546 research outputs found

    Physical Sensors for Precision Aquaculture: A Review

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this[EN] Aquaculture is presented as a sustainable method to provide fish, although in reality, it is far from being sustainable. Its negative impacts on the environment can be prevented and corrected by the use of sensors, developing precision aquaculture. Sensors are widely used in terrestrial applications, but in underwater environments, their use is constrained by a variety of issues. The aim of this paper is to describe the state-of-the-art of the underwater sensors for water quality monitoring. First, the requirements and challenges of underwater sensors for aquaculture monitoring are discussed in detail. The main challenges are the need of a waterproof isolation or the need to avoid corrosion and biofouling, among others. Second, there are some advantages compared with the terrestrial applications, such as no need of minimized systems or the fact that such systems only require low accuracy. Subsequently, we evaluated the different options available to sense each variable, related to the needs of the aquaculture sensors. For temperature monitoring, thermistors, thermocouples or RTC seem to offer similar advantages. In contrast, for dissolved oxygen monitoring, the optical method seems to be the best option. For turbidity, optical methods are the most employed ones, while for conductivity measurements, the inductive coils are a promising option.This work was supported by the pre-doctoral student grant "Ayudas para contratos predoctorales de Formacion del Profesorado Universitario FPU (Convocatoria 2014)" with reference: FPU14/02953 by the Ministerio de Educacion, Cultura y Deporte.Parra-Boronat, L.; Lloret Mauri, G.; Lloret, J.; Rodilla, M. (2018). Physical Sensors for Precision Aquaculture: A Review. IEEE Sensors Journal. 18(10):3915-3923. https://doi.org/10.1109/JSEN.2018.2817158S39153923181

    Study of Requirements and Design of Sensors for Monitoring Water Quality and Feeding Process in Fish Farms and Other Environments

    Full text link
    Se están realizando muchos esfuerzos en la acuicultura para alcanzar la sostenibilidad, sin embargo aún está lejos de ser sostenible. Sus impactos sobre el medio ambiente pueden prevenirse y corregirse mediante el uso de sensores, desarrollando la conocida como acuicultura de precisión. La calidad del agua afecta el rendimiento de los peces. La temperatura y la salinidad son algunos factores que afectan al crecimiento de los peces. Sin embargo, otros factores como la turbidez, el fotoperíodo y el oxígeno disuelto entre otros pueden afectar a las necesidades nutritivas de los peces. Ajustar la cantidad de alimento necesario es crucial para garantizar la sostenibilidad de la acuicultura y para aumentar el beneficio económico de las instalaciones. Al monitorear la calidad del agua, es posible estimar las necesidades de alimentación. Sin embargo, no es suficiente. El monitoreo del comportamiento de los peces, especialmente durante el período de alimentación, puede ayudar a adaptar el alimento proporcionado. Entonces, si está tan claro que el monitoreo puede ayudar a la producción acuícola, ¿por qué no vemos este sistema de monitoreo en las instalaciones acuícolas? ¿Por qué en la mayoría de las instalaciones la alimentación se da manualmente sin considerar el comportamiento de alimentación de los peces? El precio de los sensores para monitorizar las piscifactorías es extremadamente alto. Los sensores empleados son, en la mayoría de los casos, los mismos que se utilizan para la oceanografía. Los sistemas propuestos en la literatura cubren pocos parámetros de calidad del agua y generalmente no consideran el comportamiento de alimentación de los peces. Son necesarios sensores de bajo costo adecuados para la monitorización de la acuicultura. Esos sensores deben ser de bajo costo, bajo consumo de energía, fáciles de usar y con la posibilidad de incluirlos en una red para enviar los datos. Por lo tanto, podremos utilizar esta red de sensores y sensores para controlar la actividad, enviar alarmas si es necesario y automatizar los procesos. Además, si incluimos Internet, los datos se pueden ver de forma remota. El uso de esos sensores puede ayudar a la producción acuícola. En esta tesis mostramos el estudio de los requisitos y el diseño de sensores para monitorizar la calidad del agua y el proceso de alimentación en piscifactorías y otros entornos. Primero estudiamos en detalle los requisitos de los sensores en acuicultura. Luego mostramos el estado del arte de los sensores actuales para el monitoreo de la calidad del agua y para el monitoreo de la acuicultura. A continuación, presentamos el diseño y desarrollo de nuestros propios sensores de bajo costo y su aplicación en instalaciones de piscifactorías con sistema abierto y sistema de recirculación. Además, mostramos la posibilidad de monitorizar hasta 10 parámetros incluyendo calidad del agua (temperatura, salinidad, turbidez y presencia de hidrocarburo / capa de aceite), ambiente del tanque (nivel de agua, iluminación, presencia de trabajadores) y comportamiento de alimentación de peces (profundidad de natación de bajura, estimación de los cambios en la velocidad de nado de bajíos y la caída de alimento). El sistema propuesto, capaz de monitorear todos estos parámetros, tiene un bajo coste y bajo consumo de energía. El precio estimado es inferior a 100 € por tanque. Además, mostramos el uso de algunos de los sensores antes mencionados para el ajuste automático del proceso de alimentación de peces. Finalmente, mostramos como algunos de los sensores desarrollados se utilizan en otras áreas acuáticas naturales como manglares y estuarios. Además, se presenta un sistema inteligente para monitorear y rastrear la contaminación en los cuerpos de agua.There are many efforts done in the aquaculture to reach its sustainability, although in reality, it is far from being sustainable. Its negative impacts on the environment can be prevented and corrected by the use of sensors, developing precision aquaculture. The water quality affects to the fish performance. The temperature and salinity are some factors that affect to the fish growth. Nevertheless, other factors such as turbidity, photoperiod and dissolved oxygen among other can affect to the fish feeding needs. To adjust the amount of feed needed is crucial to ensure the sustainability of the aquaculture and to increase the economic profit of the facilities. Monitoring the water quality allows estimating the feed needs. However, it is not enough. To monitor the fish behavior, especially during the feeding period can help to adapt the provided feed. Then, if it is so clear that the monitoring can help to the aquaculture production, why we do not see this monitoring systems in the aquaculture facilities? Why in most of the facilities the feed is given manually without considering the fish feeding behavior? Nevertheless, the current price of the sensors for monitoring the fish farms is extremely high. The employed sensors are in most of the cases, the same that are used for oceanography. The proposed systems in the literature only cover some water quality parameters and usually do not consider fish feeding behavior. It is need low-cost sensors suitable for aquaculture monitoring. Those sensors must also be low-energy consumption, easy to use and with the option to include them in a network in order to send the data. Thus, we can use these sensors and sensors network to monitor the activity, to send alarms if it is necessary and to automatize processes. Moreover, including Internet, the data can be seen remotely. The use of those sensors can help to the aquaculture production. In this thesis, we show the study of requirements and design of sensors for monitoring water quality and feeding process in fish farms and other environments. First, we study in detail the requirements of sensors in aquaculture. Then, we show the state of the art of the current sensors for water quality monitoring and for aquaculture monitoring. Following, we present the design and development of some low-cost sensors and their applications in fish farm facilities with open system and recirculating system. Moreover we show a complete system which monitors up to 10 parameters including water quality (temperature, salinity, turbidity and presence of hydrocarbon/oil layer), tank environment (water level, illumination, presence of workers), and fish feeding behavior (shoal swimming depth, estimation of changes on shoal swimming velocity and feed falling). Moreover, it accomplishes the features of low-cost and low energy consumption. The estimated price for proposed system is less than 100€ per tank. In addition, we show the use of some of the aforementioned sensors for automatic adjustment of fish feeding process. Finally, some of the developed sensors are plied in other natural aquatic areas such as mangroves, and estuaries. Moreover, an intelligent system for pollution monitoring and tracking in water bodies are presented.S'estan realitzant molts esforços en l'aqüicultura per assolir la sostenibilitat, malgrat això, encara està lluny de ser sostenible. Els seus impactes sobre el medi ambient es poden prevenir i corregir mitjançant l'ús de sensors, desenvolupant la coneguda com a aqüicultura de precisió. La qualitat de l'aigua afecta el rendiment dels peixos. La temperatura i la salinitat són alguns factors que afecten el creixement dels peixos. A més a més, altres factors com la terbolesa, el fotoperíode i l'oli dissolt entre uns altres poden afectar a les necessitats nutritives dels peixos. Ajustar la quantitat d'aliment necessari és crucial per garantir la sostenibilitat de l'aqüicultura i per augmentar el benefici econòmic de les instal·lacions. Al monitoritzar la qualitat de l'aigua, és possible estimar les necessitats d'alimentació. No obstant això, no és suficient. Monitoritzar el comportament dels peixos, especialment durant el període d'alimentació, pot ajudar a adaptar el subministrament alimentari. Aleshores, si es tan clar que el monitoratge pot ajudar a la producció aqüícola, per què no veiem aquest sistema de monitoratge en les instal·lacions aquàtiques? Per què a la majoria de les instal·lacions la alimentació es dóna manualment sense considerar el comportament alimentari dels peixos? El preu dels sensors per controlar les piscifactories és extremadament alt. Els sensors empleats són, en la majoria dels casos, els mateixos que es fan servir per a l'oceanografia. Els sistemes proposats en la literatura monitoritzen pocs paràmetres de qualitat de l'aigua i generalment no consideren el comportament dels peixos durant l'alimentació. Són necessaris sensors de baix cost adequats per a la monitorització de l'aqüicultura. Aquests sensors han de ser de baix cost, baix consum d'energia, senzills d'usar i amb la possibilitat d'incloure'ls en una xarxa per enviar-los. Per tant, podrem utilitzar aquesta xarxa de sensors i sensors per controlar l'activitat, enviar alarmes si és necessari i automatitzar els processos. A més, si incloem Internet, les dades es podran veure de forma remota. L'ús d'aquests sensors pot ajudar a la producció aqüícola. En aquesta tesi es mostra l'estudi dels requisits i el disseny de sensors per a monitoritzar la qualitat de l'aigua i el procés d'alimentació en piscifactories i altres entorns. Primer, estudiem en detall els requisits dels sensors en aqüicultura. A continuació, es mostra el estat de l'art dels sensors actuals per al monitoratge de la qualitat de l'aigua i per al monitoratge de l'aqüicultura. A continuació, presentem el disseny i desenvolupament dels nostres propis sensors de baix cost i la seva aplicació en instal·lacions d'aqüicultura amb sistema obert i sistema de recirculació. A més, mostrem la possibilitat de monitoritzar fins a 10 paràmetres, incloent-hi la qualitat de l'aigua (temperatura, salinitat, terbolesa i presència d'hidrocarburs / capa d'oli), ambient del tanc (nivell d'aigua, il·luminació, presència de treballadors) i alimentació del consum de peces (profunditat de natació de baix, estimació dels canvis en la velocitat de naixement de baixos i la caiguda d'aliment). El sistema proposat, capaç de controlar tots aquests paràmetres, té un baix cost i baix consum d'energia. El preu estimat és inferior a 100 € per tanc. A més, mostrem l'ús d'alguns dels sensors abans esmentats per a l'ajust automàtic del procés d'alimentació de peces. Finalment, mostrem com alguns dels sensors desenvolupats es fan servir en altres àrees aquàtiques naturals com manglars i estuaris. A més, es presenta un sistema intel·ligent per monitoritzar i rastrejar la contaminació en els cossos d'aigua.Parra Boronat, L. (2018). Study of Requirements and Design of Sensors for Monitoring Water Quality and Feeding Process in Fish Farms and Other Environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/106369TESI

    Grafeno em fibra ótica para deteção eletroquímica de nitritos: rumo à monitorização Lab-on-Fiber em aquacultura

    Get PDF
    Monitoring multiple water quality parameters, such as nitrites (NO⁻₂) concentration, is vital to provide well-being and growth in fish. Optical fibers show great potential in aquaculture, due to the possibility of multiplexing sensor elements along the fiber, enabling multi-parametric in-situ measurements. On the other hand, electrochemical sensors are equally interesting in this context due to their low-cost and high sensitivity in the detection of various biochemical parameters, such as organic or inorganic contaminants, and even pathogens. The combination of electrochemical with optical detection can be extremely useful towards the development of lab-on-fiber concepts miniaturized for a wide monitoring of the water quality. This way, the goal of the present work consisted in developing and testing electrochemical sensors, based on laser-induced graphene (LIG) electrodes directly scribed on optical fibers. The sensors were applied for the detection of nitrites in concentrations relevant to aquaculture. First, the production of LIG was studied by photothermally converting polyimide with laser irradiating powers of 2.5 W and 4 W. In addition, two types of geometries were tried, one where LIG was produced in all the 360◦ of the fiber, and other where LIG was produced with only one laser passage. The sensors were coated with gold nanoparticles (AuNPs), by dropcasting technique, in order to enhance the sensitivity to nitrites. Through SEM and Raman analysis, 2.5 W produced LIG appears to be near the LIG formation threshold, presenting a heterogeneous morphology. In contrast, 4 W LIG presents a homogeneous and porous morphology, whose influence on its electrochemical response was evident in cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) characterizations. Specifically, EIS studies clearly demonstrated the impact of LIG’s porosity in its electrochemical response, making it necessary to use equivalent transmission line models, which consider porosity effects, in order to correctly model the impedimetric response of LIG produced at 4 W. The 3D porous structure of LIG produced at 4 W increases significantly the effective biodetection area, resulting in superior performance when detecting nitrites, compared to LIG produced at 2.5 W. Detection tests were performed in PBS for different concentrations of NO⁻₂ with differential pulse voltammetry (DPV) technique, and it was found that 4 W LIGs of one passage with AuNPs present a measured LOD, of 20 μM, a linear range of 20-200 μM and sensitivity of (1.93 ± 0.13) nA/μM. The sensor was calibrated from 6.6-8 pH and the current response remains similar, with sensitivities between 1.88 nA/μM and 1.77 nA/μM, slightly decreasing with pH. The LIG sensors were tested in real aquaculture water samples, before and after entering RAS (pH 7.6 and 7.0), and showed similar responses to those of PBS, with sensitivities of (1.86 ± 0.09) nA/μM and (1.71 ± 0.07) nA/μM, respectively, also reporting a linear range of 20-200 μM, which covers the relevant concentrations in aquaculture, and a measured LOD of 20 μM which is lower than the threshold concentration considered toxic for fish (43 μM). The produced LIG sensor was tested together with an optical pH sensor in optical fiber, as proof-of-concept of a hybrid platform.A monitorização de m´múltiplos parâmetros de qualidade da água, tais como a concentração de nitritos (NO⁻₂ ), é fundamental para proporcionar bem-estar e crescimento dos peixes. As fibras óticas mostram grande potencial em aquacultura, devido à possibilidade de multiplexação de sensores ao longo da fibra, permitindo medições multiparamétricas in-situ. Por outro lado, sensores eletroquímicos são igualmente interessantes neste contexto devido ao seu baixo custo e elevada sensibilidade para deteção de diversos parâmetros bioquímicos, tais como contaminantes orgânicos, inorgânicos e até agentes patogénicos. A combinação de deteção ótica e eletroquímica pode ser muito útil com vista ao desenvolvimento de conceitos de laboratórios em fibra (lab-on-fiber ) miniaturizados para uma ampla monitorização da qualidade da água. Desta forma, o objetivo do presente trabalho consistiu em desenvolver e testar sensores eletroquímicos à base de elétrodos de grafeno induzido por laser (LIG) diretamente inscritos em fibras óticas. Os sensores foram aplicados na deteção de nitritos em concentrações relevantes para a aquacultura. Primeiramente, a produção de LIG foi estudada através da conversão fototérmica da poliimida com potências de laser de 2.5 W e 4 W. Além disso, foram testados dois tipos de geometrias, um onde LIG foi produzido em todos os 360◦ da fibra, e outro onde LIG foi produzido com apenas uma passagem do laser. Os sensores foram revestidos com nanopartículas de ouro (AuNPs), pela técnica de dropcasting, a fim de aumentar a sensibilidade aos nitritos. Através da análise SEM e Raman, LIG produzido a 2.5 W parece ser próximo do limiar de formação de LIG, apresentando uma morfologia heterogénea. Em contraste, 4 W LIG apresenta uma morfologia homogénea e porosa, cuja influência na sua resposta eletroquímica foi evidente nas caracterizações de voltametria cíclica (CV) e espectroscopia de impedância eletroquímica (EIS). Em particular, estudos de EIS demonstraram claramente o impacto da porosidade do LIG na sua resposta eletroquímica, sendo necessário o uso de modelos equivalentes de linha de transmissão, que consideram efeitos de porosidade, para modelar corretamente a resposta impedimétrica do LIG produzido a 4 W. A estrutura 3D porosa do LIG produzido a 4 W aumenta significativamente a área efetiva de biodete,c˜ao, resultando num desempenho superior na deteção de nitritos comparado com o LIG produzido a 2.5 W. Foram realizados testes de deteção em PBS para diferentes concentrações de NO⁻₂ com técnica de voltametria de pulso diferencial (DPV), e verificou-se que 4 W LIGs de uma passagem com AuNPs apresentam um LOD medido de 20 μM, um intervalo linear de 20-200 μM e uma sensibilidade de (1.93 ± 0.13) nA/μM. O sensor foi calibrado de 6.6-8 pH e a resposta de corrente elétrica permanece semelhante, com sensibilidades entre 1.88 nA/μM e 1.77 nA/μM, diminuindo ligeiramente com o pH. Os sensores LIG foram testados em amostras reais de água de aquacultura, antes e depois de entrar no RAS (pH = 7.6 e 7.0) e mostraram respostas semelhantes às obtidas em PBS, reportando sensibilidades de (1.86 ± 0.09) nA/μM e (1.71 ± 0.07) nA/μM, respetivamente, um intervalo linear de 20-200 μM, que inclui as concentrações relevantes em aquacultura, e um LOD medido de 20 μM que é inferior à concentração limite considerada tóxica para os peixes (43 μM). O sensor produzido foi testado em conjunto com um sensor ótico de pH em fibra ótica, como prova de conceito de uma plataforma híbrida.Mestrado em Engenharia Físic

    Design of Intelligent Conductivity Meter Based on MSP430F149

    Full text link

    River Water Pollution Monitoring using Multiple Sensor System of WSNs

    Get PDF
    The river is a natural phenomenon thatcommonly available in the tropical region because of rainintensity. Many peoples and community like to live along theriverside for a few decades ago. The river used by thecommunity for transportation and daily activities uses riverwater. In this research objective to design and develop a newsystem with multiple sensors system to monitor river waterpollution because most of the people use it. Wireless SensorNetworks (WSNs) used in this design and developmentbecause of advantages WSNs system, multiple sensor nodesinstalled for detection of water pollution such as watertemperature, pH, electrical conductivity (EC) and dissolvedoxygen (DO). The system designed to be able to monitorriver water pollution parameters and send the information tothe data center (backend system). Arduino microcontrollerused to process and filtering the data before sending to thebackend system, only valid and valuable information tocollect and keep in the database. Results show system be ableto detect polluted water with indicating parameters andshows in a graph. Based on analysis can be concluded thatpolluted water indicator mostly from residence waste andindustry. Furthermore, WSNs sensors will deploy in somearea then compare the results each other

    Disposable E-Tongue For The Assessment Of Water Quality In Fish Tanks [TD370. C456 2008 f rb].

    Get PDF
    E-lidah pakai buang cetakan skrin yang sesuai untuk pemantauan kualiti air dalam tangki pemeliharaan ikan berdasarkan penderia susun atur dan pengecaman pola diterangkan. Disposable screen-printed e-tongues that are suitable for the monitoring of water quality in fish tanks, based on sensor array and pattern recognition is described

    A Reliable and Efficient Wireless Sensor Network System for Water Quality Monitoring

    Get PDF
    Wireless sensor networks (WSNs) are strongly useful to monitor physical and environmental conditions to provide realtime information for improving environment quality. However, deploying a WSN in a physical environment faces several critical challenges such as high energy consumption, and data loss.In this work, we have proposed a reliable and efficient environmental monitoring system in ponds using wireless sensor network and cellular communication technologies. We have designed a hardware and software ecosystem that can limit the data loss yet save the energy consumption of nodes. A lightweight protocol acknowledges data transmission among the nodes. Data are transmitted to the cloud using a cellular protocol to reduce power consumption. Information in the cloud is mining so that realtime warning notifications can be sent to users. If the values are reaching the threshold, the server will send an alarm signal to the pond\u27s owner phone, enable him to take corrective actions in a timely manner. Besides, the client application system also provides the feature to help the user to manage the trend of a physical environment such as shrimp ponds by viewing charts of the collected data by hours, days, months. We have deployed our system using IEEE 802.15.4 Standard, ZigBEE, KIT CC2530 of Texas Instrument, and tested our system with temperature and pH level sensors. Our experimental results demonstrated that the proposed system have a low rate of data loss and long energy life with low cost while it can provide real-time data for water quality monitoring

    Savremeni pristupi u monitoringu kvaliteta voda u akvakulturi

    Get PDF
    Merenje fizičkih, hemijskih, bioloških parametara je važno za praćenje stanja kvaliteta voda, a samim tim i veoma važno i u akvakulturi. Visokofrekventna merenja kvaliteta voda se poslednjih godina uspešno obavljaju i u Srbiji upotrebom multiparametarske sonde, jednostavne za rukovanje a složene po pitanju parametara koje može meriti u istom trenutku. Potreba za kontrolom kvaliteta vode raste sa povećanjem produkcije ribnjaka. Od ekstenzivnog gajenja, poluintezivnog, preko intenzivnog i superintenzivnog gajenja ribe, proces kontrole kvaliteta vode se usložnjava, dakle od povremenog kontrolisanja kvaliteta (mesečno, kod ekstenzivne proizvodnje), preko dnevne, kontrole na sat, i konačno do kontinuiranog praćenja kontrole kvaliteta (super-intenzivno). Praćenje kvaliteta senzorima i sondom je moguce u svim navedenim tipovima ribnjaka, ali je svakako primena takve metode najpotrebnija u superintenzivnoj ribnjačkoj proizvodnji

    Universal Solar Powered Water Quality Monitoring IoT Device and Notification System

    Get PDF
    Water constituents are often event-driven so concentrations and properties vary strongly in time. Due to this, there is a high demand for devices which can get accurate and real time measurements as these changes occur. Current methods of monitoring water quality mostly involve a team of people who collect samples which are later analyzed in a laboratory. This process is time consuming, expensive and has a slow reaction time which may lead to missing out on important changes in the water parameters. This paper describes a prototype solution which is affordable and capable of producing quick and accurate results in real time. This prototype measures the water quality using various sensors which record the pH level, temperature, total dissolved solids, conductivity and changes in the level of water. These sensors are connected to the ESP32 DevKit V4 microcontroller which processes and transmits the data in real time using Wi-Fi to the thinger.io online monitoring dashboard. This dashboard also stores all the data so it can be for analyzing the trends in changes of water quality. In addition to that, this prototype utilizes solar energy harvesting allowing it to be self-sufficiently powered throughout the year.Water constituents are often event-driven so concentrations and properties vary strongly in time. Due to this, there is a high demand for devices which can get accurate and real time measurements as these changes occur. Current methods of monitoring water quality mostly involve a team of people who collect samples which are later analyzed in a laboratory. This process is time consuming, expensive and has a slow reaction time which may lead to missing out on important changes in the water parameters. This paper describes a prototype solution which is affordable and capable of producing quick and accurate results in real time. This prototype measures the water quality using various sensors which record the pH level, temperature, total dissolved solids, conductivity and changes in the level of water. These sensors are connected to the ESP32 DevKit V4 microcontroller which processes and transmits the data in real time using Wi-Fi to the thinger.io online monitoring dashboard. This dashboard also stores all the data so it can be for analyzing the trends in changes of water quality. In addition to that, this prototype utilizes solar energy harvesting allowing it to be self-sufficiently powered throughout the year

    Water IoT monitoring system for aquaponics health and fishery applications

    Get PDF
    Aquaponic health is a very important in the food industry field, as currently there is a huge amount of fishing farms, and the demands are growing in the whole world. This work examines the process of developing an innovative aquaponics health monitoring system that incorporates high-tech back-end innovation sensors to examine fish and crop health and a data analytics framework with a low-tech front-end approach to feedback actions to farmers. The developed system improves the state-of-the-art in terms of aquaponics life cycle monitoring metrics and communication technologies, and the energy consumption has been reduced to make a sustainable system
    corecore