3,324 research outputs found

    Inferring robust gene networks from expression data by a sensitivity-based incremental evolution method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reconstructing gene regulatory networks (GRNs) from expression data is one of the most important challenges in systems biology research. Many computational models and methods have been proposed to automate the process of network reconstruction. Inferring robust networks with desired behaviours remains challenging, however. This problem is related to network dynamics but has yet to be investigated using network modeling.</p> <p>Results</p> <p>We propose an incremental evolution approach for inferring GRNs that takes network robustness into consideration and can deal with a large number of network parameters. Our approach includes a sensitivity analysis procedure to iteratively select the most influential network parameters, and it uses a swarm intelligence procedure to perform parameter optimization. We have conducted a series of experiments to evaluate the external behaviors and internal robustness of the networks inferred by the proposed approach. The results and analyses have verified the effectiveness of our approach.</p> <p>Conclusions</p> <p>Sensitivity analysis is crucial to identifying the most sensitive parameters that govern the network dynamics. It can further be used to derive constraints for network parameters in the network reconstruction process. The experimental results show that the proposed approach can successfully infer robust GRNs with desired system behaviors.</p

    Prior knowledge guided active modules identification: an integrated multi-objective approach

    Get PDF
    BACKGROUND: Active module, defined as an area in biological network that shows striking changes in molecular activity or phenotypic signatures, is important to reveal dynamic and process-specific information that is correlated with cellular or disease states. METHODS: A prior information guided active module identification approach is proposed to detect modules that are both active and enriched by prior knowledge. We formulate the active module identification problem as a multi-objective optimisation problem, which consists two conflicting objective functions of maximising the coverage of known biological pathways and the activity of the active module simultaneously. Network is constructed from protein-protein interaction database. A beta-uniform-mixture model is used to estimate the distribution of p-values and generate scores for activity measurement from microarray data. A multi-objective evolutionary algorithm is used to search for Pareto optimal solutions. We also incorporate a novel constraints based on algebraic connectivity to ensure the connectedness of the identified active modules. RESULTS: Application of proposed algorithm on a small yeast molecular network shows that it can identify modules with high activities and with more cross-talk nodes between related functional groups. The Pareto solutions generated by the algorithm provides solutions with different trade-off between prior knowledge and novel information from data. The approach is then applied on microarray data from diclofenac-treated yeast cells to build network and identify modules to elucidate the molecular mechanisms of diclofenac toxicity and resistance. Gene ontology analysis is applied to the identified modules for biological interpretation. CONCLUSIONS: Integrating knowledge of functional groups into the identification of active module is an effective method and provides a flexible control of balance between pure data-driven method and prior information guidance

    Gene regulatory networks modelling using a dynamic evolutionary hybrid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inference of gene regulatory networks is a key goal in the quest for understanding fundamental cellular processes and revealing underlying relations among genes. With the availability of gene expression data, computational methods aiming at regulatory networks reconstruction are facing challenges posed by the data's high dimensionality, temporal dynamics or measurement noise. We propose an approach based on a novel multi-layer evolutionary trained neuro-fuzzy recurrent network (ENFRN) that is able to select potential regulators of target genes and describe their regulation type.</p> <p>Results</p> <p>The recurrent, self-organizing structure and evolutionary training of our network yield an optimized pool of regulatory relations, while its fuzzy nature avoids noise-related problems. Furthermore, we are able to assign scores for each regulation, highlighting the confidence in the retrieved relations. The approach was tested by applying it to several benchmark datasets of yeast, managing to acquire biologically validated relations among genes.</p> <p>Conclusions</p> <p>The results demonstrate the effectiveness of the ENFRN in retrieving biologically valid regulatory relations and providing meaningful insights for better understanding the dynamics of gene regulatory networks.</p> <p>The algorithms and methods described in this paper have been implemented in a Matlab toolbox and are available from: <url>http://bioserver-1.bioacademy.gr/DataRepository/Project_ENFRN_GRN/</url>.</p

    Reverse Engineering of Biological Systems

    Get PDF
    Gene regulatory network (GRN) consists of a set of genes and regulatory relationships between the genes. As outputs of the GRN, gene expression data contain important information that can be used to reconstruct the GRN to a certain degree. However, the reverse engineer of GRNs from gene expression data is a challenging problem in systems biology. Conventional methods fail in inferring GRNs from gene expression data because of the relative less number of observations compared with the large number of the genes. The inherent noises in the data make the inference accuracy relatively low and the combinatorial explosion nature of the problem makes the inference task extremely difficult. This study aims at reconstructing the GRNs from time-course gene expression data based on GRN models using system identification and parameter estimation methods. The main content consists of three parts: (1) a review of the methods for reverse engineering of GRNs, (2) reverse engineering of GRNs based on linear models and (3) reverse engineering of GRNs based on a nonlinear model, specifically S-systems. In the first part, after the necessary background and challenges of the problem are introduced, various methods for the inference of GRNs are comprehensively reviewed from two aspects: models and inference algorithms. The advantages and disadvantages of each method are discussed. The second part focus on inferring GRNs from time-course gene expression data based on linear models. First, the statistical properties of two sparse penalties, adaptive LASSO and SCAD, with an autoregressive model are studied. It shows that the proposed methods using these two penalties can asymptotically reconstruct the underlying networks. This provides a solid foundation for these methods and their extensions. Second, the integration of multiple datasets should be able to improve the accuracy of the GRN inference. A novel method, Huber group LASSO, is developed to infer GRNs from multiple time-course data, which is also robust to large noises and outliers that the data may contain. An efficient algorithm is also developed and its convergence analysis is provided. The third part can be further divided into two phases: estimating the parameters of S-systems with system structure known and inferring the S-systems without knowing the system structure. Two methods, alternating weighted least squares (AWLS) and auxiliary function guided coordinate descent (AFGCD), have been developed to estimate the parameters of S-systems from time-course data. AWLS takes advantage of the special structure of S-systems and significantly outperforms one existing method, alternating regression (AR). AFGCD uses the auxiliary function and coordinate descent techniques to get the smart and efficient iteration formula and its convergence is theoretically guaranteed. Without knowing the system structure, taking advantage of the special structure of the S-system model, a novel method, pruning separable parameter estimation algorithm (PSPEA) is developed to locally infer the S-systems. PSPEA is then combined with continuous genetic algorithm (CGA) to form a hybrid algorithm which can globally reconstruct the S-systems

    Clustering Algorithms: Their Application to Gene Expression Data

    Get PDF
    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and iden-tify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure

    Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence

    Get PDF
    corecore