53,143 research outputs found

    Self-optimizing Uplink Outer Loop Power Control for WCDMA Network

    Get PDF
    The increasing demands for high data rates, drives the efforts for more efficient usage of the finite natural radio spectrum resources. Existing wideband code division multiple access (WCDMA) uplink outer loop power control has difficulty to answer to the new load on air interface. The main reason is that the maximum allowed noise rise per single user is fixed value. In worst case uplink load can be so high that all services, including conversational service, could be blocked. In this paper investigation has been performed to present correlation of main system parameters, used by uplink outer loop power control, to uplink load. Simulation has been created and executed to present difference in current implementation of uplink outer loop power control against proposed changes. Proposed solution is self-optimizing uplink outer loop power control in a way that maximum allowed noise rise per single user would be dynamically changed based on current uplink load on cell

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Description and Experience of the Clinical Testbeds

    Get PDF
    This deliverable describes the up-to-date technical environment at three clinical testbed demonstrator sites of the 6WINIT Project, including the adapted clinical applications, project components and network transition technologies in use at these sites after 18 months of the Project. It also provides an interim description of early experiences with deployment and usage of these applications, components and technologies, and their clinical service impact
    • …
    corecore