3,753 research outputs found

    k-Space Deep Learning for Reference-free EPI Ghost Correction

    Full text link
    Nyquist ghost artifacts in EPI are originated from phase mismatch between the even and odd echoes. However, conventional correction methods using reference scans often produce erroneous results especially in high-field MRI due to the non-linear and time-varying local magnetic field changes. Recently, it was shown that the problem of ghost correction can be reformulated as k-space interpolation problem that can be solved using structured low-rank Hankel matrix approaches. Another recent work showed that data driven Hankel matrix decomposition can be reformulated to exhibit similar structures as deep convolutional neural network. By synergistically combining these findings, we propose a k-space deep learning approach that immediately corrects the phase mismatch without a reference scan in both accelerated and non-accelerated EPI acquisitions. To take advantage of the even and odd-phase directional redundancy, the k-space data is divided into two channels configured with even and odd phase encodings. The redundancies between coils are also exploited by stacking the multi-coil k-space data into additional input channels. Then, our k-space ghost correction network is trained to learn the interpolation kernel to estimate the missing virtual k-space data. For the accelerated EPI data, the same neural network is trained to directly estimate the interpolation kernels for missing k-space data from both ghost and subsampling. Reconstruction results using 3T and 7T in-vivo data showed that the proposed method outperformed the image quality compared to the existing methods, and the computing time is much faster.The proposed k-space deep learning for EPI ghost correction is highly robust and fast, and can be combined with acceleration, so that it can be used as a promising correction tool for high-field MRI without changing the current acquisition protocol.Comment: To appear in Magnetic Resonance in Medicin

    Incorporating Relaxivities to More Accurately Reconstruct MR Images

    Get PDF
    Purpose To develop a mathematical model that incorporates the magnetic resonance relaxivities into the image reconstruction process in a single step. Materials and methods In magnetic resonance imaging, the complex-valued measurements of the acquired signal at each point in frequency space are expressed as a Fourier transformation of the proton spin density weighted by Fourier encoding anomalies: T2⁎, T1, and a phase determined by magnetic field inhomogeneity (∆B) according to the MR signal equation. Such anomalies alter the expected symmetry and the signal strength of the k-space observations, resulting in images distorted by image warping, blurring, and loss in image intensity. Although T1 on tissue relaxation time provides valuable quantitative information on tissue characteristics, the T1 recovery term is typically neglected by assuming a long repetition time. In this study, the linear framework presented in the work of Rowe et al., 2007, and of Nencka et al., 2009 is extended to develop a Fourier reconstruction operation in terms of a real-valued isomorphism that incorporates the effects of T2⁎, ∆B, and T1. This framework provides a way to precisely quantify the statistical properties of the corrected image-space data by offering a linear relationship between the observed frequency space measurements and reconstructed corrected image-space measurements. The model is illustrated both on theoretical data generated by considering T2⁎, T1, and/or ∆B effects, and on experimentally acquired fMRI data by focusing on the incorporation of T1. A comparison is also made between the activation statistics computed from the reconstructed data with and without the incorporation of T1 effects. Result Accounting for T1 effects in image reconstruction is shown to recover image contrast that exists prior to T1 equilibrium. The incorporation of T1 is also shown to induce negligible correlation in reconstructed images and preserve functional activations. Conclusion With the use of the proposed method, the effects of T2⁎ and ∆B can be corrected, and T1 can be incorporated into the time series image-space data during image reconstruction in a single step. Incorporation of T1 provides improved tissue segmentation over the course of time series and therefore can improve the precision of motion correction and image registration

    Joint B0 and image estimation integrated with model based reconstruction for field map update and distortion correction in prostate diffusion MRI

    Get PDF
    In prostate Diffusion Weighted MRI, differences in susceptibility values exist at the interface between the prostate and rectal-air. This can result in off-resonance magnetic field leading to geometric distortions including signal stretching and signal pile-up in the reconstructed images. Using a set of EPI data acquired with blip-up and blip-down phase encoding gradient directions, model based reconstruction has recently been proposed that can correct these distortions by using a B0 field estimated from a separate B0 scan. However, change in the size of the rectal air region across time can occur that can result in a mismatch of the B0 field to the EPI scan. Also, the measured B0 field itself can be erroneous in regions of low Signal to Noise ratio around the prostate rectal air interface. In this work, using a set of single shot EPI data acquired with blip-up and blip-down phase encoding gradient directions, a novel joint model based reconstruction is proposed that can account for changes in the off resonance effects between the B0 and EPI scans. For ten prostate patients, using a measured B0 field as an initial B0 estimate, on a 5-point scale (1-5) image quality scores evaluated by an experienced radiologist, the proposed framework achieved scores of 3.50+/-0.85 and 3.40+/-0.51 for bvalues of 0 and 500 s/mm2, respectively compared to 3.40+/-0.70 and 3.30+/-0.67 for model based reconstruction. The proposed framework is also capable of estimating a distortion corrected EPI image even without an initial B0 field estimate in situations where a separate B0 scan cannot be obtained due to time constraint
    corecore