13 research outputs found

    Research on Preference Polyhedron Model Based Evolutionary Multiobjective Optimization Method for Multilink Transmission Mechanism Conceptual Design

    Get PDF
    To make the optimal design of the multilink transmission mechanism applied in mechanical press, the intelligent optimization techniques are explored in this paper. A preference polyhedron model and new domination relationships evaluation methodology are proposed for the purpose of reaching balance among kinematic performance, dynamic performance, and other performances of the multilink transmission mechanism during the conceptual design phase. Based on the traditional evaluation index of single target of multicriteria design optimization, the robust metrics of the mechanism system and preference metrics of decision-maker are taken into consideration in this preference polyhedron model and reflected by geometrical characteristic of the model. At last, two optimized multilink transmission mechanisms are designed based on the proposed preference polyhedron model with different evolutionary algorithms, and the result verifies the validity of the proposed optimization method

    An interactive evolutionary multiobjective optimization method based on progressively approximated value functions

    No full text
    This paper suggests a preference-based methodology, which is embedded in an evolutionary multiobjective optimization algorithm to lead a decision maker (DM) to the most preferred solution of her or his choice. The progress toward the most preferred solution is made by accepting preference based information progressively from the DM after every few generations of an evolutionary multiobjective optimization algorithm. This preference information is used to model a strictly monotone value function, which is used for the subsequent iterations of the evolutionary multiobjective optimization (EMO) algorithm. In addition to the development of the value function which satisfies DM's preference information, the proposed progressively interactive EMO-approach utilizes the constructed value function in directing EMO algorithm's search to more preferred solutions. This is accomplished using a preference-based domination principle and utilizing a preference-based termination criterion. Results on two- to five-objective optimization problems using the progressively interactive NSGA-II approach show the simplicity of the proposed approach and its future promise. A parametric study involving the algorithm's parameters reveals interesting insights of parameter interactions and indicates useful parameter values. A number of extensions to this paper are also suggested

    Integration of Preferences in Decomposition Multiobjective Optimization

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.© 2018 IEEE. Rather than a whole Pareto-optimal front, which demands too many points (especially in a high-dimensional space), the decision maker (DM) may only be interested in a partial region, called the region of interest (ROI). In this case, solutions outside this region can be noisy to the decision-making procedure. Even worse, there is no guarantee that we can find the preferred solutions when tackling problems with complicated properties or many objectives. In this paper, we develop a systematic way to incorporate the DM's preference information into the decomposition-based evolutionary multiobjective optimization methods. Generally speaking, our basic idea is a nonuniform mapping scheme by which the originally evenly distributed reference points on a canonical simplex can be mapped to new positions close to the aspiration-level vector supplied by the DM. By this means, we are able to steer the search process toward the ROI either directly or interactively and also handle many objectives. Meanwhile, solutions lying on the boundary can be approximated as well given the DM's requirements. Furthermore, the extent of the ROI is intuitively understandable and controllable in a closed form. Extensive experiments on a variety of benchmark problems with 2 to 10 objectives, fully demonstrate the effectiveness of our proposed method for approximating the preferred solutions in the ROI.Royal Society (Government)Ministry of Science and Technology of ChinaScience and Technology Innovation Committee Foundation of ShenzhenShenzhen Peacock PlanEngineering and Physical Sciences Research Council (EPSRC)Engineering and Physical Sciences Research Council (EPSRC

    Inferring parameters of a relational system of preferences from assignment examples using an evolutionary algorithm

    Get PDF
    Most evolutionary multi-objective algorithms perform poorly in many objective problems. They normally do not make selective pressure towards the Region of Interest (RoI), the privileged zone in the Pareto frontier that contains solutions important to a DM.  Several works have proved that a priori incorporation of preferences improves convergence towards the RoI. The work of (E. Fernandez, E. Lopez, F. Lopez & C.A. Coello Coello, 2011) uses a binary fuzzy outranking relational system to map many-objective problems into a tri-objective optimization problem that searches the RoI; however, it requires the elicitation of many preference parameters, a very hard task. The use of an indirect elicitation approach overcomes such situation by allowing the parameter inference from a battery of examples.  Even though the relational system of Fernandez et al. (2011) is based on binary relations, it is more convenient to elicit its parameters from assignment examples. In this sense, this paper proposes an evolutionary-based indirect parameter elicitation method that uses preference information embedded in assignment examples, and it offers an analysis of their impact in a priori incorporation of DM’s preferences. Results show, through an extensive computer experiment over random test sets, that the method estimates properly the model parameter’s values. First published online 7 May 201

    Transferring Interactive Search-Based Software Testing to Industry

    Full text link
    Search-Based Software Testing (SBST) is the application of optimization algorithms to problems in software testing. In previous work, we have implemented and evaluated Interactive Search-Based Software Testing (ISBST) tool prototypes, with a goal to successfully transfer the technique to industry. While SBSE solutions are often validated on benchmark problems, there is a need to validate them in an operational setting. The present paper discusses the development and deployment of SBST tools for use in industry and reflects on the transfer of these techniques to industry. In addition to previous work discussing the development and validation of an ISBST prototype, a new version of the prototype ISBST system was evaluated in the laboratory and in industry. This evaluation is based on an industrial System under Test (SUT) and was carried out with industrial practitioners. The Technology Transfer Model is used as a framework to describe the progression of the development and evaluation of the ISBST system. The paper presents a synthesis of previous work developing and evaluating the ISBST prototype, as well as presenting an evaluation, in both academia and industry, of that prototype's latest version. This paper presents an overview of the development and deployment of the ISBST system in an industrial setting, using the framework of the Technology Transfer Model. We conclude that the ISBST system is capable of evolving useful test cases for that setting, though improvements in the means the system uses to communicate that information to the user are still required. In addition, a set of lessons learned from the project are listed and discussed. Our objective is to help other researchers that wish to validate search-based systems in industry and provide more information about the benefits and drawbacks of these systems.Comment: 40 pages, 5 figure

    A Posteriori And Interactive Approaches For Decision-making With Multiple Stochastic Objectives

    Get PDF
    Computer simulation is a popular method that is often used as a decision support tool in industry to estimate the performance of systems too complex for analytical solutions. It is a tool that assists decision-makers to improve organizational performance and achieve performance objectives in which simulated conditions can be randomly varied so that critical situations can be investigated without real-world risk. Due to the stochastic nature of many of the input process variables in simulation models, the output from the simulation model experiments are random. Thus, experimental runs of computer simulations yield only estimates of the values of performance objectives, where these estimates are themselves random variables. Most real-world decisions involve the simultaneous optimization of multiple, and often conflicting, objectives. Researchers and practitioners use various approaches to solve these multiobjective problems. Many of the approaches that integrate the simulation models with stochastic multiple objective optimization algorithms have been proposed, many of which use the Pareto-based approaches that generate a finite set of compromise, or tradeoff, solutions. Nevertheless, identification of the most preferred solution can be a daunting task to the decisionmaker and is an order of magnitude harder in the presence of stochastic objectives. However, to the best of this researcher’s knowledge, there has been no focused efforts and existing work that attempts to reduce the number of tradeoff solutions while considering the stochastic nature of a set of objective functions. In this research, two approaches that consider multiple stochastic objectives when reducing the set of the tradeoff solutions are designed and proposed. The first proposed approach is an a posteriori approach, which uses a given set of Pareto optima as input. The second iv approach is an interactive-based approach that articulates decision-maker preferences during the optimization process. A detailed description of both approaches is given, and computational studies are conducted to evaluate the efficacy of the two approaches. The computational results show the promise of the proposed approaches, in that each approach effectively reduces the set of compromise solutions to a reasonably manageable size for the decision-maker. This is a significant step beyond current applications of decision-making process in the presence of multiple stochastic objectives and should serve as an effective approach to support decisionmaking under uncertaint

    Digital Filter Design Using Improved Artificial Bee Colony Algorithms

    Get PDF
    Digital filters are often used in digital signal processing applications. The design objective of a digital filter is to find the optimal set of filter coefficients, which satisfies the desired specifications of magnitude and group delay responses. Evolutionary algorithms are population-based meta-heuristic algorithms inspired by the biological behaviors of species. Compared to gradient-based optimization algorithms such as steepest descent and Newton’s like methods, these bio-inspired algorithms have the advantages of not getting stuck at local optima and being independent of the starting point in the solution space. The limitations of evolutionary algorithms include the presence of control parameters, problem specific tuning procedure, premature convergence and slower convergence rate. The artificial bee colony (ABC) algorithm is a swarm-based search meta-heuristic algorithm inspired by the foraging behaviors of honey bee colonies, with the benefit of a relatively fewer control parameters. In its original form, the ABC algorithm has certain limitations such as low convergence rate, and insufficient balance between exploration and exploitation in the search equations. In this dissertation, an ABC-AMR algorithm is proposed by incorporating an adaptive modification rate (AMR) into the original ABC algorithm to increase convergence rate by adjusting the balance between exploration and exploitation in the search equations through an adaptive determination of the number of parameters to be updated in every iteration. A constrained ABC-AMR algorithm is also developed for solving constrained optimization problems.There are many real-world problems requiring simultaneous optimizations of more than one conflicting objectives. Multiobjective (MO) optimization produces a set of feasible solutions called the Pareto front instead of a single optimum solution. For multiobjective optimization, if a decision maker’s preferences can be incorporated during the optimization process, the search process can be confined to the region of interest instead of searching the entire region. In this dissertation, two algorithms are developed for such incorporation. The first one is a reference-point-based MOABC algorithm in which a decision maker’s preferences are included in the optimization process as the reference point. The second one is a physical-programming-based MOABC algorithm in which physical programming is used for setting the region of interest of a decision maker. In this dissertation, the four developed algorithms are applied to solve digital filter design problems. The ABC-AMR algorithm is used to design Types 3 and 4 linear phase FIR differentiators, and the results are compared to those obtained by the original ABC algorithm, three improved ABC algorithms, and the Parks-McClellan algorithm. The constrained ABC-AMR algorithm is applied to the design of sparse Type 1 linear phase FIR filters of filter orders 60, 70 and 80, and the results are compared to three state-of-the-art design methods. The reference-point-based multiobjective ABC algorithm is used to design of asymmetric lowpass, highpass, bandpass and bandstop FIR filters, and the results are compared to those obtained by the preference-based multiobjective differential evolution algorithm. The physical-programming-based multiobjective ABC algorithm is used to design IIR lowpass, highpass and bandpass filters, and the results are compared to three state-of-the-art design methods. Based on the obtained design results, the four design algorithms are shown to be competitive as compared to the state-of-the-art design methods

    Geometric guides for interactive evolutionary design

    Get PDF
    This thesis describes the addition of novel Geometric Guides to a generative Computer-Aided Design (CAD) application that supports early-stage concept generation. The application generates and evolves abstract 3D shapes, used to inspire the form of new product concepts. It was previously a conventional Interactive Evolutionary system where users selected shapes from evolving populations. However, design industry users wanted more control over the shapes, for example by allowing the system to influence the proportions of evolving forms. The solution researched, developed, integrated and tested is a more cooperative human-machine system combining classic user interaction with innovative geometric analysis. In the literature review, different types of Interactive Evolutionary Computation (IEC), Pose Normalisation (PN), Shape Comparison, and Minimum-Volume Bounding Box approaches are compared, with some of these technologies identified as applicable for this research. Using its Application Programming Interface, add-ins for the Siemens NX CAD system have been developed and integrated with an existing Interactive Evolutionary CAD system. These add-ins allow users to create a Geometric Guide (GG) at the start of a shape exploration session. Before evolving shapes can be compared with the GG, they must be aligned and scaled (known as Pose Normalisation in the literature). Computationally-efficient PN has been achieved using geometric functions such as Bounding Box for translation and scaling, and Principle Axes for the orientation. A shape comparison algorithm has been developed that is based on the principle of non-intersecting volumes. This algorithm is also implemented with standard, readily available geometric functions, is conceptually simple, accessible to other researchers and also offers appropriate efficacy. Objective geometric testing showed that the PN and Shape Comparison methods developed are suitable for this guiding application and can be efficiently adapted to enhance an Interactive Evolutionary Design system. System performance with different population sizes was examined to indicate how best to use the new guiding capabilities to assist users in evolutionary shape searching. This was backed up by participant testing research into two user interaction strategies. A Large Background Population (LBP) approach where the GG is used to select a sub-set of shapes to show to the user was shown to be the most effective. The inclusion of Geometric Guides has taken the research from the existing aesthetic focused tool to a system capable of application to a wider range of engineering design problems. This system supports earlier design processes and ideation in conceptual design and allows a designer to experiment with ideas freely to interactively explore populations of evolving solutions. The design approach has been further improved, and expanded beyond the previous quite limited scope of form exploration

    Robust and Constrained Portfolio Optimization using Multiobjective Evolutionary Algorithms

    Get PDF
    Optimization plays an important role in many areas of science, management,economics and engineering. Many techniques in mathematics and operation research are available to solve such problems. However these techniques have many shortcomings to provide fast and accurate solution particularly when the optimization problem involves many variables and constraints. Investment portfolio optimization is one such important but complex problem in computational finance which needs effective and efficient solutions. In this problem each available asset is judiciously selected in such a way that the total profit is maximized while simultaneously minimizing the total risk. The literature survey reveals that due to non availability of suitable multi objective optimization tools, this problem is mostly being solved by viewing it as a single objective optimization problem
    corecore