218 research outputs found

    Discovering ship navigation patterns towards environmental impact modeling

    Get PDF
    In this work a data pipe-line to manage and extract patterns from time-series is described. The patterns found with a combination of Conditional Restricted Boltzmann Machine (CRBM) and k-Means algorithms are then validated using a visualization tool. The motivation of finding these patterns is to leverage future emission model

    Hidden Markov Models and their Application for Predicting Failure Events

    Full text link
    We show how Markov mixed membership models (MMMM) can be used to predict the degradation of assets. We model the degradation path of individual assets, to predict overall failure rates. Instead of a separate distribution for each hidden state, we use hierarchical mixtures of distributions in the exponential family. In our approach the observation distribution of the states is a finite mixture distribution of a small set of (simpler) distributions shared across all states. Using tied-mixture observation distributions offers several advantages. The mixtures act as a regularization for typically very sparse problems, and they reduce the computational effort for the learning algorithm since there are fewer distributions to be found. Using shared mixtures enables sharing of statistical strength between the Markov states and thus transfer learning. We determine for individual assets the trade-off between the risk of failure and extended operating hours by combining a MMMM with a partially observable Markov decision process (POMDP) to dynamically optimize the policy for when and how to maintain the asset.Comment: Will be published in the proceedings of ICCS 2020; @Booklet{EasyChair:3183, author = {Paul Hofmann and Zaid Tashman}, title = {Hidden Markov Models and their Application for Predicting Failure Events}, howpublished = {EasyChair Preprint no. 3183}, year = {EasyChair, 2020}

    Estimating ensemble flows on a hidden Markov chain

    Full text link
    We propose a new framework to estimate the evolution of an ensemble of indistinguishable agents on a hidden Markov chain using only aggregate output data. This work can be viewed as an extension of the recent developments in optimal mass transport and Schr\"odinger bridges to the finite state space hidden Markov chain setting. The flow of the ensemble is estimated by solving a maximum likelihood problem, which has a convex formulation at the infinite-particle limit, and we develop a fast numerical algorithm for it. We illustrate in two numerical examples how this framework can be used to track the flow of identical and indistinguishable dynamical systems.Comment: 8 pages, 4 figure

    Deteksi Fraud Menggunakan Metode Model Markov Tersembunyi pada Proses Bisnis

    Full text link
    Model Markov Tersembunyi merupakan sebuah metode statistik berdasarkan Model Markov sederhana yang memodelkan sistem serta membaginya dalam 2 (dua) state, state tersembunyi dan state observasi. Dalam pengerjaan tugas akhir ini, penulis mengusulkan penggunaan metode Model Markov Tersembunyi untuk menemukan fraud didalam sebuah pelaksanaan proses bisnis. Dengan penggunaan metode Model Markov Tersembunyi ini, maka pengamatan terhadap elemen penyusun sebuah kasus/kejadian, yakni beberapa aktivitas, akan diperoleh sebuah nilai peluang, yang sekaligus memberikan prediksi terhadap kasus/kejadian tersebut, sebuah fraud atau tidak. Hasil ekpserimen ini menunjukkan bahwa metode yang diusulkan mampu memberikan prediksi akhir dengan evaluasi TPR sebesar 87,5% dan TNR sebesar 99,4%

    Learning Temporal Dependence from Time-Series Data with Latent Variables

    Full text link
    We consider the setting where a collection of time series, modeled as random processes, evolve in a causal manner, and one is interested in learning the graph governing the relationships of these processes. A special case of wide interest and applicability is the setting where the noise is Gaussian and relationships are Markov and linear. We study this setting with two additional features: firstly, each random process has a hidden (latent) state, which we use to model the internal memory possessed by the variables (similar to hidden Markov models). Secondly, each variable can depend on its latent memory state through a random lag (rather than a fixed lag), thus modeling memory recall with differing lags at distinct times. Under this setting, we develop an estimator and prove that under a genericity assumption, the parameters of the model can be learned consistently. We also propose a practical adaption of this estimator, which demonstrates significant performance gains in both synthetic and real-world datasets

    A Simple Estimator for Dynamic Models with Serially Correlated Unobservables

    Get PDF
    We present a method for estimating Markov dynamic models with unobserved state variables which can be serially correlated over time. We focus on the case where all the model variables have discrete support. Our estimator is simple to compute because it is noniterative, and involves only elementary matrix manipulations. Our estimation method is nonparametric, in that no parametric assumptions on the distributions of the unobserved state variables or the laws of motions of the state variables are required. Monte Carlo simulations show that the estimator performs well in practice, and we illustrate its use with a dataset of doctors' prescription of pharmaceutical drugs.
    • …
    corecore