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Objectives

This research was supported by the 
MANTIS 

Future Directions 

• Use of external and a proposed integrated
dimensionality reduction LSTM predictive systems
for predicting message logs from industrial
machines.

• Conversion of nominal codes (raw codes) to other
vectorial paradigms to obtain better correlated
patterns.

ConclusionResults

• External Methods: Recurrent Neural Networks (RNN) 
[3-7]

Methods

 Most industrial or complex processes present
temporal dependencies which stretch over a long
time.

 The underlying patterns in these processes can be
extremely non-linear.

 Use of linear predictive model (ARMA/ARIMA[1]) is
not suitable.

 Hidden Markov Model[2] has prediction limitation
when dealing with temporal dependencies that
stretch over long durations.

MANTIS 

• Proposed Method: Integrated Dimensionality-reduction 
LSTM 

LSTM [8] GRU [8]

 Encoding   Section:  One LSTM

 Decoding Section:  Three LSTMs

 Repeat Vector: Interlinks the encoding  and  decoding  
components

 Time Distributed: the final feature dimension from the 
last LSTM is wrapped with a time-distributed algorithm 
that presents the reproduced data in a sequential 
series.

Data Representations 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 63 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . . . . . . 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . . . . . . 
… … … … … … … … … … … … … … … … … … ... 
9992 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 . . . . . . 
9993 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 . . . . . . 
9994 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 . . . . . . 
9995 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 . . . . . . 
9996 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 . . . . . . 
9997 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 . . . . . . 
9998 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 . . . . . . 
9999 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 . . . . . . 

 

One-Hot-Encoding Codes

PC 1 PC 2 PC 3

0 0.8211 -0.1157 -0.0232

1 0.8211 -0.1157 -0.0232

. . . . . . . . . . . .

9997 0.1326 0.4218 0.4549

9998 0.1326 0.4218 0.4549

9999 0.1326 0.4218 0.4549

3-DIM Principal Component Analysis (PCA) Codes

 ID-LSTM Prediction on OHE codes during  training and 
testing  phases (left plot) and index predictions (right plot) 
over a duration of 10K time-counts.

Table 1: Prediction accuracies for the different approaches for 10K 
Samples
Methods Train Test
ID-LSTM-I-OHE-Codes 0.9957 0.9920
ID-LSTM-I-20-DIM-PCA-Codes 0.9763 0.9843
ID-LSTM-I-40-DIM-PCA-Codes 0.9760 0.9733
ID-LSTM-I-10-DIM-PCA-Codes 0.9316 0.9727 
ID-LSTM-I-5-DIM-PCA-Codes 0.9139 0.9593
ID-LSTM-I-4-DIM-PCA-Codes 0.9424 0.9410 
ID-LSTM-I-3-DIM-PCA-Codes 0.9463 0.9593 
ID-LSTM-I-2-DIM-PCA-Codes 0.9424 0.9590

ID-LSTM-I-1-DIM-PCA-Codes  0.8729 0.9340
SL-LSTM-I-1-DIM-PCA-Codes 0.8757 0.9340
SL-GRU-MSE-SI-1-DIM-PCA-Codes 0.8715 0.9316
SL-GRU-MAE-SI-1-DIM-PCA-Codes 0.8715 0.9316
SL-LSTM-MAE-SI-1-DIM-PCA-Codes 0.8715 0.9316
SL-LSTM-MSE-SI-1-DIM-PCA-Codes 0.8715 0.9316
SL-LSTM-I-Raw-Codes 1.429x10-4 0.0000
SL-GRU-MSE-SI-Raw-Codes 2.858×10−4 0.0000
SL-GRU-MAE-SI-Raw-Codes 2.858×10−4 0.0000
SL-LSTM-MSE-SI-Raw-Codes 2.858×10−4 0.0000
SL-LSTM-MAE-SI-Raw-Codes 1.429x10-4 0.0000

 ID-LSTM Prediction on OHE codes during  training and 
testing  phases (left plot) and index predictions (right plot) 
over a duration of ~1.54M time-counts  for subset 9.

 The left and right plots  show the  confusion matrix, that 
is; the  plot of the  output predictions against their target 
values for both training  and  testing  phases  respectively
for subset 9.

Table 2: Prediction  accuracy of the ID-LSTM trained  on OHE codes

No of 
Subsets

Time counts No .  of 
Index

No.  of 
Machine

Train Test

Subset 1 0 – 1.54M 948 20 0.9826 0.9751

Subset 2 1.54– 3.09M 606 30 0.9979 0.9695

Subset 3 3.09-4.63M 535 36 0.9886 0.9624

Subset 4 4.63-6.18M 619 48 0.9961 0.9021

Subset 5 6.18-7.73M 620 62 0.9837 0.9806

Subset 6 7.73-9.27M 675 109 0.9962 0.9347

Subset 7 9.27-10.8M 648 64 0.9205 0.9293

Subset 8 10.8-12.3M 679 95 0.9973 0.9576

Subset 9 12.3-13.9M 717 196 0.9943 0.9681

Subset 10 13.9-15.4M 624 263 0.9871 0.9268

Average 0.9844 0.9506

• We have transformed  nominal codes to other 
vectorial representations  with the objective of  
identifying correlated patterns  using  one hot 
encoding (OHE)  and  principal component analysis 
(PCA).

• Nominal integer codes are not sensible to use in the 
RNN.

• A separate dimensionality reduction by PCA is not 
needed: the ID-LSTM uses 10 hidden dimensions in 
the bottleneck layer. 

• The ID-LSTM on OHE codes  yield  the best result 
on a small sample dataset.

• The use of ID-LSTM also obtains good results on 
reduced dimensional PCA vector codes (20-DIM-
PCA)  

• The ID-LSTM obtained < 5% error on the predicted 
OHE codes in a realistically large dataset.

• One-hot-encoding is a must: do not try to predict 
arbitrary raw integer codes.

• We suggest that it may be possible to combine the 
proposed model with an early anomaly detection 
algorithm,

• To allow continuous prediction of physical problems in 
the machines generating the message logs.

• Optimization of LSTM-based feature dimensionality 
reduction in a realistically large dataset.
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Data sizes:  ~15.4M total samples

SMALL DATA SIZE
One Subset containing 

10K samples

LARGE DATA SIZE
10 Subsets, where each 

subset contains ~1.54M samples

NOTE
• A separate dimensionality reduction by PCA is not needed:

the ID-LSTM uses 10 hidden dimensions in the bottleneck 
layer. 
• One-hot-encoding is a must: do not try to predict arbitrary 

raw integer codes
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