3 research outputs found

    Gene Expression Analysis Methods on Microarray Data a A Review

    Get PDF
    In recent years a new type of experiments are changing the way that biologists and other specialists analyze many problems. These are called high throughput experiments and the main difference with those that were performed some years ago is mainly in the quantity of the data obtained from them. Thanks to the technology known generically as microarrays, it is possible to study nowadays in a single experiment the behavior of all the genes of an organism under different conditions. The data generated by these experiments may consist from thousands to millions of variables and they pose many challenges to the scientists who have to analyze them. Many of these are of statistical nature and will be the center of this review. There are many types of microarrays which have been developed to answer different biological questions and some of them will be explained later. For the sake of simplicity we start with the most well known ones: expression microarrays

    Identifying Cancer Subtypes Using Unsupervised Deep Learning

    Get PDF
    Glioblastoma multiforme (GBM) is the most fatal malignant type of brain tumor with a very poor prognosis with a median survival of around one year. Numerous studies have reported tumor subtypes that consider different characteristics on individual patients, which may play important roles in determining the survival rates in GBM. In this study, we present a pathway-based clustering method using Restricted Boltzmann Machine (RBM), called R-PathCluster, for identifying unknown subtypes with pathway markers of gene expressions. In order to assess the performance of R-PathCluster, we conducted experiments with several clustering methods such as k-means, hierarchical clustering, and RBM models with different input data. R-PathCluster showed the best performance in clustering longterm and short-term survivals, although its clustering score was not the highest among them in experiments. R-PathCluster provides a solution to interpret the model in biological sense, since it takes pathway markers that represent biological process of pathways. We discussed that our findings from R-PathCluster are supported by many biological literatures. Keywords. Glioblastoma multiforme, tumor subtypes, clustering, Restricted Boltzmann Machin
    corecore