1,460 research outputs found

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    HySIA: Tool for Simulating and Monitoring Hybrid Automata Based on Interval Analysis

    Full text link
    We present HySIA: a reliable runtime verification tool for nonlinear hybrid automata (HA) and signal temporal logic (STL) properties. HySIA simulates an HA with interval analysis techniques so that a trajectory is enclosed sharply within a set of intervals. Then, HySIA computes whether the simulated trajectory satisfies a given STL property; the computation is performed again with interval analysis to achieve reliability. Simulation and verification using HySIA are demonstrated through several example HA and STL formulas.Comment: Appeared in RV'17; the final publication is available at Springe

    Proving Abstractions of Dynamical Systems through Numerical Simulations

    Full text link
    A key question that arises in rigorous analysis of cyberphysical systems under attack involves establishing whether or not the attacked system deviates significantly from the ideal allowed behavior. This is the problem of deciding whether or not the ideal system is an abstraction of the attacked system. A quantitative variation of this question can capture how much the attacked system deviates from the ideal. Thus, algorithms for deciding abstraction relations can help measure the effect of attacks on cyberphysical systems and to develop attack detection strategies. In this paper, we present a decision procedure for proving that one nonlinear dynamical system is a quantitative abstraction of another. Directly computing the reach sets of these nonlinear systems are undecidable in general and reach set over-approximations do not give a direct way for proving abstraction. Our procedure uses (possibly inaccurate) numerical simulations and a model annotation to compute tight approximations of the observable behaviors of the system and then uses these approximations to decide on abstraction. We show that the procedure is sound and that it is guaranteed to terminate under reasonable robustness assumptions

    Formal and Informal Methods for Multi-Core Design Space Exploration

    Full text link
    We propose a tool-supported methodology for design-space exploration for embedded systems. It provides means to define high-level models of applications and multi-processor architectures and evaluate the performance of different deployment (mapping, scheduling) strategies while taking uncertainty into account. We argue that this extension of the scope of formal verification is important for the viability of the domain.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed
    • …
    corecore