18 research outputs found

    Optimisation in ‘Self-modelling’ Complex Adaptive Systems

    No full text
    When a dynamical system with multiple point attractors is released from an arbitrary initial condition it will relax into a configuration that locally resolves the constraints or opposing forces between interdependent state variables. However, when there are many conflicting interdependencies between variables, finding a configuration that globally optimises these constraints by this method is unlikely, or may take many attempts. Here we show that a simple distributed mechanism can incrementally alter a dynamical system such that it finds lower energy configurations, more reliably and more quickly. Specifically, when Hebbian learning is applied to the connections of a simple dynamical system undergoing repeated relaxation, the system will develop an associative memory that amplifies a subset of its own attractor states. This modifies the dynamics of the system such that its ability to find configurations that minimise total system energy, and globally resolve conflicts between interdependent variables, is enhanced. Moreover, we show that the system is not merely ‘recalling’ low energy states that have been previously visited but ‘predicting’ their location by generalising over local attractor states that have already been visited. This ‘self-modelling’ framework, i.e. a system that augments its behaviour with an associative memory of its own attractors, helps us better-understand the conditions under which a simple locally-mediated mechanism of self-organisation can promote significantly enhanced global resolution of conflicts between the components of a complex adaptive system. We illustrate this process in random and modular network constraint problems equivalent to graph colouring and distributed task allocation problems

    Global adaptation in networks of selfish components: emergent associative memory at the system scale

    No full text
    In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organise into structures that enhance global adaptation, efficiency or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalisation and optimisation, are well-understood. Such global functions within a single agent or organism are not wholly surprising since the mechanisms (e.g. Hebbian learning) that create these neural organisations may be selected for this purpose, but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviours when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully-distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g. when they can influence which other agents they interact with) then, in adapting these inter-agent relationships to maximise their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviours as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalise by idealising stored patterns and/or creating new combinations of sub-patterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviours in the same sense, and by the same mechanism, as the organisational principles familiar in connectionist models of organismic learning

    If you can't be with the one you love, love the one you're with: How individual habituation of agent interactions improves global utility

    No full text
    Simple distributed strategies that modify the behaviour of selfish individuals in a manner that enhances cooperation or global efficiency have proved difficult to identify. We consider a network of selfish agents who each optimise their individual utilities by coordinating (or anti-coordinating) with their neighbours, to maximise the pay-offs from randomly weighted pair-wise games. In general, agents will opt for the behaviour that is the best compromise (for them) of the many conflicting constraints created by their neighbours, but the attractors of the system as a whole will not maximise total utility. We then consider agents that act as 'creatures of habit' by increasing their preference to coordinate (anti-coordinate) with whichever neighbours they are coordinated (anti-coordinated) with at the present moment. These preferences change slowly while the system is repeatedly perturbed such that it settles to many different local attractors. We find that under these conditions, with each perturbation there is a progressively higher chance of the system settling to a configuration with high total utility. Eventually, only one attractor remains, and that attractor is very likely to maximise (or almost maximise) global utility. This counterintutitve result can be understood using theory from computational neuroscience; we show that this simple form of habituation is equivalent to Hebbian learning, and the improved optimisation of global utility that is observed results from wellknown generalisation capabilities of associative memory acting at the network scale. This causes the system of selfish agents, each acting individually but habitually, to collectively identify configurations that maximise total utility

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    Complexity, Emergent Systems and Complex Biological Systems:\ud Complex Systems Theory and Biodynamics. [Edited book by I.C. Baianu, with listed contributors (2011)]

    Get PDF
    An overview is presented of System dynamics, the study of the behaviour of complex systems, Dynamical system in mathematics Dynamic programming in computer science and control theory, Complex systems biology, Neurodynamics and Psychodynamics.\u

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    corecore