6,042 research outputs found

    Modelling count data with overdispersion and spatial effects

    Get PDF
    In this paper we consider regression models for count data allowing for overdispersion in a Bayesian framework. We account for unobserved heterogeneity in the data in two ways. On the one hand, we consider more flexible models than a common Poisson model allowing for overdispersion in different ways. In particular, the negative binomial and the generalized Poisson distribution are addressed where overdispersion is modelled by an additional model parameter. Further, zero-inflated models in which overdispersion is assumed to be caused by an excessive number of zeros are discussed. On the other hand, extra spatial variability in the data is taken into account by adding spatial random effects to the models. This approach allows for an underlying spatial dependency structure which is modelled using a conditional autoregressive prior based on Pettitt et al. (2002). In an application the presented models are used to analyse the number of invasive meningococcal disease cases in Germany in the year 2004. Models are compared according to the deviance information criterion (DIC) suggested by Spiegelhalter et al. (2002) and using proper scoring rules, see for example Gneiting and Raftery (2004). We observe a rather high degree of overdispersion in the data which is captured best by the GP model when spatial effects are neglected. While the addition of spatial effects to the models allowing for overdispersion gives no or only little improvement, a spatial Poisson model is to be preferred over all other models according to the considered criteria

    A default prior for regression coefficients

    Full text link
    When the sample size is not too small, M-estimators of regression coefficients are approximately normal and unbiased. This leads to the familiar frequentist inference in terms of normality-based confidence intervals and p-values. From a Bayesian perspective, use of the (improper) uniform prior yields matching results in the sense that posterior quantiles agree with one-sided confidence bounds. For this, and various other reasons, the uniform prior is often considered objective or non-informative. In spite of this, we argue that the uniform prior is not suitable as a default prior for inference about a regression coefficient in the context of the bio-medical and social sciences. We propose that a more suitable default choice is the normal distribution with mean zero and standard deviation equal to the standard error of the M-estimator. We base this recommendation on two arguments. First, we show that this prior is non-informative for inference about the sign of the regression coefficient. Secondly, we show that this prior agrees well with a meta-analysis of 50 articles from the MEDLINE database

    Modelling workplace contact networks: the effects of organizational structure, architecture, and reporting errors on epidemic predictions

    Get PDF
    Face-to-face social contacts are potentially important transmission routes for acute respiratory infections, and understanding the contact network can improve our ability to predict, contain, and control epidemics. Although workplaces are important settings for infectious disease transmission, few studies have collected workplace contact data and estimated workplace contact networks. We use contact diaries, architectural distance measures, and institutional structures to estimate social contact networks within a Swiss research institute. Some contact reports were inconsistent, indicating reporting errors. We adjust for this with a latent variable model, jointly estimating the true (unobserved) network of contacts and duration-specific reporting probabilities. We find that contact probability decreases with distance, and research group membership, role, and shared projects are strongly predictive of contact patterns. Estimated reporting probabilities were low only for 0-5 minute contacts. Adjusting for reporting error changed the estimate of the duration distribution, but did not change the estimates of covariate effects and had little effect on epidemic predictions. Our epidemic simulation study indicates that inclusion of network structure based on architectural and organizational structure data can improve the accuracy of epidemic forecasting models.Comment: 36 pages, 4 figure

    Likely oscillatory motions of stochastic hyperelastic solids

    Get PDF
    Stochastic homogeneous hyperelastic solids are characterised by strain-energy densities where the parameters are random variables defined by probability density functions. These models allow for the propagation of uncertainties from input data to output quantities of interest. To investigate the effect of probabilistic parameters on predicted mechanical responses, we study radial oscillations of cylindrical and spherical shells of stochastic incompressible isotropic hyperelastic material, formulated as quasi-equilibrated motions where the system is in equilibrium at every time instant. Additionally, we study finite shear oscillations of a cuboid, which are not quasi-equilibrated. We find that, for hyperelastic bodies of stochastic neo-Hookean or Mooney-Rivlin material, the amplitude and period of the oscillations follow probability distributions that can be characterised. Further, for cylindrical tubes and spherical shells, when an impulse surface traction is applied, there is a parameter interval where the oscillatory and non-oscillatory motions compete, in the sense that both have a chance to occur with a given probability. We refer to the dynamic evolution of these elastic systems, which exhibit inherent uncertainties due to the material properties, as `likely oscillatory motions'
    corecore