) input[0];

14 long height = (long) input[1];

15 return width * height;

16 }

17 };

18

19 Merge addArea = new Merge("Add area",

20 requiredAttributes, imageAttribute, addAreaFunc);

Listing B.3: Merge in JEPC

Lastly, the implementation of the example split is shown in Listing B.4. It is applicable
to all schemas that have a matching attribute for requiredAttribute. Then, the
three attributes of imageAttributes are added to the schema in addition. The data
item transformation extractCoordinatesFunc defines how the values of the new
attributes are computed on the basis of the values of the required attribute. Again,
the order of attributes of imageAttributes does not affect matchmaking, but deter-
mines the order in which values of extractCoordinatesFunc are assigned to the
attributes of the image.

358

B.3 Transformations

1 Attribute requiredAttribute = new Attribute("point", DataType.STRING)

2 .setProperty("Encoding", "Well-Known-Text")

3 .setProperty("Dimensions", "3");

4 Attribute[] imageAttributes = new Attribute[] {

5 new Attribute("x", DataType.INTEGER),

6 new Attribute("y", DataType.INTEGER),

7 new Attribute("z", DataType.INTEGER),

8 };

9

10 SplitFunction extractCoordinatesFunc = new SplitFunction() {

11 Pattern pattern = Pattern.compile("POINT\\(([\\d]+),([\\d]+),([\\d]+)\\)");

12 Matcher matcher;

13 @Override

14 public Object[] apply(Object input) {

15 matcher = pattern.matcher((String)input);

16 matcher.find();

17 return new Object[] {

18 Integer.valueOf(matcher.group(1)),

19 Integer.valueOf(matcher.group(2)),

20 Integer.valueOf(matcher.group(3))

21 };

22 }

23 };

24

25 Split extractCoordinates = new Split("Extract coordinates", requiredAttribute,

26 imageAttributes, extractCoordinatesFunc);

Listing B.4: Split in JEPC

1 Attribute requiredAttribute = new Attribute("temperature", DataType.FLOAT)

2 .setProperty("Unit of measurement", "Degrees Fahrenheit");

3 Attribute imageAttribute = new Attribute("temperature", DataType.FLOAT)

4 .setProperty("Unit of measurement", "Degrees Kelvin");

5

6 ConversionFunction<Float,Float> fahrenheitToKelvinFunc =

7 new ConversionFunction<Float, Float>() {

8 @Override

9 public Float apply(Float input) {

10 return (input - 32) / 1.8f + 273.15f;

11 }

12 };

13

14 Conversion fahrenheitToKelvin = new Conversion("Fahrenheit -> Kelvin",

15 requiredAttribute, imageAttribute, fahrenheitToKelvinFunc);

Listing B.5: Another conversion in JEPC

359

B Matchmaker Example

B.3.2 Combining and Adding Basic Transformations

As mentioned before, complex transformations cannot be achieved via a single basic
transformation, but via a combination of multiple basic transformations. According to
the motivating example, the sensor of milling machine 42 delivers temperature values
in degrees Celsius, but Alice wants temperature values to be in degrees Fahrenheit
and Bob needs temperature values in degrees Kelvin. We already created the trans-
formation celsiusToFahrenheit for converting temperature values from degrees
Celsius into degrees Fahrenheit. This transformation fits perfectly the needs of Alice,
but not the needs of Bob. In the case of Bob, we have to create an additional transfor-
mation. We could create another transformation that converts the temperature values
from degrees Celsius directly into degrees Kelvin. However, we decided to create an-
other transformation that converts temperature values from degrees Fahrenheit into
degrees Kelvin. It is shown in Listing B.5. Note that among all four basic transfor-
mations there is no single basic transformation that fits the needs of Bob. But when
the two conversions are combined, temperature values can be converted from degrees
Celsius (over degrees Fahrenheit) into degrees Kelvin.

After the definition of a basic transformation, it must be added to the matchmaker
in order to enable it. Listing B.6 shows how to add all four basic transformations. For
the rest of this chapter, we assume that all those transformations are active.

1 matchmaker.addTransformation(celsiusToFahrenheit);

2 matchmaker.addTransformation(addArea);

3 matchmaker.addTransformation(extractCoordinates);

4 matchmaker.addTransformation(fahrenheitToKelvin);

Listing B.6: Adding basic transformations

B.4 Creating Queries

In the traditional stream processing paradigm, data sources must be defined and reg-
istered before continuous queries can be created. This is due to the fact that every
query definition must contain an exact specification of all queried data streams which
are required to be already registered. Note that because of Algorithm 22 the order
in which producers and consumers are registered does not matter when the match-
maker is used. In order to illustrate this flexibility, we decided to create the continuous
queries of Alice and Bob before the registration of any external producer.

360

B.4 Creating Queries

Listing B.7 shows the definition and creation of Alice’s query that is an ordinary aggre-
gation query. However, its input is not an existing data stream. Alice uses the match-
operator to define a virtual data stream, whose schema is precisely specified before
and corresponds to the individual view of Alice. Note that setStaticValue(x) is a
shortcut for setProperty("Static value", x). We provide this extra method,
because the property with key "Static value" has a special meaning in our imple-
mentation (see Section 16.5 beginning on page 248). Listing B.8 shows the definition
and creation of Bob’s query that is similar to Alice’s query. At present, we have two
running queries without any external data producers being registered yet.

1 Attribute[] aliceInput = new Attribute[] {

2 new Attribute("temperature", DataType.FLOAT)

3 .setProperty("Unit of measurement", "Degrees Fahrenheit"),

4 new Attribute("mid", DataType.SHORT)

5 .setStaticValue(42)

6 };

7

8 EPA alice = new Aggregator(

9 "Alice",

10 new Match(aliceInput, new CountWindow(50)),

11 new Average("temperature", "avgTemperature")

12);

13

14 matchmaker.createQuery(alice);

Listing B.7: Query of Alice

1 Attribute[] bobInput = new Attribute[] {

2 new Attribute("place", DataType.SHORT)

3 .setStaticValue(10),

4 new Attribute("temperature", DataType.FLOAT)

5 .setProperty("Unit of measurement", "Degrees Kelvin")

6 };

7

8 EPA bob = new Aggregator(

9 "Bob",

10 new Match(bobInput, new CountWindow(50)),

11 new Average("temperature", "avgTemperature")

12);

13

14 matchmaker.createQuery(bob);

Listing B.8: Query of Bob

361

B Matchmaker Example

B.5 Registering External Producers

In contrast to the traditional paradigm in which a data stream abstracts from all in-
dividual data producers of the same type, individual data producers are registered
separately in case of the matchmaker. The matchmaker needs the exact schema of an
individual data producer being registered and returns a unique identifier for it.

1 Attribute[] millingMachine42Schema = new Attribute[] {

2 new Attribute("temperature", DataType.FLOAT)

3 .setProperty("Unit of measurement", "Degrees Celsius")

4 .setProperty("Minimum value", "-273.15"),

5 new Attribute("consumption", DataType.INTEGER)

6 .setProperty("Unit of measurement", "Watt")

7 .setProperty("Minimum value", "0"),

8 new Attribute("mid", DataType.SHORT)

9 .setProperty("Is key", "true")

10 .setStaticValue(42),

11 new Attribute("place", DataType.SHORT)

12 .setStaticValue("10")

13 .setProperty("Is unique", "true"),

14 new Attribute("type", DataType.STRING)

15 .setStaticValue("Milling machine")

16 };

17

18 int millingMachine42 = matchmaker.registerProducer(millingMachine42Schema);

Listing B.9: Registration of a producer

Listing B.9 shows the registration of the sensor of milling machine 42. We first define
the individual schema of the producer being registered and remember the returned
identification. It is needed to send data items, to update the schema of the registered
producer and to unregister the producer. Immediately after registration, matchmak-
ing is automatically performed and two new connections are established in total. One
connection is established between the new producer and the query of Alice for the
following reasons. The producer schema contains the requested attributes mid and
temperature. Furthermore, mid has the requested static value and for converting
temperature values from degrees Celsius into degrees Fahrenheit there is an active
conversion. Another connection is established between the new producer and the
query of Bob. The mapping of that connection is slightly different. It selects the re-
quested attributes temperature as well as place and converts temperature values
in degrees Kelvin as requested by Bob via the combination of the two active conver-
sions. Other producers can be registered in the same way as shown in Listing B.9.

362

B.6 Processing of Events

B.6 Processing of Events

At this point, we have created a minimum but working application on basis of the
matchmaker. In order to make the established fine-grained connections with individ-
ual mappings visible, we push some data for the sensor of M42 in the following.

1 int i = 0;

2 while(doSend)

3 matchmaker.pushEvent(millingMachine42, new Object[] { 22.3f, 2_000 }, i++);

Listing B.10: Sending events

Listing B.10 simulates the sensor of M42 by using its identification for pushing events
that have the constant payload temperature=22.3f, consumption=2_000 and
increasing timestamps. For all other attributes, the sensor must not send values since
they have been declared to be static. They are added automatically to each event after
arrival at the matchmaker. Note that temperature and consumption are variable
in practice. In this example, we use constant values for illustration purposes.

1 Alice:

2 avgTemperature=72.13999938964844 tstart=0 tend=1

3 avgTemperature=72.13999938964844 tstart=1 tend=2

4 avgTemperature=72.13999938964844 tstart=2 tend=3

5 avgTemperature=72.13999938964844 tstart=3 tend=4

6 avgTemperature=72.13999938964844 tstart=4 tend=5

7 . . .
8

9 Bob:

10 avgTemperature=295.4499816894531 tstart=0 tend=1

11 avgTemperature=295.4499816894531 tstart=1 tend=2

12 avgTemperature=295.4499816894531 tstart=2 tend=3

13 avgTemperature=295.4499816894531 tstart=3 tend=4

14 avgTemperature=295.4499816894531 tstart=4 tend=5

15 . . .

Listing B.11: Output of queries

Listing B.11 shows the first events of the output streams of the queries of Alice and
Bob. The fact that there exist output events proves that connections have been estab-
lished. Furthermore, the different values of avgTemperature among Alice and Bob
clearly show that the fine-grained connections have different mappings.

363

B Matchmaker Example

B.7 Runtime Adaptivity

Finally, we want to give an impression of the self-adaptivity of the example application
that is achieved by using the matchmaker. For this purpose, we exchange the sensor
of M42 for a different but still suitable (from the queries’ perspective) sensor.

1 millingMachine42Schema = new Attribute[] {

2 new Attribute("place", DataType.SHORT)

3 .setStaticValue("10")

4 .setProperty("Is unique", "true"),

5 new Attribute("mid", DataType.SHORT)

6 .setProperty("Is key", "true")

7 .setStaticValue(42),

8 new Attribute("consumption", DataType.INTEGER)

9 .setProperty("Unit of measurement", "Watt")

10 .setProperty("Minimum value", "0"),

11 new Attribute("manufacturer", DataType.STRING)

12 .setStaticValue("Gyro Gearloose"),

13 new Attribute("temperature", DataType.FLOAT)

14 .setProperty("Unit of measurement", "Degrees Fahrenheit")

15 .setProperty("Minimum value", "-459.67")

16 };

17

18 matchmaker.updateProducer(millingMachine42, millingMachine42Schema);

19

20 while(doSend)

21 matchmaker.pushEvent(millingMachine42, new Object[] { 2_000, 72.14f }, i++);

Listing B.12: Update of a producer

Listing B.12 shows the schema of the new sensor that replaces the sensor of M42. It still
provides information about the place, the machine identification and the current tem-
perature so that it is a suitable replacement source for the two queries. However, tem-
perature values are now provided in degrees Fahrenheit instead of degrees Celsius.
Moreover, there is no longer an attribute type but a new attribute manufacturer.
Lastly, the order of attributes has completely changed. Nevertheless, after the schema
has been updated at the matchmaker (line 18) both connections are re-established with
new mappings. The new sensor seamlessly continues the processing by sending data
items. Because the order of temperature and consumption has changed, the order
of values in the payload must change too (also temperature values must now be in de-
grees Fahrenheit). Due to the new mappings, the input of both queries keeps exactly
the same as before so that the payloads of output events do not change. In fact, the
exchange of the sensor was completely hidden from the queries by the matchmaker.

364

Bibliography

[Aba03] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack,
Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul
and Stan Zdonik: “Aurora: A New Model and Architecture for Data
Stream Management”.
In: The VLDB Journal, Volume 12, Issue 2, 2003, pp. 120–139.

[ABW03] Arvind Arasu, Shivnath Babu and Jennifer Widom:
“An Abstract Semantics and Concrete Language for Continuous Queries
over Streams and Relations”. In: Proceedings of the International Conference
on Data Base Programming Languages (DBPL), 2003, pp. 1–19.

[Agr08] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom and Neil Immerman:
“Efficient Pattern Matching over Event Streams”. In: Proceedings of the
International Conference on Management of Data (SIGMOD), 2008,
pp. 147–160.

[Agu99] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley
and Tushar D. Chandra:
“Matching Events in a Content-Based Subscription System”.
In: Proceedings of the Annual Symposium on Principles of Distributed
Computing (PODC), 1999, pp. 53–61.

[AH00] Ron Avnur and Joseph M. Hellerstein:
“Eddies: Continuously Adaptive Query Processing”. In: Proceedings of
the International Conference on Management of Data (SIGMOD), 2000,
pp. 261–272.

[AIM10] Luigi Atzori, Antonio Iera and Giacomo Morabito:
“The Internet of Things: A Survey”.
In: Computer Networks, Volume 54, Issue 15, 2010, pp. 2787–2805.

365

Bibliography

[AK80] Hussein M. Abdel-Wahab and Tiko Kameda: “On Strictly Optimal
Schedules for the Cumulative Cost-Optimal Scheduling Problem”.
In: Computing, Volume 24, Issue 1, 1980, pp. 61–86.

[Ali10] Mohamed Ali, Badrish Chandramouli, Balan Sethu Raman and
Ed Katibah:
“Spatio-Temporal Stream Processing in Microsoft StreamInsight”.
In: Data Engineering Bulletin, Volume 33, Issue 2, 2010, pp. 69–74.

[All83] James F. Allen: “Maintaining Knowledge About Temporal Intervals”.
In: Communications of the ACM, Volume 26, Issue 11, 1983, pp. 832–843.

[AM04] Arvind Arasu and Gurmeet Singh Manku:
“Approximate Counts and Quantiles over Sliding Windows”.
In: Proceedings of the Symposium on Principles of Database Systems (PODS),
2004, pp. 286–296.

[And11] Lance Andersen: “JDBC 4.1 Specification”. Technical report.
Oracle America, 2011.

[App12] H.-Jürgen Appelrath, Dennis Geesen, Marco Grawunder,
Timo Michelsen and Daniela Nicklas:
“Odysseus: A Highly Customizable Framework for Creating Efficient
Event Stream Management Systems”. In: Proceedings of the International
Conference on Distributed Event-Based Systems (DEBS), 2012, pp. 367–368.

[Ari86] Gad Ariav: “A Temporally Oriented Data Model”. In: Transactions on
Database Systems (TODS), Volume 11, Issue 4, 1986, pp. 499–527.

[AW04] Arvind Arasu and Jennifer Widom:
“Resource Sharing in Continuous Sliding-Window Aggregates”. In:
Proceedings of the International Conference on Very Large Data Bases (VLDB),
2004, pp. 336–347.

[Bab02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani and
Jennifer Widom: “Models and Issues in Data Stream Systems”.
In: Proceedings of the Symposium on Principles of Database Systems (PODS),
2002, pp. 1–16.

[Bal13] Cagri Balkesen, Nihal Dindar, Matthias Wetter and Nesime Tatbul:
“RIP: Run-Based Intra-Query Parallelism for Scalable Complex Event
Processing”. In: Proceedings of the International Conference on Distributed
Event-Based Systems (DEBS), 2013, pp. 3–14.

[Ban99] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Strom and Daniel C. Sturman: “An Efficient Multicast Protocol
for Content-Based Publish-Subscribe Systems”. In: Proceedings of the

366

Bibliography

International Conference on Distributed Computing Systems (ICDCS), 1999,
pp. 262–272.

[Bar07] Roger S. Barga, Jonathan Goldstein, Mohamed Ali and
Mingsheng Hong: “Consistent Streaming Through Time: A Vision for
Event Stream Processing”. In: Proceedings of the Biennial Conference on
Innovative Data Systems Research (CIDR), 2007, pp. 363–374.

[Bau15] Lars Baumgärtner, Christian Strack, Bastian Hoßbach, Marc Seidemann,
Bernhard Seeger and Bernd Freisleben: “Complex Event Processing for
Reactive Security Monitoring in Virtualized Computer Systems”.
In: Proceedings of the International Conference on Distributed Event-Based
Systems (DEBS), 2015.

[BBC] BBC: “Plastic card fraud goes back up”.
http://news.bbc.co.uk/2/hi/business/7289856.stm (visited
on 10/15/2014).

[BDS00] Jochen van den Bercken, Jens-Peter Dittrich and Bernhard Seeger:
“Javax.XXL: A Prototype for a Library of Query Processing Algorithms”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD), 2000, p. 588.

[Ber01] Jochen Van den Bercken, Björn Blohsfeld, Jens-Peter Dittrich,
Jürgen Krämer, Tobias Schäfer, Martin Schneider and Bernhard Seeger:
“XXL - A Library Approach to Supporting Efficient Implementations of
Advanced Database Queries”. In: Proceedings of the International
Conference on Very Large Data Bases (VLDB), 2001, pp. 39–48.

[Ber08] Mark de Berg, Otfried Cheong, Marc van Kreveld and Mark Overmars:
Computational Geometry: Algorithms and Applications. 3rd Edition,
Springer-Verlag, 2008.

[Bet10] Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska,
Daniela Nicklas, Anand Ranganathan and Daniele Riboni:
“A Survey of Context Modelling and Reasoning Techniques”.
In: Pervasive and Mobile Computing, Volume 6, Issue 2, 2010, pp. 161–180.

[BH06] Jürgen Beringer and Eyke Hüllermeier:
“Online Clustering of Parallel Data Streams”. In: Data and Knowledge
Engineering, Volume 58, Issue 2, 2006, pp. 180–204.

[BHL01] Tim Berners-Lee, James Hendler and Ora Lassila: “The Semantic Web”.
In: Scientific American, Issue May, 2001.

[Bis06] Christopher M. Bishop: Pattern Recognition and Machine Learning.
Springer-Verlag, 2006.

367

http://news.bbc.co.uk/2/hi/business/7289856.stm

Bibliography

[Bis94] Gary Bishop, Henry Fuchs, Leonard McMillan and Ellen J. Scher Zagier:
“Frameless Rendering: Double Buffering Considered Harmful”.
In: Proceedings of the Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH), 1994, pp. 175–176.

[BKT00] Peter Buneman, Sanjeev Khanna and Wang-chiew Tan:
“Data Provenance: Some Basic Issues”. In: Conference on the Foundations
of Software Technology and Theoretical Computer Science (FST TCS), 2000,
pp. 87–93.

[Blo10] Marion Blount, Carolyn McGregor, Andrew James, Daby Sow,
Rishikesan Kamaleswaran, Sascha Tuuha, Jennifer Percival and
Nathan Percival: “On the Integration of an Artifact System and a
Real-Time Healthcare Analytics System”.
In: Proceedings of the International Health Informatics Symposium (IHI),
2010, pp. 647–655.

[BM72] Rudolf Bayer and Edward M. McCreight:
“Organization and Maintenance of Large Ordered Indices”.
In: Acta Informatica, Volume 1, Issue 3, 1972, pp. 173–189.

[BN09] Jens Bleiholder and Felix Naumann: “Data Fusion”.
In: ACM Computing Surveys, Volume 41, Issue 1, 2009, 1:1–1:41.

[Bot09] Irina Botan, Younggoo Cho, Roozbeh Derakhshan, Nihal Dindar,
Laura M. Haas, Kihong Kim, Chulwon Lee, Girish Mundada,
Ming-Chien Shan, Nesime Tatbul, Ying Yan, Beomjin Yun and Jin Zhang:
“Design and Implementation of the MaxStream Federated Stream
Processing Architecture”. Technical report. ETH Zürich, 2009.

[Bot10] Irina Botan, Younggoo Cho, Roozbeh Derakhshan, Nihal Dindar,
Ankush Gupta, Laura M. Haas, Kihong Kim, Chulwon Lee,
Girish Mundada, Ming-Chien Shan, Nesime Tatbul, Ying Yan,
Beomjin Yun and Jin Zhang: “A Demonstration of the MaxStream
Federated Stream Processing System”.
In: Proceedings of the International Conference on Data Engineering (ICDE),
2010, pp. 1093–1096.

[BS03] Ahmet Bulut and Ambuj K. Singh:
“SWAT: Hierarchical Stream Summarization in Large Networks”.
In: Proceedings of the International Conference on Data Engineering (ICDE),
2003, pp. 303–314.

[BS11] Gurinder Singh Brar and Gagan Saini:
“Milk Run Logistics: Literature Review and Directions”.
In: Proceedings of the World Congress on Engineering (WCE), 2011.

368

Bibliography

[BSW97] Jochen Van den Bercken, Bernhard Seeger and Peter Widmayer: “A
Generic Approach to Bulk Loading Multidimensional Index Structures”.
In: Proceedings of the International Conference on Very Large Data Bases
(VLDB), 1997, pp. 406–415.

[CBK09] Varun Chandola, Arindam Banerjee and Vipin Kumar:
“Anomaly Detection: A Survey”.
In: ACM Computing Surveys, Volume 41, Issue 3, 2009, 15:1–15:58.

[CBN07] Eric Chu, Jennifer Beckmann and Jeffrey Naughton: “The Case for a
Wide-Table Approach to Manage Sparse Relational Data Sets”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD), 2007, pp. 821–832.

[Cha03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande,
Michael J. Franklin, Joseph M. Hellerstein, Wei Hong,
Sailesh Krishnamurthy, Samuel Madden, Vijayshankar Raman,
Frederick Reiss and Mehul A. Shah: “TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World.” In: Proceedings of the
Biennial Conference on Innovative Data Systems Research (CIDR), 2003.

[Chr11] Martin Christopher: Logistics and Supply Chain Management. 4th Edition,
Financial Times Press, 2011.

[Cis14] Cisco Systems Inc.: “Cisco Visual Networking Index: Global Mobile
Data Traffic Forecast Update, 2013–2018”. Technical report. 2014.

[CM10] Gianpaolo Cugola and Alessandro Margara:
“TESLA: A Formally Defined Event Specification Language”.
In: Proceedings of the International Conference on Distributed Event-Based
Systems (DEBS), 2010, pp. 50–61.

[CM12] Gianpaolo Cugola and Alessandro Margara: “Processing Flows of
Information: From Data Stream to Complex Event Processing”.
In: ACM Computing Surveys, Volume 44, Issue 3, 2012, 15:1–15:62.

[CM95] Sophie Cluet and Guido Moerkotte: “On the Complexity of Generating
Optimal Left-Deep Processing Trees with Cross Products”.
In: Proceedings of the International Conference on Database Theory (ICDT),
1995, pp. 54–67.

[Cod70] Edgar F. Codd:
“A Relational Model of Data for Large Shared Data Banks”.
In: Communications of the ACM, Volume 13, Issue 6, 1970, pp. 377–387.

[Com79] Douglas Comer: “The Ubiquitous B-Tree”.
In: ACM Computing Surveys, Volume 11, Issue 2, June 1979, pp. 121–137.

369

Bibliography

[Con04] Constant Data Inc.: “Managing the Costs of Downtime”.
Technical report. 2004.

[Cor09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and
Clifford Stein: Introduction to Algorithms. 3rd Edition,
The MIT Press, 2009.

[Cor12] Paulo Cortez, Miguel Rio, Miguel Rocha and Pedro Sousa:
“Multi-Scale Internet Traffic Forecasting using Neural Networks and
Time Series Methods”.
In: Expert Systems, Volume 29, Issue 2, 2012, pp. 143–155.

[CR87] James Clifford and Ahobala Rao:
“A Simple, General Structure for Temporal Domains”.
In: Proceedings of the Conference on Temporal Aspects in Information Systems,
1987, pp. 17–28.

[Cra03] Chuck Cranor, Theodore Johnson, Oliver Spataschek and
Vladislav Shkapenyuk:
“Gigascope: A Stream Database for Network Applications”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD), 2003, pp. 647–651.

[Dem07] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald,
Varun Sharma and Walker M. White:
“Cayuga: A General Purpose Event Monitoring System”. In: Proceedings
of the Biennial Conference on Innovative Data Systems Research (CIDR), 2007,
pp. 412–422.

[Den87] Dorothy E. Denning: “An Intrusion-Detection Model”. In: Transactions
on Software Engineering, Volume 13, Issue 2, 1987, pp. 222–232.

[DeW94] David J. DeWitt, Navin Kabra, Jun Luo, Jignesh M. Patel and Jie-Bing Yu:
“Client-Server Paradise”. In: Proceedings of the International Conference on
Very Large Data Bases (VLDB), 1994, pp. 558–569.

[DG08] Jeffrey Dean and Sanjay Ghemawat:
“MapReduce: Simplified Data Processing on Large Clusters”.
In: Communications of the ACM, Volume 51, Issue 1, 2008, pp. 107–113.

[DG92] David DeWitt and Jim Gray: “Parallel Database Systems: The Future of
High Performance Database Systems”.
In: Communications of the ACM, Volume 35, Issue 6, 1992, pp. 85–98.

[DGK82] Umeshwar Dayal, Nathan Goodman and Randy H. Katz: “An Extended
Relational Algebra with Control over Duplicate Elimination”.

370

Bibliography

In: Proceedings of the Symposium on Principles of Database Systems (PODS),
1982, pp. 117–123.

[DIG07] Yanlei Diao, Neil Immerman and Daniel Gyllstrom:
“SASE+: An Agile Language for Kleene Closure over Event Streams”.
Technical report. University of Massachusetts, 2007.

[Dil03] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha,
Anant Jhingran, Tapas Kanungo, Sridhar Rajagopalan,
Andrew Tomkins, John A. Tomlin and Jason Y. Zien:
“SemTag and Seeker: Bootstrapping the Semantic Web via Automated
Semantic Annotation”.
In: Proceedings of the International Conference on World Wide Web (WWW),
2003, pp. 178–186.

[Din13] Nihal Dindar, Nesime Tatbul, Renée J. Miller, Laura M. Haas and
Irina Botan: “Modeling the Execution Semantics of Stream Processing
Engines with SECRET”.
In: The VLDB Journal, Volume 22, Issue 4, 2013, pp. 421–446.

[DP73] David H. Douglas and Thomas K. Peucker:
“Algorithms for the Reduction of the Number of Points Required to
Represent a Line or Its Caricature”.
In: The Canadian Cartographer, Volume 10, Issue 2, 1973, pp. 112–122.

[DS01] Jens-Peter Dittrich and Bernhard Seeger:
“GESS: A Scalable Similarity-Join Algorithm for Mining Large Data Sets
in High Dimensional Spaces”. In: Proceedings of the International
Conference on Knowledge Discovery and Data Mining (SIGKDD), 2001,
pp. 47–56.

[EB09] Michael Eckert and Francois Bry: “Complex Event Processing (CEP)”.
In: Datenbank Spektrum, Volume 32, Issue 2, 2009, pp. 163–167.

[EN10] Opher Etzion and Peter Niblett: Event Processing in Action. 1st Edition,
Manning Publications Co., 2010.

[Erw04] Martin Erwig: “Toward Spatio-Temporal Patterns”.
In: Spatio-Temporal Databases 2004, pp. 29–53.

[ES10] Brian S. Everitt and Anders Skrondal:
The Cambridge Dictionary of Statistics. 4th Edition,
Cambridge University Press, 2010.

[Esp] Esper. http://www.espertech.com/esper/.

371

http://www.espertech.com/esper/

Bibliography

[Etz10] Opher Etzion: “Event Processing: Past, Present and Future”.
In: Proceedings of the VLDB Endowment (PVLDB), Volume 3, Issue 1-2,
2010, pp. 1651–1652.

[Eug03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui and
Anne-Marie Kermarrec: “The Many Faces of Publish/Subscribe”.
In: ACM Computing Surveys, Volume 35, Issue 2, 2003, pp. 114–131.

[Fab01] Françoise Fabret, Hans-Arno Jacobsen, François Llirbat, Joăo Pereira,
Kenneth A. Ross and Dennis Shasha: “Filtering Algorithms and
Implementation for Very Fast Publish/Subscribe Systems”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD), 2001, pp. 115–126.

[FB74] Raphael A. Finkel and Jon Louis Bentley:
“Quad Trees: A Data Structure for Retrieval on Composite Keys”.
In: Acta Informatica, Volume 4, 1974, pp. 1–9.

[Fie00] Roy T. Fielding: “Architectural Styles and the Design of Network-Based
Software Architectures.”
PhD thesis. University of California, Irvine, 2000.

[For11] Catherine Forbes, Merran Evans, Nicholas Hastings and Brian Peacock:
Statistical Distributions. 4th Edition, Wiley, 2011.

[FPS96] Usama Fayyad, Gregory Piatetsky-Shapiro and Padhraic Smyth:
“From Data Mining to Knowledge Discovery in Databases”.
In: AI Magazine, Volume 17, Issue 3, 1996, pp. 37–54.

[Fre04] Elisabeth Freeman, Eric Freeman, Bert Bates and Kathy Sierra:
Head First Design Patterns. O’ Reilly & Associates, 2004.

[Fre14] Freescale:
“What the Internet of Things (IoT) Needs to Become a Reality”.
Technical report. 2014.

[Gam95] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides:
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1995.

[Gar12] Gartner Inc.: “Effective Security Monitoring Requires Context”.
Technical report G00227893. 2012.

[GD07] Boris Glavic and Klaus R. Dittrich:
“Data Provenance: A Categorization of Existing Approaches”.
In: Datenbanksysteme für Business, Technologie und Web (BTW), 2007,
pp. 227–241.

372

Bibliography

[Gei95] Kyle Geiger: Inside ODBC. Microsoft Press, 1995.

[Gen99] Jose Alvin G. Gendrano, Bruce C. Huang, Jim M. Rodrigue,
Bongki Moon and Richard T. Snodgrass:
“Parallel Algorithms for Computing Temporal Aggregates”.
In: Proceedings of the International Conference on Data Engineering (ICDE),
1999, pp. 418–427.

[Geo] GeoTools - The Open Source Java GIS Toolkit. http://geotools.org.

[Gha07] Thanaa M. Ghanem, Moustafa A. Hammad, Mohamed F. Mokbel,
Walid G. Aref and Ahmed K. Elmagarmid: “Incremental Evaluation of
Sliding-Window Queries over Data Streams”.
In: Transactions on Knowledge and Data Engineering (TKDE), Volume 19,
Issue 1, 2007, pp. 57–72.

[Glo13] Nikolaus Glombiewski, Bastian Hoßbach, Andreas Morgen, Franz Ritter
and Bernhard Seeger: “Event Processing on Your Own Database”.
In: Datenbanksysteme für Business, Technologie und Web (BTW), 2013,
pp. 33–42.

[GÖ03] Lukasz Golab and M. Tamer Özsu:
“Issues in Data Stream Management”.
In: SIGMOD Record, Volume 32, Issue 2, 2003, pp. 5–14.

[GÖ10] Lukasz Golab and M. Tamer Özsu:
Data Stream Management (Synthesis Lectures on Data Management).
Morgan and Claypool Publishers, 2010.

[Gor] Gorilla Factsheet.
http://seaworld.org/en/animal-info/animal-
infobooks/gorilla/behavior/ (visited on 06/30/2014).

[GR83] Adele Goldberg and David Robson:
Smalltalk-80: The Language and Its Implementation. Addison-Wesley, 1983.

[Gra06] Goetz Graefe: “B-Tree Indexes for High Update Rates”.
In: SIGMOD Record, Volume 35, Issue 1, 2006, pp. 39–44.

[Gra94] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski and
Peter J. Weinberger:
“Quickly Generating Billion-Record Synthetic Databases”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD), 1994, pp. 243–252.

[Gro13] Katarina Grolinger, Wilson Higashino, Abhinav Tiwari and
Miriam Capretz: “Data Management in Cloud Environments: NoSQL

373

http://geotools.org
http://seaworld.org/en/animal-info/animal-infobooks/gorilla/behavior/
http://seaworld.org/en/animal-info/animal-infobooks/gorilla/behavior/

Bibliography

and NewSQL Data Stores”. In: Journal of Cloud Computing: Advances,
Systems and Applications, Volume 2, Issue 1, 2013, 22:1–22:24.

[GSC06] Jane Greenberg, Kristina Spurgin and Abe Crystal:
“Functionalities for Automatic Metadata Generation Applications: A
Survey of Metadata Experts’ Opinions”. In: International Journal of
Metadata, Semantics and Ontologies, Volume 1, Issue 1, 2006, pp. 3–20.

[Gul10] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez and
Patrick Valduriez:
“StreamCloud: A Large Scale Data Streaming System”. In: Proceedings of
the International Conference on Distributed Computing Systems (ICDCS),
2010, pp. 126–137.

[Gul12] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez,
Claudio Soriente and Patrick Valduriez:
“StreamCloud: An Elastic and Scalable Data Streaming System”.
In: Transactions on Parallel and Distributed Systems (TPDS), Volume 23,
Issue 12, 2012, pp. 2351–2365.

[Güt00] Ralf Hartmut Güting, Michael H. Böhlen, Martin Erwig,
Christian S. Jensen, Nikos A. Lorentzos, Markus Schneider and
Michalis Vazirgiannis:
“A Foundation for Representing and Querying Moving Objects”.
In: Transactions on Database Systems (TODS), Volume 25, Issue 1, 2000,
pp. 1–42.

[Gut84] Antonin Guttman:
“R-Trees: A Dynamic Index Structure for Spatial Searching”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD), 1984, pp. 47–57.

[GUW08] Hector Garcia-Molina, Jeffrey D. Ullman and Jennifer Widom:
Database Systems: The Complete Book. 2nd Edition,
Prentice Hall Press, 2008.

[GV04] Janusz R. Getta and Ehsan Vossough:
“Optimization of Data Stream Processing”.
In: SIGMOD Record, Volume 33, Issue 3, 2004, pp. 34–39.

[H2] H2 Database Engine. http://www.h2database.com/.

[Ham03] Moustafa Hammad, Walid Aref, Michael Franklin, Mohamed Mokbel
and Ahmed Elmagarmid:
“Efficient Execution of Sliding-Window Queries Over Data Streams”.
Technical report. Purdue University, 2003.

374

http://www.h2database.com/

Bibliography

[Har08] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden and
Michael Stonebraker:
“OLTP Through the Looking Glass, and What We Found There”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD), 2008, pp. 981–992.

[Hei08] Christoph Heinz, Jürgen Kramer, Tobias Riemenschneider and
Bernhard Seeger: “Toward Simulation-Based Optimization in Data
Stream Management Systems”.
In: Proceedings of the International Conference on Data Engineering (ICDE),
2008, pp. 1580–1583.

[Hen09] Jim Hendler: “Web 3.0 Emerging”.
In: IEEE Computer, Volume 42, Issue 1, 2009, pp. 111–113.

[Her11] John R. Herring: “OpenGIS R© Implementation Standard for Geographic
Information - Simple Feature Access - Part 1: Common Architecture”.
Technical report OGC 06-103r4. Open Geospatial Consortium Inc., 2011.

[HFS12] Bastian Hoßbach, Bernd Freisleben and Bernhard Seeger:
“Reaktives Cloud Monitoring mit Complex Event Processing”.
In: Datenbank Spektrum, Volume 12, Issue 1, 2012, pp. 33–42.

[HKS15] Bastian Hoßbach, Michael Körber and Bernhard Seeger:
“Raumzeitliche Ereignisverarbeitung mit JEPC”.
In: Geoinformationssysteme 2015: Beiträge zur 2. Münchner GI-Runde,
Wichmann-Verlag, 2015, pp. 60–69.

[HL97] David L. Hall and James Llinas:
“An Introduction to Multisensor Data Fusion”.
In: Proceedings of the IEEE, Volume 85, Issue 1, 1997, pp. 6–23.

[HMU00] John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman:
Introduction to Automata Theory, Languages, and Computation. 2nd Edition,
Pearson, 2000.

[Hoß11] Bastian Hoßbach: Cloud Monitoring mit Complex Event Processing.
Diploma thesis. University of Marburg, 2011.

[Hoß13] Bastian Hoßbach, Nikolaus Glombiewski, Andreas Morgen, Franz Ritter
and Bernhard Seeger: “JEPC: The Java Event Processing Connectivity”.
In: Datenbank Spektrum, Volume 13, Issue 3, 2013, pp. 167–178.

[HRP06] Hyoil Han, Han C. Ryoo and Herbert Patrick: “An Infrastructure of
Stream Data Mining, Fusion and Management for Monitored Patients”.
In: International Symposium on Computer-Based Medical Systems (CBMS),
2006, pp. 461–468.

375

Bibliography

[HS13] Bastian Hoßbach and Bernhard Seeger:
“Anomaly Management using Complex Event Processing”.
In: Proceedings of the International Conference on Extending Database
Technology (EDBT), 2013, pp. 149–154.

[HSC02] Siegfried Handschuh, Steffen Staab and Fabio Ciravegna:
“S-CREAM - Semi-Automatic CREAtion of Metadata”.
In: Proceedings of the International Conference on Knowledge Engineering and
Knowledge Management (EKAW), 2002, pp. 358–372.

[IK84] Toshihide Ibaraki and Tiko Kameda:
“On the Optimal Nesting Order for Computing N-Relational Joins”.
In: Transactions on Database Systems (TODS), Volume 9, Issue 3, 1984,
pp. 482–502.

[Jai08] Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke,
Jennifer Widom, Hari Balakrishnan, Ugur Çetintemel, Mitch Cherniack,
Richard Tibbetts and Stan Zdonik:
“Towards a Streaming SQL Standard”. In: Proceedings of the VLDB
Endowment (PVLDB), Volume 1, Issue 2, 2008, pp. 1379–1390.

[Jes] Jesse Alpert and Nissan Hajaj: “We knew the Web was big ...”.
http://googleblog.blogspot.de/2008/07/we-knew-web-
was-big.html (visited on 04/09/2014).

[JS96] Christian S. Jensen and Richard T. Snodgrass:
“Semantics of Time-Varying Information”.
In: Information Systems, Volume 21, Issue 4, 1996, pp. 311–352.

[JTS] JTS Topology Suite.
http://www.vividsolutions.com/jts/JTSHome.htm.

[Kal05] Satyen Kale, Elad Hazan, Fengyun Cao and Jaswinder Pal Singh:
“Analysis and Algorithms for Content-Based Event Matching”.
In: Proceedings of the International Conference on Distributed Computing
Systems Workshops (ICDCSW), 2005, pp. 363–369.

[Kan08] Prathaben Kanagasingham: “Data Loss Prevention”. Technical report.
SANS Institute, 2008.

[Kar12] Tony Karlsson: “An Observational Study of the Characteristics of Taxi
Floating Car Data Compared to Radar Sensor Data.”
MA thesis. Royal Institute of Technology, 2012.

[KBZ86] Ravi Krishnamurthy, Haran Boral and Carlo Zaniolo:
“Optimization of Nonrecursive Queries”. In: Proceedings of the

376

http://googleblog.blogspot.de/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.de/2008/07/we-knew-web-was-big.html
http://www.vividsolutions.com/jts/JTSHome.htm

Bibliography

International Conference on Very Large Data Bases (VLDB), 1986,
pp. 128–137.

[Kir04] Atanas Kiryakov, Borislav Popov, Ivan Terziev, Dimitar Manov and
Damyan Ognyanoff: “Semantic Annotation, Indexing, and Retrieval”.
In: Journal of Web Semantics, Volume 2, Issue 1, 2004, pp. 49–79.

[Krä06] Jürgen Krämer, Yin Yang, Michael Cammert, Bernhard Seeger and
Dimitris Papadias: “Dynamic Plan Migration for Snapshot-Equivalent
Continuous Queries in Data Stream Systems”. In: Proceedings of the
International Conference on Extending Database Technology (EDBT), 2006,
pp. 497–516.

[Krä07] Jürgen Krämer: “Continuous Queries over Data Streams - Semantics and
Implementation.” PhD thesis. University of Marburg, 2007.

[KS04] Jürgen Krämer and Bernhard Seeger:
“PIPES: A Public Infrastructure for Processing and Exploring Streams”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD), 2004, pp. 925–926.

[KS05] Jürgen Krämer and Bernhard Seeger:
“A Temporal Foundation for Continuous Queries over Data Streams”.
In: Proceedings of the International Conference on Management of Data
(COMAD), 2005, pp. 70–82.

[KS09] Jürgen Krämer and Bernhard Seeger: “Semantics and Implementation of
Continuous Sliding Window Queries over Data Streams”.
In: Transactions on Database Systems (TODS), Volume 34, Issue 1, 2009,
4:1–4:49.

[KS95] Nick Kline and Richard T. Snodgrass:
“Computing Temporal Aggregates”.
In: Proceedings of the International Conference on Data Engineering (ICDE),
1995, pp. 222–231.

[Kum92] Vipin Kumar:
“Algorithms for Constraint-Satisfaction Problems: A Survey”.
In: AI Magazine, Volume 13, Issue 1, 1992, pp. 32–44.

[KWF06] Sailesh Krishnamurthy, Chung Wu and Michael Franklin:
“On-the-Fly Sharing for Streamed Aggregation”. In: Proceedings of the
International Conference on Management of Data (SIGMOD), 2006,
pp. 623–634.

377

Bibliography

[Läm07] Ralf Lämmel: “Google’s MapReduce Programming Model - Revisited”.
In: Science of Computer Programming, Volume 68, Issue 3, 2007,
pp. 208–237.

[Lam78] Leslie Lamport:
“Time, Clocks, and the Ordering of Events in a Distributed System”.
In: Communications of the ACM, Volume 21, Issue 7, 1978, pp. 558–565.

[Lar97] Per-Åke Larson:
“Grouping and Duplicate Elimination: Benefits of Early Aggregation”.
Technical report. Microsoft Research, 1997.

[Lee06] Yang W. Lee, Leo L. Pipino, James D. Funk and Richard Y. Wang:
Journey to Data Quality. The MIT Press, 2006.

[LGP10] Morten Lindeberg, Vera Goebel and Thomas Plagemann:
“Adaptive Sized Windows to Improve Real-Time Health Monitoring: A
Case Study on Heart Attack Prediction”. In: Proceedings of the
International Conference on Multimedia Information Retrieval (MIR), 2010,
pp. 459–468.

[LHB13] Harold Lim, Yuzhang Han and Shivnath Babu:
“How to Fit when No One Size Fits”. In: Proceedings of the Biennial
Conference on Innovative Data Systems Research (CIDR), 2013.

[Li05] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos and
Peter A. Tucker: “No Pane, No Gain: Efficient Evaluation of
Sliding-Window Aggregates over Data Streams”.
In: SIGMOD Record, Volume 34, Issue 1, 2005, pp. 39–44.

[Li07] Ming Li, Mo Liu, Luping Ding, Elke A. Rundensteiner and Murali Mani:
“Event Stream Processing with Out-of-Order Data Arrival”.
In: Proceedings of the International Conference on Distributed Computing
Systems Workshops (ICDCSW), 2007, p. 67.

[Li08] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos,
Theodore Johnson and David Maier: “Out-of-Order Processing: A New
Architecture for High-Performance Stream Systems”. In: Proceedings of
the VLDB Endowment (PVLDB), Volume 1, Issue 1, 2008, pp. 274–288.

[Li11] Ming Li, Murali Mani, Elke A. Rundensteiner and Tao Lin:
“Complex Event Pattern Detection over Streams with Interval-Based
Temporal Semantics”. In: Proceedings of the International Conference on
Distributed Event-Based Systems (DEBS), 2011, pp. 291–302.

378

Bibliography

[Lin14] Tim Lindholm, Frank Yellin, Gilad Bracha and Alex Buckley:
“The Java R© Virtual Machine Specification (Java SE 8 Edition)”.
Technical report. Oracle America, 2014.

[LÖ09] Ling Liu and M. Tamer Özsu: Encyclopedia of Database Systems.
4th Edition, Springer Science+Business Media, 2009.

[Luc02] David C. Luckham: The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. 1st Edition,
Addison-Wesley Professional, 2002.

[LWZ04] Yan-Nei Law, Haixun Wang and Carlo Zaniolo: “Query Languages and
Data Models for Database Sequences and Data Streams”. In: Proceedings
of the International Conference on Very Large Data Bases (VLDB), 2004,
pp. 492–503.

[LWZ11] Yan-Nei Law, Haixun Wang and Carlo Zaniolo:
“Relational Languages and Data Models for Continuous Queries on
Sequences and Data Streams”. In: Transactions on Database Systems
(TODS), Volume 36, Issue 2, 2011, 8:1–8:32.

[Mac08] Ashwin Machanavajjhala, Erik Vee, Minos Garofalakis and
Jayavel Shanmugasundaram: “Scalable Ranked Publish/Subscribe”.
In: Proceedings of the VLDB Endowment (PVLDB), Volume 1, Issue 1, 2008,
pp. 451–462.

[McC02] Peter McCullagh: “What is a Statistical Model?”
In: The Annals of Statistics, Volume 30, Issue 5, 2002, pp. 1225–1310.

[MD95] Manish Mehta and David J. DeWitt:
“Managing Intra-Operator Parallelism in Parallel Database Systems”. In:
Proceedings of the International Conference on Very Large Data Bases (VLDB),
1995, pp. 382–394.

[MHH00] Renée J. Miller, Laura M. Haas and Mauricio A. Hernández:
“Schema Mapping as Query Discovery”. In: Proceedings of the
International Conference on Very Large Data Bases (VLDB), 2000, pp. 77–88.

[Mic15] Microsoft Developer Network: “ODBC Programmer’s Reference”.
Technical report. Microsoft, 2015.

[MLI00] Bongki Moon, Inés Fernando Vega López and Vijaykumar Immanuel:
“Scalable Algorithms for Large Temporal Aggregation”.
In: Proceedings of the International Conference on Data Engineering (ICDE),
2000, pp. 145–154.

[MM09] Yuan Mei and Samuel Madden: “ZStream: A Cost-Based Query
Processor for Adaptively Detecting Composite Events”. In: Proceedings of

379

Bibliography

the International Conference on Management of Data (SIGMOD), 2009,
pp. 193–206.

[Moe09] Guido Moerkotte: “Building Query Compilers (Draft)”. Technical report.
University of Mannheim, 2009.

[Mon13] Olivier Monnier: “A Smarter Grid with the Internet of Things”.
Technical report. Texas Instruments, 2013.

[Moo79] Ramon E. Moore: Methods and Applications of Interval Analysis.
Society for Industrial and Applied Mathematics, 1979.

[MR10] Oded Maimon and Lior Rokach:
Data Mining and Knowledge Discovery Handbook. 2nd Edition,
Springer-Verlag, 2010.

[MS79] Clyde L. Monma and Jeffrey B. Sidney:
“Sequencing with Series-Parallel Precedence Constraints”. In:
Mathematics of Operations Research, Volume 4, Issue 3, 1979, pp. 215–224.

[NB95] Bernhard Nebel and Hans-Jürgen Bürckert: “Reasoning About Temporal
Relations: A Maximal Tractable Subclass of Allen’s Interval Algebra”.
In: Journal of the ACM, Volume 42, Issue 1, 1995, pp. 43–66.

[OSV11] Martin Odersky, Lex Spoon and Bill Venners:
Programming in Scala: A Comprehensive Step-by-Step Guide. 2nd Edition,
Artima Incorporation, 2011.

[Piy13] Rajeev Piyare: “Internet of Things: Ubiquitous Home Control and
Monitoring System using Android Based Smart Phone”. In: International
Journal of Internet of Things, Volume 2, Issue 1, 2013, pp. 5–11.

[PLW02] Leo L. Pipino, Yang W. Lee and Richard Y. Wang:
“Data Quality Assessment”.
In: Communications of the ACM, Volume 45, Issue 4, 2002, pp. 211–218.

[Pos] PostgreSQL. http://www.postgresql.org/.

[PS10] Kostas Patroumpas and Timos K Sellis:
“Multi-Granular Time-Based Sliding Windows over Data Streams”.
In: Proceedings of the International Symposium on Temporal Representation
and Reasoning (TIME), 2010, pp. 146–153.

[RB01] Erhard Rahm and Philip A. Bernstein:
“A Survey of Approaches to Automatic Schema Matching”.
In: The VLDB Journal, Volume 10, Issue 4, 2001, pp. 334–350.

[Ric12] Jeffrey Richter: CLR via C#. 4th Edition. Microsoft Press, 2012.

380

http://www.postgresql.org/

Bibliography

[Rie08] Tobias Riemenschneider: “Optimierung kontinuierlicher Anfragen auf
Basis statistischer Metadaten.” PhD thesis. University of Marburg, 2008.

[RJ86] L. Rabiner and B.H. Juang:
“An Introduction to Hidden Markov Models”.
In: IEEE ASSP Magazine, Volume 3, Issue 1, 1986, pp. 4–16.

[Sak10] Mahmoud Attia Sakr: “Spatiotemporal Pattern Queries”.
In: VLDB 2010 PhD Workshop, 2010, pp. 72–77.

[SÇ05] Michael Stonebraker and Ugur Çetintemel:
“One Size Fits All: An Idea Whose Time Has Come and Gone”.
In: Proceedings of the International Conference on Data Engineering (ICDE),
2005, pp. 2–11.

[Sco92] David W. Scott:
Multivariate Density Estimation: Theory, Practice, and Visualization.
Wiley, 1992.

[SÇZ05] Michael Stonebraker, Ugur Çetintemel and Stan Zdonik:
“The 8 Requirements of Real-Time Stream Processing”.
In: SIGMOD Record, Volume 34, Issue 4, 2005, pp. 42–47.

[Sel79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin,
Raymond A. Lorie and Thomas G. Price:
“Access Path Selection in a Relational Database Management System”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD), 1979, pp. 23–34.

[SG11] Mahmoud Attia Sakr and Ralf Hartmut Güting:
“Spatiotemporal Pattern Queries”.
In: GeoInformatica, Volume 15, Issue 3, 2011, pp. 497–540.

[She11] Kyumars Sheykh Esmaili, Tahmineh Sanamrad, Peter M. Fischer and
Nesime Tatbul: “Changing Flights in Mid-Air: A Model for Safely
Modifying Continuous Queries”. In: Proceedings of the International
Conference on Management of Data (SIGMOD), 2011, pp. 613–624.

[SHG13] Scott Schneider, Martin Hirzel and Buğra Gedik:
“Tutorial: Stream Processing Optimizations”. In: Proceedings of the
International Conference on Distributed Event-Based Systems (DEBS), 2013,
pp. 249–258.

[SJ11] Mohammad Sadoghi and Hans-Arno Jacobsen:
“BE-Tree: An Index Structure to Efficiently Match Boolean Expressions
over High-Dimensional Discrete Space”. In: Proceedings of the

381

Bibliography

International Conference on Management of Data (SIGMOD), 2011,
pp. 637–648.

[SJ13] Mohammad Sadoghi and Hans-Arno Jacobsen:
“Analysis and Optimization for Boolean Expression Indexing”.
In: Transactions on Database Systems (TODS), Volume 38, Issue 2, 2013,
8:1–8:47.

[SJS01] Giedrius Slivinskas, Christian S. Jensen and Richard Thomas Snodgrass:
“A Foundation for Conventional and Temporal Query Optimization
Addressing Duplicates and Ordering”. In: Transactions on Knowledge and
Data Engineering (TKDE), Volume 13, Issue 1, 2001, pp. 21–49.

[SL04] Thomas Strang and Claudia Linnhoff-Popien:
“A Context Modeling Survey”. In: Proceedings of the International
Conference on Ubiquitous Computing (UbiComp), 2004.

[SL90] Amit P. Sheth and James A. Larson: “Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous Databases”.
In: ACM Computing Surveys, Volume 22, Issue 3, 1990, pp. 183–236.

[SMP09] Nicholas Poul Schultz-Møller, Matteo Migliavacca and Peter Pietzuch:
“Distributed Complex Event Processing with Query Rewriting”.
In: Proceedings of the International Conference on Distributed Event-Based
Systems (DEBS), 2009, 4:1–4:12.

[Sno] Snort. https://www.snort.org.

[Sno87] Richard T. Snodgrass: “The Temporal Query Language TQuel”.
In: Transactions on Database Systems (TODS), Volume 12, Issue 2, 1987,
pp. 247–298.

[Sno92] Richard T. Snodgrass: “Temporal Databases”.
In: Proceedings of the International Conference GIS - From Space to Territory:
Theories and Methods of Spatio-Temporal Reasoning on Theories and Methods
of Spatio-Temporal Reasoning in Geographic Space, Springer-Verlag, 1992,
pp. 22–64.

[Sow10] Daby Sow, Alain Biem, Marion Blount, Maria Ebling and
Olivier Verscheure:
“Body Sensor Data Processing Using Stream Computing”.
In: Proceedings of the International Conference on Multimedia Information
Retrieval (MIR), 2010, pp. 449–458.

[SPG05] Yogesh L. Simmhan, Beth Plale and Dennis Gannon:
“A Survey of Data Provenance in E-Science”.
In: SIGMOD Record, Volume 34, Issue 3, 2005, pp. 31–36.

382

https://www.snort.org

Bibliography

[SQL] SQL:2003 Part 2 (SQL/Foundation): ISO/IEC 9075-2:2003.

[Sto07a] Michael Stonebraker, Chuck Bear, Ugur Çetintemel, Mitch Cherniack,
Tingjian Ge, Nabil Hachem, Stavros Harizopoulos, John Lifter,
Jennie Rogers and Stanley B. Zdonik:
“One Size Fits All? Part 2: Benchmarking Studies”. In: Proceedings of the
Biennial Conference on Innovative Data Systems Research (CIDR), 2007,
pp. 173–184.

[Sto07b] Michael Stonebraker, Samuel Madden, Daniel J. Abadi,
Stavros Harizopoulos, Nabil Hachem and Pat Helland:
“The End of an Architectural Era: (It’s Time for a Complete Rewrite)”.
In: Proceedings of the International Conference on Very Large Data Bases
(VLDB), 2007, pp. 1150–1160.

[SW04] Utkarsh Srivastava and Jennifer Widom:
“Flexible Time Management in Data Stream Systems”.
In: Proceedings of the Symposium on Principles of Database Systems (PODS),
2004, pp. 263–274.

[Tan15] Kanat Tangwongsan, Martin Hirzel, Scott Schneider and Kun-Lung Wu:
“General Incremental Sliding-Window Aggregation”. In: Proceedings of
the VLDB Endowment (PVLDB), Volume 8, Issue 7, 2015, pp. 702–713.

[Tat10] Nesime Tatbul:
“Streaming Data Integration: Challenges and Opportunities”.
In: Proceedings of the International Conference on Data Engineering
Workshops (ICDEW), 2010, pp. 155–158.

[Ter92] Douglas Terry, David Goldberg, David Nichols and Brian Oki:
“Continuous Queries over Append-Only Databases”. In: Proceedings of
the International Conference on Management of Data (SIGMOD), 1992,
pp. 321–330.

[The14] The LLVM Development Team:
“LLVM Language Reference Manual (Version 3.6)”. Technical report.
LLVM Project, 2014.

[TIB11] TIBCO: “Optimizing the Supply Chain Ecosystem”. Technical report.
2011.

[TM11] Jens Teubner and Rene Mueller:
“How Soccer Players Would Do Stream Joins”. In: Proceedings of the
International Conference on Management of Data (SIGMOD), 2011,
pp. 625–636.

383

Bibliography

[Tom96] David Toman: “Point vs. Interval-Based Query Languages for Temporal
Databases (Extended Abstract)”.
In: Proceedings of the Symposium on Principles of Database Systems (PODS),
1996, pp. 58–67.

[Tos14] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,
Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal and
Dmitriy Ryaboy: “Storm@Twitter”. In: Proceedings of the International
Conference on Management of Data (SIGMOD), 2014, pp. 147–156.

[Tuc03] Peter A. Tucker, David Maier, Tim Sheard and Leonidas Fegaras:
“Exploiting Punctuation Semantics in Continuous Data Streams”.
In: Transactions on Knowledge and Data Engineering (TKDE), Volume 15,
Issue 3, 2003, pp. 555–568.

[Twi] Twitter. https://twitter.com.

[Vaj11] Andrs Vajda: Programming Many-Core Chips. 1st Edition,
Springer Publishing Company, 2011.

[Ven03] Suresh Venkatasubramanian:
“The Graphics Card as a Stream Computer”.
In: SIGMOD-DIMACS MPDS Workshop, 2003, pp. 101–102.

[VF13] Ovidiu Vermesan and Peter Friess: Internet of Things: Converging
Technologies for Smart Environments and Integrated Ecosystems.
River Publishers, 2013.

[WDR06] Eugene Wu, Yanlei Diao and Shariq Rizvi:
“High-Performance Complex Event Processing over Streams”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD), 2006, pp. 407–418.

[web] webMethods Business Events. http://www.softwareag-
gov.com/products/webmethods/cep/.

[WFH11] Ian H. Witten, Eibe Frank and Mark A. Hall:
Data Mining: Practical Machine Learning Tools and Techniques. 3rd Edition,
Morgan Kaufmann Publishers, 2011.

[Wha09] Steven Euijong Whang, Hector Garcia-Molina, Chad Brower,
Jayavel Shanmugasundaram, Sergei Vassilvitskii, Erik Vee and
Ramana Yerneni: “Indexing Boolean Expressions”. In: Proceedings of the
VLDB Endowment (PVLDB), Volume 2, Issue 1, 2009, pp. 37–48.

384

https://twitter.com
http://www.softwareag-gov.com/products/webmethods/cep/
http://www.softwareag-gov.com/products/webmethods/cep/

Bibliography

[WTA10] Louis Woods, Jens Teubner and Gustavo Alonso:
“Complex Event Detection at Wire Speed with FPGAs”. In: Proceedings of
the VLDB Endowment (PVLDB), Volume 3, Issue 1, 2010, pp. 660–669.

[WWW11] Peng Wang, Haixun Wang and Wei Wang:
“Finding Semantics in Time Series”. In: Proceedings of the International
Conference on Management of Data (SIGMOD), 2011, pp. 385–396.

[Yan07] Yin Yang, Jürgen Krämer, Ieee Computer Society, Dimitris Papadias,
Bernhard Seeger and Ieee Computer Society: “HybMig: A Hybrid
Approach to Dynamic Plan Migration for Continuous Queries”.
In: Transactions on Knowledge and Data Engineering (TKDE), Volume 19,
Issue 3, 2007, p. 2007.

[YG94] Tak W. Yan and Héctor García-Molina: “Index Structures for Selective
Dissemination of Information Under the Boolean Model”.
In: Transactions on Database Systems (TODS), Volume 19, Issue 2, 1994,
pp. 332–364.

[YK97] Xinfeng Ye and John A. Keane:
“Processing Temporal Aggregates in Parallel”. In: Proceedings of the
International Conference on Systems, Man and Cybernetics (SMC), 1997,
pp. 1373–1378.

[YW03] Jun Yang and Jennifer Widom:
“Incremental Computation and Maintenance of Temporal Aggregates”.
In: The VLDB Journal, Volume 12, Issue 3, 2003, pp. 262–283.

[ZCT14] Dongxiang Zhang, Chee-Yong Chan and Kian-Lee Tan:
“An Efficient Publish/Subscribe Index for E-Commerce Databases”.
In: Proceedings of the VLDB Endowment (PVLDB), Volume 7, Issue 8, 2014,
pp. 613–624.

[Zem07] Fred Zemke, Andrew Witkowski, Mitch Cherniak and Latha Colby:
“Pattern Matching in Sequences of Rows”. Technical report.
ANSI Standard Proposal, 2007.

[ZM06] Justin Zobel and Alistair Moffat:
“Inverted Files for Text Search Engines”.
In: ACM Computing Surveys, Volume 38, Issue 2, 2006.

[ZRH04] Yali Zhu, Elke A. Rundensteiner and George T. Heineman:
“Dynamic Plan Migration for Continuous Queries over Data Streams”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD), 2004, pp. 431–442.

385

Bibliography

[ZS02] Yunyue Zhu and Dennis Shasha: “StatStream: Statistical Monitoring of
Thousands of Data Streams in Real Time”. In: Proceedings of the
International Conference on Very Large Data Bases (VLDB), 2002,
pp. 358–369.

386

List of Acronyms

AIT . Active Instances Table
API . Application Programming Interface
ASI . Adjacent Sequence Interchange
BE . Boolean Expression
BT . Buffer Table
CEP . Complex Event Processing
CLR . Common Language Runtime
CPU . Central Processing Unit
CQ . Continuous Query
DBMS . Database Management System
DDoS . Distributed Denial-of-Service
DEP . Dynamic Event Processing
DNF . Disjunctive Normal Form
DPM . Dynamic Plan Migration
DSMS . Data Stream Management System
EP . Event Processing
EPA . Event Processing Agent
EPL . Event Processing Language
EPN . Event Processing Network
EPP . Event Processing Provider
FHSN . Filter Handle Set Node
FPGA . Field-Programmable Gate Array
GC . Garbage Collection
GESS . Generic External Space Sweep

387

List of Acronyms

GHz . Gigahertz
GiB . Gibibyte
GPS . Global Positioning System
GPU . Graphics Processing Unit
GSL . Grid Split Limit
HMM . Hidden Markov Model
HTTP . Hypertext Transfer Protocol
I/O . Input/Output
IDS . Intrusion Detection System
IoT . Internet of Things
IP . Internet Protocol
ISO International Organization for Standardization
ISP . Internet Service Provider
IT . Information Technology
JDBC . Java Database Connectivity
JEPC . Java Event Processing Connectivity
JRE . Java Runtime Environment
JVM . Java Virtual Machine
KiB . Kibibyte
KPI . Key Performance Indicator
LLVM . Low Level Virtual Machine
M42 . Milling Machine 42
MiB . Mebibyte
MRQ . Match-Recognize Queries
NFA . Nondeterministic Finite Automaton
ODBC . Open Database Connectivity
OGC . Open Geospatial Consortium
PAT . Potentially Applicable Transformation
PDF . Probability Density Function
PIPES Public Infrastructure for Processing and Exploring Streams
PNA . Positive-Negative Approach
QoS . Quality of Service
RDF . Resource Description Framework
REST . Representational State Transfer
RNG . Random Number Generator
SFA . Simple Feature Access

388

SoI . Situation of Interest
SPE . Stream Processing Engine
SQL . Structured Query Language
STPQ . Spatiotemporal Pattern Queries
TC . Temporal Constraint
TCL . Temporal Constraint List
TCP . Transmission Control Protocol
TP . Temporal Pattern
TPL . Temporal Pattern List
UEPA . User-Defined EPA
VM . Virtual Machine
WKT . Well-Known Text
XML . eXtensible Markup Language
XXL . eXtensible and fleXible Library

389

List of Algorithms

1 INSERTCDIRECTORY(be, cell) . 96
2 MATCHCDIRECTORY(dataItem, cell, resultSet) 96
3 SPACEPARTITIONING(cNode, path) . 97
4 GETSCORE(attr, booleanExpressions) . 99
5 SPACECLUSTERING(cell, path) . 100
6 INSERTBETREE(be, cNode, cDirectory, path) 102
7 MATCHBETREE(dataItem, cNode, resultSet) 103
8 LOADCNODE(Q, cNode, path) . 112
9 LOADPNODE(Q, pNode, path) . 113
10 LOADCDIRECTORY(Q, cell, path, attr) . 114
11 SPLITINTERVALS(Q, Ql , Qr, middle, attr) 117

12 SCALARAGGREGATION(Sin, finit, fmerge, feval) 159
13 23TREESEARCH(node, key) . 163
14 AGG23TREEADDNODE(node1, node2) . 166
15 AGG23TREEMERGEAGGREGATES(node) . 166
16 AGG23TREEGETLEFTMOSTLEAFNODE(node) 167
17 AGG23TREEINSERT(root, event) . 168
18 AGG23TREEDELETELEFTMOSTLEAF(root, key) 170
19 AGG23TREEAGGREGATIONWITHGROUPING(Sin, finit, fmerge, feval , fgroup) 172
20 AGG23TREEGETNEXT(groupID, root, key, f orce) 174

21 TEMPORALPREDICATE((p, t)) . 216

22 MATCHMAKING((Z, SZ)) . 240

391

List of Algorithms

23 NAÏVEMATCHMAKING((X, SX), (Y, SY)) . 240
24 OPTIMIZEDMATCHMAKING((X, SX), (Y, SY) 243
25 FASTMATCHMAKING((X, SX), (Y, SY) . 248
26 PUSHDATAITEM(ID, DI) . 249
27 CREATEQUERY(CQ) . 250

28 PUSHFILTERSINK((p, t)) . 280
29 UPDATEQUERY(C,D) . 283

30 CORRELATORORDERING1(inputStreams, ϕ) 298
31 CORRELATORORDERING2(inputStreams, ϕ) 299
32 CORRELATORORDERING3(inputStreams, ϕ) 300

392

List of Figures

1.1 Data stream processing . 7
1.2 Situation of interest . 8

4.1 Architecture of JEPC and thesis outline 24

6.1 Event stream as a sequence of snapshots 34
6.2 Pattern matcher example . 46

7.1 Sliding windows . 53
7.2 Jumping windows . 54
7.3 Event processing network . 59
7.4 Typical structure of a JEPC bridge . 62

9.1 Event processing via standard database systems 74
9.2 Finite automaton for regular expression matching 77
9.3 Schema of the AIT . 78
9.4 Performance of basic EPAs using H2 . 80
9.5 Performance of basic EPAs using PostgreSQL 81
9.6 Performance of multiple running EPAs (small windows) 82
9.7 Performance of multiple running EPAs (large windows) 82

11.1 Query index . 89
11.2 Partition node . 92
11.3 Cluster node . 93
11.4 Partition directory . 94
11.5 Cluster directory . 95

393

List of Figures

11.6 Suboptimal space partitioning . 105
11.7 Globally optimal space partitioning . 106
11.8 Inefficient cluster directory . 107
11.9 Stuck intervals . 109
11.10 Parameter split factor . 118
11.11 Tiny stuck interval . 118
11.12 Split interval . 119
11.13 Huge stuck interval . 119
11.14 Effects of space partitioning and grid tightening 127
11.15 Effect of parameter OverlapSize on matching time 131
11.16 Effect of parameter OverlapSize on redundancy 132
11.17 Effect of parameter OverlapSize on c-directory depth 132
11.18 Effect of total number of attributes on matching time 133
11.19 Effect of total number of attributes on redundancy 134
11.20 Effect of total number of input filter EPAs on matching time 135
11.21 Effect of total split limit on matching time 136
11.22 Effect of total split limit on redundancy 137
11.23 Effects of split factor and grid split limit on matching time 138
11.24 Effects of split factor and grid split limit on redundancy 139
11.25 Effect of split factor on c-directory depth 139
11.26 Effect of total number of attributes on matching time 140
11.27 Effect of total number of input filter EPAs on matching time 141
11.28 Effect of matching rate on matching time 141
11.29 Effects of maxcap and minsupport on matching time 142
11.30 Effect of split factor on matching time . 143
11.31 Effect of split factor on redundancy . 143
11.32 Effect of split factor on c-directory depth 144
11.33 Effect of interval size on matching time 144
11.34 Effect of total number of input filter EPAs (NORMAL distributions) . . 146
11.35 Creation times (NORMAL distributions) 146
11.36 Effect of total number of attributes (NORMAL distributions) 147
11.37 Effect of query area size on matching time (NORMAL distributions) . . 148
11.38 Effect of total number of input filter EPAs (UNIFORM distributions) . . 148
11.39 Creation times (UNIFORM distributions) 149
11.40 Effect of total number of attributes (UNIFORM distributions) 150
11.41 Effect of BETA1 distributed interval sizes 150

394

List of Figures

11.42 Effect of CHI_SQUARED1 distributed interval sizes 151
11.43 Effect of BETA1 distributed interval positions 152
11.44 Effect of CHI_SQUARED1 distributed interval positions 152

12.1 2-3-tree managing partial aggregates . 164
12.2 Agg-2-3-tree insertion . 169
12.3 Index for efficient support of grouping 173
12.4 Effect of window size . 176
12.5 Effect of large window sizes . 177
12.6 Effect of simultaneous events (standard implementation) 177
12.7 Effect of simultaneous events (Agg-2-3-tree) 178
12.8 Effect of grouping (standard implementation) 179
12.9 Effect of grouping (Agg-2-3-tree) . 179
12.10 Effect of grouping (standard implementation) 180
12.11 Effect of grouping (Agg-2-3-tree) . 181

15.1 Temporal event pattern . 194
15.2 Architecture of TPStream . 215
15.3 Constraint graph of temporal pattern . 218
15.4 Effect of evaluation order . 220
15.5 Effects of parameters n and m . 222
15.6 Effects of parameters w and l . 222

16.1 Matchmaking example . 229
16.2 Producer-CQ, inter-CQ, and CQ-consumer independence 232
16.3 Basic problem . 234
16.4 Conversion example . 236
16.5 Merge example . 237
16.6 Split example . 237
16.7 Transformation tree . 241
16.8 Zig-zag matching . 244
16.9 Pruning of redundant nodes in a transformation tree 245
16.10 Verification of redundant pruning . 247
16.11 Impact on runtime performance . 254
16.12 Brute force matching . 255
16.13 Nested loops matching and zig-zag matching 256
16.14 Effect of redundant pruning . 257

395

List of Figures

16.15 Effect of superfluous pruning . 257
16.16 Effect of non-independence . 258

17.1 Jumping B+-tree on event stream . 269
17.2 Read performance of the event store . 270

18.1 Total network traffic of an ISP . 275
18.2 States and transitions of continuous queries 278
18.3 Filter sink . 279
18.4 Merge source . 282
18.5 Update of CQ2 at runtime (top before, bottom after the update) 285

19.1 Translation and interconnection of EPAs 292
19.2 Selecting potentially matching event sequences 302
19.3 Query optimizer as JEPC extension . 304
19.4 Query monitor . 304
19.5 Effect of predicate ordering . 307
19.6 Effect of filter push-down on filter EPA (non-optimized) 308
19.7 Effect of filter push-down on filter EPA (optimized) 309
19.8 Effect of filter push-down on correlation EPA 310
19.9 Effect of filter push-down on aggregation EPA 311
19.10 Effect of filter push-down on pattern matching EPA 312
19.11 Effect of correlation EPA ordering . 314
19.12 Effect of filter extraction on a single pattern matching EPA 315
19.13 Effect of filter extraction on a set of pattern matching EPAs 316

20.1 Parallel processing of EPAs using JEPC 319
20.2 Overall architecture of the federation manager 320
20.3 Effect of simultaneous events on pattern matchers of different EPPs . . . 322
20.4 Effect of window sizes on correlators of different EPPs 323
20.5 Classifier for assigning EPAs to EPP types 324
20.6 Clustering of adjacent EPAs being deployed on the same EPP instance . 326
20.7 Test query . 328
20.8 Performance of the test query for different configurations 328

A.1 Uniform and fixed distributed numbers 348
A.2 Triangular distributed numbers . 349
A.3 Normal distributed numbers . 349

396

List of Figures

A.4 Beta distributed numbers . 350
A.5 Binomial distributed numbers . 350
A.6 Cauchy distributed numbers . 351
A.7 Chi-squared distributed numbers . 352
A.8 Zipf distributed numbers . 352

397

List of Listings

7.1 Schema definition in JEPC . 51
7.2 Payload of an event in JEPC . 51
7.3 Signature of Stream . 52
7.4 Signatures of Window . 53
7.5 Signature of Filter . 55
7.6 Example of Filter . 56
7.7 Signature of Aggregator . 56
7.8 Example of Aggregator . 56
7.9 Signature of PatternMatcher . 57
7.10 Example of PatternMatcher . 57
7.11 Signature of Correlator . 58
7.12 Example of Correlator . 58
7.13 Example of OutputProcessor . 60
7.14 Filter in JEPC-QL . 63
7.15 EPN consisting of an Aggregator and a Correlator in JEPC-QL 63
7.16 PatternMatcher in JEPC-QL . 64

9.1 Computing automaton transitions on new events via SQL 79

11.1 Default configuration of the query index of the native EP provider . . . 123

15.1 ASEQ query language . 199
15.2 Definition of ASEQ predicates and temporal predicates 202
15.3 Temporal predicates and binding of variables 203
15.4 TPStream query language . 207

399

List of Listings

15.5 Finding gorillas that left their troop . 207
15.6 A followed by B . 210
15.7 Conjunction . 210
15.8 Alternative . 210
15.9 Kleene plus . 211
15.10 Negation . 211
15.11 Question mark . 211
15.12 A directly followed by B . 212
15.13 A followed by B within w . 212
15.14 Spatiotemporal pattern query in JEPC-QL 214
15.15 Parametrized test query . 221

16.1 Test queries of “Esper 1” in Esper EPL 252
16.2 Test queries of “Esper 2” in Esper EPL 253
16.3 Test queries of “Esper M” in JEPC-QL 253

18.1 Anomaly detection query . 275
18.2 Elastic time window . 287

19.1 Runner tracking query . 301

20.1 Creating a federation of EP providers in JEPC 327

B.1 Wrapping an instance of JEPC . 356
B.2 Conversion in JEPC . 357
B.3 Merge in JEPC . 358
B.4 Split in JEPC . 359
B.5 Another conversion in JEPC . 359
B.6 Adding basic transformations . 360
B.7 Query of Alice . 361
B.8 Query of Bob . 361
B.9 Registration of a producer . 362
B.10 Sending events . 363
B.11 Output of queries . 363
B.12 Update of a producer . 364

400

List of Tables

6.1 Universes of a logical event stream . 36
6.2 Components of Boolean expressions . 37
6.3 Time window example . 39
6.4 Count window example . 41
6.5 Event occlusion effect . 42
6.6 Filter example . 43
6.7 Correlator example . 44
6.8 Aggregator example . 44

7.1 JEPC data types . 52
7.2 Effects of window parameters . 55
7.3 API of EP providers . 61

8.1 SweepArea . 70

9.1 Transition table of example automaton (standard layout) 76
9.2 Transition table of example automaton (efficient layout for databases) . . 78

11.1 Substitution of unsupported predicates 91
11.2 Mapping of indexable predicates to intervals 92
11.3 Application classes . 110
11.4 Used configurations of the BE+-tree . 127
11.5 Effect of the avoidance of empty grid cells 128
11.6 Default configuration used in experiments of interval split technique . . 129
11.7 Effects of interval split technique . 130

401

List of Tables

11.8 Structures of BE+-trees with interval splits disabled 133

12.1 Scalability of different aggregation operator implementations 175

15.1 Comparison of ASEQ predicates and temporal predicates 203
15.2 Encoding of temporal constraints in TPStream 205

16.1 PATs for a schema having the attributes x, y, and z 245
16.2 API of matchmaker . 249

17.1 Methods for recording event streams . 266
17.2 Methods for reloading and querying recorded event streams 266

18.1 Natively supported basic lifecycle management methods 277

402

Curriculum Vitae

Personal Information

Name Bastian Hoßbach

Date of Birth December 18, 1985

Place of Birth Hessisch-Lichtenau (Germany)

Education

2006 – 2011 Diploma in Computer Science
University of Marburg (Germany)

2003 – 2006 Abitur (Higher Education Entrance Qualification)
Oberstufengymnasium Eschwege (Germany)

Work Experience

2012 – 2015 Research and Teaching Assistant
BMBF-funded project “Anomaly Management in Computer
Systems via Complex Event Processing Technology”,
University of Marburg (Germany)

2010 – 2012 Student Assistant
Database Research Group,
University of Marburg (Germany)

2010 Intern
Software development,
RTM Realtime Monitoring GmbH (Germany)

2005 – 2012 IT Freelancer
Design and implementation of webpages and web apps,
Various companies

403

	I Introduction
	Big Data in Motion
	Introduction
	Data Stream Processing
	Event Processing
	Remainder of the Part

	Problems and Emerging Challenges of Event Processing
	Introduction
	Heterogeneity
	Performance
	Dynamic Applications
	Temporal and Spatiotemporal Applications

	Contributions of the Thesis
	Introduction
	Abstraction and Unification
	High-Performance Event Processing
	Efficient Operator Implementations
	Novel Optimization Techniques
	Distributed Event Processing

	Dynamic Event Processing
	Temporal and Spatiotemporal Pattern Matching

	Outline of the Thesis
	Introduction
	JEPC Core and JEPC Bridges
	JEPC Extensions

	II Core of the Middleware
	Introduction
	An Abstraction Layer for Event Processing
	Design Goals and Principles
	Remainder of the Part

	Theoretical Foundations
	Introduction
	Event Streams
	Event Processing Algebra
	Parameters
	Windows
	Event Processing Agents

	Design of the JEPC Core
	Introduction
	Time, Events and Event Streams
	Event Processing Agents and Networks
	Output Processors
	Event Processing Providers
	JEPC Query Language

	JEPC Bridges to Stream Processing Engines
	Introduction
	Implementation of the API
	Compiler for EPAs
	Translation of the Snapshot-Reducible EPAs
	Translation of the Pattern Matching EPA

	JEPC Bridge to Standard Database Systems
	Introduction
	Implementation of the JEPC Bridge to JDBC
	Management of Events in Database Tables
	Translation of the Snapshot-Reducible EPAs
	Translation of the Pattern Matching EPA

	Evaluation

	JEPC Bridge to Native EPA Implementations
	Introduction
	Outline

	An Efficient Index for Large Sets of Continuous Queries
	Introduction
	Preliminaries
	BE-Tree
	Predicate Mapping
	Structure of BE-Tree
	Local Reorganization
	Insert, Delete and Match

	Shortcomings in Event Processing Applications
	Globally Non-Optimal Space Partitioning
	Inefficient Clustering

	BE+-Tree
	Bulk Loading of BE-Trees
	Handling of Stuck Intervals

	Implementation
	Optimization of Boolean Expressions
	Indexing of Arbitrary Boolean Expressions

	Handling Dynamic Sets of Continuous Queries
	Evaluation
	Globally Optimal Partitioning, Grid Tightening and Avoidance of Empty Cells
	Interval Splits
	Benchmarks

	Related Work

	Efficient Aggregation over Event Streams with Time-Interval Semantics
	Introduction
	Standard Implementation
	Tree-Based Implementation
	The 2-3-Tree
	Managing Partial Aggregates in 2-3-Trees
	The Agg-2-3-Tree

	Evaluation
	Scalability
	Simultaneous Events and Jumping Windows
	Grouping

	Related Work
	Temporal Aggregation in Databases
	Sliding Window Aggregation in Stream Processing

	Conclusions

	III Extensions to the Middleware
	Introduction
	Extending Event Processing Technology
	Remainder of the Part

	Temporal and Spatiotemporal Pattern Matching over Event Streams
	Introduction
	ASEQ Operator
	Symbols and Predicates
	Sequential Patterns
	Syntax
	Semantics

	TPStream Operator
	Temporal predicates
	Temporal Constraints
	Temporal Patterns
	Syntax
	Semantics

	Expressing Sequential Patterns
	Expressing Spatiotemporal Patterns
	Implementation
	Evaluation
	Optimizing the Evaluation Order
	Maximum Throughput under Varying Parameters

	Related Work

	Automatic Matchmaking in Real-Time Data Stream Processing
	Introduction
	Background and Motivation
	State-of-the-Art Connection Management
	Benefits of Automatic Matchmaking

	Matchmaking Problem
	Data Model
	Problem Statement

	Solutions
	Basic Transformations
	Naïve Matchmaking
	Optimized Matchmaking
	Fast Matchmaking

	Implementation
	Parallelization
	Query Updates
	Properties

	Evaluation
	Impact on Performance
	Evaluation of Matching Techniques
	Evaluation of Pruning Techniques

	Related Work

	Event Stores
	Introduction
	Event Store Interface
	JDBC Event Store
	In-Memory Event Store
	B+-Tree Event Store

	A General Approach to Efficiently Updating Continuous Queries On-the-Fly
	Introduction
	Background
	Problem Description
	Dynamic Event Processing

	Update Method
	Preliminaries
	Algorithm
	Implementation

	Use Cases
	Anomaly-Based Detection
	Elastic Windows
	Query Optimization

	Related Work

	Query Optimization
	Introduction
	Optimization Techniques
	Predicate Ordering
	Filter Push-Down
	Correlation EPA Ordering
	Optimization of Pattern Matcher EPAs

	Implementation
	Evaluation
	Predicate Ordering
	Filter Push-Down
	Correlation EPA Ordering
	Optimization of Pattern Matching EPAs

	Parallel and Federated Event Processing
	Introduction
	Parallelization of JEPC
	Distribution of EPAs
	Classification
	Load Balancing
	Clustering

	Implementation
	Evaluation
	Related Work

	Conclusions

	IV Thesis Conclusions and Future Research
	Thesis Conclusions
	Future Research
	Introduction
	Additional JEPC Bridges
	What-If Analysis and Query Quality
	Application of Dynamic Event Processing

	Development and Evaluation Details
	Introduction
	Unit Tests
	Evaluation Framework
	Random Number Generator
	Event Generators
	Query Generators

	Matchmaker Example
	Introduction
	Wrapping Instances of JEPC
	Transformations
	Basic Transformations
	Combining and Adding Basic Transformations

	Creating Queries
	Registering External Producers
	Processing of Events
	Runtime Adaptivity

	Bibliography
	List of Acronyms
	List of Algorithms
	List of Figures
	List of Listings
	List of Tables
	Curriculum Vitae

