5,844 research outputs found

    THE DAY “GOD” FAILED OR OVERTRUST IN AUTOMATION. A PORTUGUESE CASE STUDY

    Get PDF
    The increasing development of computer based technologies open new horizons in task automation, helping pilots and air traffic controllers to carry out the analysis and resolution of an increasing number of cognitive tasks, in complex working environments. However, there is a general agreement that cognitive automation may lead to overtrust, complacency and loss of the necessary operational situation feed back, as the basis of the mental model refreshment which, in turn, allows for the maintenance of coherent situation awareness of all the operational processes. The case study reported suggests there is a dimension to be followed in human machine integration, which is beyond the technological deterministic approach of human machine interface design, and calls for a better human comprehension of system nature. The human comprehension of this dimension, which we introduce as the technological factor, represents the basis of systemic self-constructed situation awareness, in a real human centered development.automation; situation awareness; mental model; overtrust in automation

    Symbolic representation of scenarios in Bologna airport on virtual reality concept

    Get PDF
    This paper is a part of a big Project named Retina Project, which is focused in reduce the workload of an ATCO. It uses the last technological advances as Virtual Reality concept. The work has consisted in studying the different awareness situations that happens daily in Bologna Airport. It has been analysed one scenario with good visibility where the sun predominates and two other scenarios with poor visibility where the rain and the fog dominate. Due to the study of visibility in the three scenarios computed, the conclusion obtained is that the overlay must be shown with a constant dimension regardless the position of the aircraft to be readable by the ATC and also, the frame and the flight strip should be coloured in a showy colour (like red) for a better control by the ATCO

    The Impact of Trajectory Prediction Uncertainty on Air Traffic Controller Performance and Acceptability

    Get PDF
    A Human-In-The-Loop air traffic control simulation investigated the impact of uncertainties in trajectory predictions on NextGen Trajectory-Based Operations concepts, seeking to understand when the automation would become unacceptable to controllers or when performance targets could no longer be met. Retired air traffic controllers staffed two en route transition sectors, delivering arrival traffic to the northwest corner-post of Atlanta approach control under time-based metering operations. Using trajectory-based decision-support tools, the participants worked the traffic under varying levels of wind forecast error and aircraft performance model error, impacting the ground automations ability to make accurate predictions. Results suggest that the controllers were able to maintain high levels of performance, despite even the highest levels of trajectory prediction errors

    Initial Investigation of Operational Concept Elements for NASA's NextGen-Airportal Project Research

    Get PDF
    The NextGen-Airportal Project is organized into three research focus areas: Safe and Efficient Surface Operations, Coordinated Arrival/Departure Operations Management, and Airportal Transition and Integration Management. The content in this document was derived from an examination of constraints and problems at airports for accommodating future increases in air traffic, and from an examination of capabilities envisioned for NextGen. The concepts are organized around categories of constraints and problems and therefore do not precisely match, but generally reflect, the research focus areas. The concepts provide a framework for defining and coordinating research activities that are, and will be, conducted by the NextGen-Airportal Project. The concepts will help the research activities function as an integrated set focused on future needs for airport operations and will aid aligning the research activities with NextGen key capabilities. The concepts are presented as concept elements with more detailed sub-elements under each concept element. For each concept element, the following topics are discussed: constraints and problems being addressed, benefit descriptions, required technology and infrastructure, and an initial list of potential research topics. Concept content will be updated and more detail added as the research progresses. The concepts are focused on enhancing airportal capacity and efficiency in a timeframe 20 to 25 years in the future, which is similar to NextGen's timeframe

    Comparison of Airborne and Ground-Based Function Allocation Concepts for NextGen Using Human-In-The-Loop Simulations

    Get PDF
    This paper presents an air/ground functional allocation experiment conducted by the National Aeronautics and Space Administration (NASA) using two human-in-the-Loop simulations to compare airborne and ground-based approaches to NextGen separation assurance. The approaches under investigation are two trajectory-based four-dimensional (4D) concepts; one referred to as "airborne trajectory management with self-separation" (airborne) the other as "ground-based automated separation assurance" (ground-based). In coordinated simulations at NASA's Ames and Langley Research Centers, the primary operational participants -controllers for the ground-based concept and pilots for the airborne concept - manage the same traffic scenario using the two different 4D concepts. The common scenarios are anchored in traffic problems that require a significant increase in airspace capacity - on average, double, and in some local areas, close to 250% over current day levels - in order to enable aircraft to safely and efficiently traverse the test airspace. The simulations vary common independent variables such as traffic density, sequencing and scheduling constraints, and timing of trajectory change events. A set of common metrics is collected to enable a direct comparison of relevant results. The simulations will be conducted in spring 2010. If accepted, this paper will be the first publication of the experimental approach and early results. An initial comparison of safety and efficiency as well as operator acceptability under the two concepts is expected

    Comparison of Ground-Based and Airborne Function Allocation Concepts for NextGen Using Human-In-The-Loop Simulations

    Get PDF
    Investigation of function allocation for the Next Generation Air Transportation System is being conducted by the National Aeronautics and Space Administration (NASA). To provide insight on comparability of different function allocations for separation assurance, two human-in-the-loop simulation experiments were conducted on homogeneous airborne and ground-based approaches to four-dimensional trajectory-based operations, one referred to as ground-based automated separation assurance (groundbased) and the other as airborne trajectory management with self-separation (airborne). In the coordinated simulations at NASA s Ames and Langley Research Centers, controllers for the ground-based concept at Ames and pilots for the airborne concept at Langley managed the same traffic scenarios using the two different concepts. The common scenarios represented a significant increase in airspace demand over current operations. Using common independent variables, the simulations varied traffic density, scheduling constraints, and the timing of trajectory change events. Common metrics were collected to enable a comparison of relevant results. Where comparisons were possible, no substantial differences in performance or operator acceptability were observed. Mean schedule conformance and flight path deviation were considered adequate for both approaches. Conflict detection warning times and resolution times were mostly adequate, but certain conflict situations were detected too late to be resolved in a timely manner. This led to some situations in which safety was compromised and/or workload was rated as being unacceptable in both experiments. Operators acknowledged these issues in their responses and ratings but gave generally positive assessments of the respective concept and operations they experienced. Future studies will evaluate technical improvements and procedural enhancements to achieve the required level of safety and acceptability and will investigate the integration of airborne and ground-based capabilities within the same airspace to leverage the benefits of each concept

    Adaptive Airborne Separation to Enable UAM Autonomy in Mixed Airspace

    Get PDF
    The excitement and promise generated by Urban Air Mobility (UAM) concepts have inspired both new entrants and large aerospace companies throughout the world to invest hundreds of millions in research and development of air vehicles, both piloted and unpiloted, to fulfill these dreams. The management and separation of all these new aircraft have received much less attention, however, and even though NASAs lead is advancing some promising concepts for Unmanned Aircraft Systems (UAS) Traffic Management (UTM), most operations today are limited to line of sight with the vehicle, airspace reservation and geofencing of individual flights. Various schemes have been proposed to control this new traffic, some modeled after conventional air traffic control and some proposing fully automatic management, either from a ground-based entity or carried out on board among the vehicles themselves. Previous work has examined vehicle-based traffic management in the very low altitude airspace within a metroplex called UTM airspace in which piloted traffic is rare. A management scheme was proposed in that work that takes advantage of the homogeneous nature of the traffic operating in UTM airspace. This paper expands that concept to include a traffic management plan usable at all altitudes desired for electric Vertical Takeoff and Landing urban and short-distance, inter-city transportation. The interactions with piloted aircraft operating under both visual and instrument flight rules are analyzed, and the role of Air Traffic Control services in the postulated mixed traffic environment is covered. Separation values that adapt to each type of traffic encounter are proposed, and the relationship between required airborne surveillance range and closure speed is given. Finally, realistic scenarios are presented illustrating how this concept can reliably handle the density and traffic mix that fully implemented and successful UAM operations would entail

    Analysis of Trajectory Flexibility Preservation Impact on Traffic Complexity

    Get PDF
    The growing demand for air travel is increasing the need for mitigation of air traffic congestion and complexity problems, which are already at high levels. At the same time new information and automation technologies are enabling the distribution of tasks and decisions from the service providers to the users of the air traffic system, with potential capacity and cost benefits. This distribution of tasks and decisions raises the concern that independent user actions will decrease the predictability and increase the complexity of the traffic system, hence inhibiting and possibly reversing any potential benefits. In answer to this concern, the authors proposed the introduction of decision-making metrics for preserving user trajectory flexibility. The hypothesis is that such metrics will make user actions naturally mitigate traffic complexity. In this paper, the impact of using these metrics on traffic complexity is investigated. The scenarios analyzed include aircraft in en route airspace with each aircraft meeting a required time of arrival in a one-hour time horizon while mitigating the risk of loss of separation with the other aircraft, thus preserving its trajectory flexibility. The experiments showed promising results in that the individual trajectory flexibility preservation induced self-separation and self-organization effects in the overall traffic situation. The effects were quantified using traffic complexity metrics, namely dynamic density indicators, which indicated that using the flexibility metrics reduced aircraft density and the potential of loss of separation

    The impact of alerting designs on air traffic controller's eye movement patterns and situation awareness

    Get PDF
    This research investigated controller’ situation awareness by comparing COOPANS’s acoustic alerts with newly designed semantic alerts. The results demonstrate that ATCOs’ visual scan patterns had significant differences between acoustic and semantic designs. ATCOs established different eye movement patterns on fixations number, fixation duration and saccade velocity. Effective decision support systems require human-centred design with effective stimuli to direct ATCO’s attention to critical events. It is necessary to provide ATCOs with specific alerting information to reflect the nature of of the critical situation in order to minimize the side-effects of startle and inattentional deafness. Consequently, the design of a semantic alert can significantly reduce ATCOs’ response time, therefore providing valuable extra time in a time-limited situation to formulate and execute resolution strategies in critical air safety events. The findings of this research indicate that the context-specified design of semantic alerts could improve ATCO’s situational awareness and significantly reduce response time in the event of Short Term Conflict Alert activation which alerts to two aircraft having less than the required lateral or vertical separation

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included
    • …
    corecore