5,126 research outputs found

    An Introduction to Pervasive Interface Automata

    Get PDF
    Pervasive systems are often context-dependent, component based systems in which components expose interfaces and offer one or more services. These systems may evolve in unpredictable ways, often through component replacement. We present pervasive interface automata as a formalism for modelling components and their composition. Pervasive interface automata are based on the interface automata of Henzinger et al, with several significant differences. We expand their notion of input and output actions to combinations of input, output actions, and callable methods and method calls. Whereas interfaces automata have a refinement relation, we argue the crucial relation in pervasive systems is component replacement, which must include consideration of the services offered by a component and assumptions about the environment. We illustrate pervasive interface autmotata and component replacement with a small case study of a pervasive application for sports predictions

    Role-Based Interface Automata

    Get PDF
    No abstract available

    A Survey on Service Composition Middleware in Pervasive Environments

    Get PDF
    The development of pervasive computing has put the light on a challenging problem: how to dynamically compose services in heterogeneous and highly changing environments? We propose a survey that defines the service composition as a sequence of four steps: the translation, the generation, the evaluation, and finally the execution. With this powerful and simple model we describe the major service composition middleware. Then, a classification of these service composition middleware according to pervasive requirements - interoperability, discoverability, adaptability, context awareness, QoS management, security, spontaneous management, and autonomous management - is given. The classification highlights what has been done and what remains to do to develop the service composition in pervasive environments

    A Formal Framework for Concrete Reputation Systems

    Get PDF
    In a reputation-based trust-management system, agents maintain information about the past behaviour of other agents. This information is used to guide future trust-based decisions about interaction. However, while trust management is a component in security decision-making, many existing reputation-based trust-management systems provide no formal security-guarantees. In this extended abstract, we describe a mathematical framework for a class of simple reputation-based systems. In these systems, decisions about interaction are taken based on policies that are exact requirements on agents’ past histories. We present a basic declarative language, based on pure-past linear temporal logic, intended for writing simple policies. While the basic language is reasonably expressive (encoding e.g. Chinese Wall policies) we show how one can extend it with quantification and parameterized events. This allows us to encode other policies known from the literature, e.g., ‘one-out-of-k’. The problem of checking a history with respect to a policy is efficient for the basic language, and tractable for the quantified language when policies do not have too many variables

    Policy Enforcement with Proactive Libraries

    Full text link
    Software libraries implement APIs that deliver reusable functionalities. To correctly use these functionalities, software applications must satisfy certain correctness policies, for instance policies about the order some API methods can be invoked and about the values that can be used for the parameters. If these policies are violated, applications may produce misbehaviors and failures at runtime. Although this problem is general, applications that incorrectly use API methods are more frequent in certain contexts. For instance, Android provides a rich and rapidly evolving set of APIs that might be used incorrectly by app developers who often implement and publish faulty apps in the marketplaces. To mitigate this problem, we introduce the novel notion of proactive library, which augments classic libraries with the capability of proactively detecting and healing misuses at run- time. Proactive libraries blend libraries with multiple proactive modules that collect data, check the correctness policies of the libraries, and heal executions as soon as the violation of a correctness policy is detected. The proactive modules can be activated or deactivated at runtime by the users and can be implemented without requiring any change to the original library and any knowledge about the applications that may use the library. We evaluated proactive libraries in the context of the Android ecosystem. Results show that proactive libraries can automati- cally overcome several problems related to bad resource usage at the cost of a small overhead.Comment: O. Riganelli, D. Micucci and L. Mariani, "Policy Enforcement with Proactive Libraries" 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), Buenos Aires, Argentina, 2017, pp. 182-19

    Design-time formal verification for smart environments: an exploratory perspective

    Get PDF
    Smart environments (SmE) are richly integrated with multiple heterogeneous devices; they perform the operations in intelligent manner by considering the context and actions/behaviors of the users. Their major objective is to enable the environment to provide ease and comfort to the users. The reliance on these systems demands consistent behavior. The versatility of devices, user behavior and intricacy of communication complicate the modeling and verification of SmE's reliable behavior. Of the many available modeling and verification techniques, formal methods appear to be the most promising. Due to a large variety of implementation scenarios and support for conditional behavior/processing, the concept of SmE is applicable to diverse areas which calls for focused research. As a result, a number of modeling and verification techniques have been made available for designers. This paper explores and puts into perspective the modeling and verification techniques based on an extended literature survey. These techniques mainly focus on some specific aspects, with a few overlapping scenarios (such as user interaction, devices interaction and control, context awareness, etc.), which were of the interest to the researchers based on their specialized competencies. The techniques are categorized on the basis of various factors and formalisms considered for the modeling and verification and later analyzed. The results show that no surveyed technique maintains a holistic perspective; each technique is used for the modeling and verification of specific SmE aspects. The results further help the designers select appropriate modeling and verification techniques under given requirements and stress for more R&D effort into SmE modeling and verification researc
    • …
    corecore