30 research outputs found

    Analysing, visualising and supporting collaborative learning using interactive tabletops

    Get PDF
    The key contribution of this thesis is a novel approach to design, implement and evaluate the conceptual and technological infrastructure that captures student’s activity at interactive tabletops and analyses these data through Interaction Data Analytics techniques to provide support to teachers by enhancing their awareness of student’s collaboration. To achieve the above, this thesis presents a series of carefully designed user studies to understand how to capture, analyse and distil indicators of collaborative learning. We perform this in three steps: the exploration of the feasibility of the approach, the construction of a novel solution and the execution of the conceptual proposal, both under controlled conditions and in the wild. A total of eight datasets were analysed for the studies that are described in this thesis. This work pioneered in a number of areas including the application of data mining techniques to study collaboration at the tabletop, a plug-in solution to add user-identification to a regular tabletop using a depth sensor and the first multi-tabletop classroom used to run authentic collaborative activities associated with the curricula. In summary, while the mechanisms, interfaces and studies presented in this thesis were mostly explored in the context of interactive tabletops, the findings are likely to be relevant to other forms of groupware and learning scenarios that can be implemented in real classrooms. Through the mechanisms, the studies conducted and our conceptual framework this thesis provides an important research foundation for the ways in which interactive tabletops, along with data mining and visualisation techniques, can be used to provide support to improve teacher’s understanding about student’s collaboration and learning in small groups

    Collocated Collaboration Analytics: Principles and Dilemmas for Mining Multimodal Interaction Data

    Full text link
    © 2019, Copyright © 2017 Taylor & Francis Group, LLC. Learning to collaborate effectively requires practice, awareness of group dynamics, and reflection; often it benefits from coaching by an expert facilitator. However, in physical spaces it is not always easy to provide teams with evidence to support collaboration. Emerging technology provides a promising opportunity to make collocated collaboration visible by harnessing data about interactions and then mining and visualizing it. These collocated collaboration analytics can help researchers, designers, and users to understand the complexity of collaboration and to find ways they can support collaboration. This article introduces and motivates a set of principles for mining collocated collaboration data and draws attention to trade-offs that may need to be negotiated en route. We integrate Data Science principles and techniques with the advances in interactive surface devices and sensing technologies. We draw on a 7-year research program that has involved the analysis of six group situations in collocated settings with more than 500 users and a variety of surface technologies, tasks, grouping structures, and domains. The contribution of the article includes the key insights and themes that we have identified and summarized in a set of principles and dilemmas that can inform design of future collocated collaboration analytics innovations

    Learning analytics support to teachers' design and orchestrating tasks

    Full text link
    Background: Data-driven educational technology solutions have the potential to support teachers in different tasks, such as the designing and orchestration of collaborative learning activities. When designing, such solutions can improve teacher understanding of how learning designs impact student learning and behaviour; and guide them to refine and redesign future learning designs. When orchestrating educational scenarios, data-driven solutions can support teacher awareness of learner participation and progress and enhance real time classroom management. Objectives: The use of learning analytics (LA) can be considered a suitable approach to tackle both problems. However, it is unclear if the same LA indicators are able to satisfactorily support both the designing and orchestration of activities. This study aims to investigate the use of the same LA indicators for supporting multiple teacher tasks, that is, design, redesign and orchestration, as a gap in the existing literature that requires further exploration. Methods: In this study, first we refer to the previous work to study the use of different LA to support both tasks. Then we analyse the nature of the two tasks focusing on a case study that uses the same collaborative learning tool with LA to support both tasks. Implications: The study findings led to derive design considerations on LA support for teachers’ design and orchestrating tasks

    Improving Hybrid Brainstorming Outcomes with Scripting and Group Awareness Support

    Get PDF
    Previous research has shown that hybrid brainstorming, which combines individual and group methods, generates more ideas than either approach alone. However, the quality of these ideas remains similar across different methods. This study, guided by the dual-pathway to creativity model, tested two computer-supported scaffolds – scripting and group awareness support – for enhancing idea quality in hybrid brainstorming. 94 higher education students,grouped into triads, were tasked with generating ideas in three conditions. The Control condition used standard hybrid brainstorming without extra support. In the Experimental 1 condition, students received scripting support during individual brainstorming, and students in the Experimental 2 condition were provided with group awareness support during the group phase in addition. While the quantity of ideas was similar across all conditions, the Experimental 2 condition produced ideas of higher quality, and the Experimental 1 condition also showed improved idea quality in the individual phase compared to the Control condition

    The Big Five:Addressing Recurrent Multimodal Learning Data Challenges

    Get PDF
    The analysis of multimodal data in learning is a growing field of research, which has led to the development of different analytics solutions. However, there is no standardised approach to handle multimodal data. In this paper, we describe and outline a solution for five recurrent challenges in the analysis of multimodal data: the data collection, storing, annotation, processing and exploitation. For each of these challenges, we envision possible solutions. The prototypes for some of the proposed solutions will be discussed during the Multimodal Challenge of the fourth Learning Analytics & Knowledge Hackathon, a two-day hands-on workshop in which the authors will open up the prototypes for trials, validation and feedback

    Multimodal Challenge: Analytics Beyond User-computer Interaction Data

    Get PDF
    This contribution describes one the challenges explored in the Fourth LAK Hackathon. This challenge aims at shifting the focus from learning situations which can be easily traced through user-computer interactions data and concentrate more on user-world interactions events, typical of co-located and practice-based learning experiences. This mission, pursued by the multimodal learning analytics (MMLA) community, seeks to bridge the gap between digital and physical learning spaces. The “multimodal” approach consists in combining learners’ motoric actions with physiological responses and data about the learning contexts. These data can be collected through multiple wearable sensors and Internet of Things (IoT) devices. This Hackathon table will confront with three main challenges arising from the analysis and valorisation of multimodal datasets: 1) the data collection and storing, 2) the data annotation, 3) the data processing and exploitation. Some research questions which will be considered in this Hackathon challenge are the following: how to process the raw sensor data streams and extract relevant features? which data mining and machine learning techniques can be applied? how can we compare two action recordings? How to combine sensor data with Experience API (xAPI)? what are meaningful visualisations for these data

    Adult Learning Sign Language by combining video, interactivity and play

    Get PDF
    One in every six persons in the UK suffers a hearing loss, either as a condition they have been born with or a disorder they acquired during their life. 900,000 people in the UK are severely or profoundly deaf and based on a study by Action On Hearing Loss UK in 2013 only 17 percent of this population, can use the British Sign Language (BSL). That leaves a massive proportion of people with a hearing impediment who do not use sign language struggling in social interaction and suffering from emotional distress, and an even larger proportion of Hearing people who cannot communicate with those of the deaf community. This paper presents a theoretical framework for the design of interactive games to support learning BSL supporting the entire learning cycle, instruction, practice and assessment. It then describes the proposed design of a game based on this framework aiming to close the communication gap between able hearing people and people with a hearing impediment, by providing a tool that facilitates BSL learning targeting adult population. The paper concludes with the planning of a large scale study and directions for further development of this educational resource

    Enhancing Free-text Interactions in a Communication Skills Learning Environment

    Get PDF
    Learning environments frequently use gamification to enhance user interactions.Virtual characters with whom players engage in simulated conversations often employ prescripted dialogues; however, free user inputs enable deeper immersion and higher-order cognition. In our learning environment, experts developed a scripted scenario as a sequence of potential actions, and we explore possibilities for enhancing interactions by enabling users to type free inputs that are matched to the pre-scripted statements using Natural Language Processing techniques. In this paper, we introduce a clustering mechanism that provides recommendations for fine-tuning the pre-scripted answers in order to better match user inputs
    corecore