131,180 research outputs found

    An intelligent recommendation system framework for student relationship management

    Get PDF
    In order to enhance student satisfaction, many services have been provided in order to meet student needs. A recommendation system is a significant service which can be used to assist students in several ways. This paper proposes a conceptual framework of an Intelligent Recommendation System in order to support Student Relationship Management (SRM) for a Thai private university. This article proposed the system architecture of an Intelligent Recommendation System (IRS) which aims to assist students to choose an appropriate course for their studies. Moreover, this study intends to compare different data mining techniques in various recommendation systems and to determine appropriate algorithms for the proposed electronic Intelligent Recommendation System (IRS). The IRS also aims to support Student Relationship Management (SRM) in the university. The IRS has been designed using data mining and artificial intelligent techniques such as clustering, association rule and classification

    An Intelligent Multi-Agent Recommender System for Human Capacity Building

    Full text link
    This paper presents a Multi-Agent approach to the problem of recommending training courses to engineering professionals. The recommendation system is built as a proof of concept and limited to the electrical and mechanical engineering disciplines. Through user modelling and data collection from a survey, collaborative filtering recommendation is implemented using intelligent agents. The agents work together in recommending meaningful training courses and updating the course information. The system uses a users profile and keywords from courses to rank courses. A ranking accuracy for courses of 90% is achieved while flexibility is achieved using an agent that retrieves information autonomously using data mining techniques from websites. This manner of recommendation is scalable and adaptable. Further improvements can be made using clustering and recording user feedback.Comment: Proceedings of the 14th IEEE Mediterranean Electrotechnical Conference, 2008, pages 909 to 91

    E-Learning and Intelligent Planning: Improving Content Personalization

    Full text link
    Combining learning objects is a challenging topic because of its direct application to curriculum generation, tailored to the students' profiles and preferences. Intelligent planning allows us to adapt learning routes (i.e. sequences of learning objects), thus highly improving the personalization of contents, the pedagogical requirements and specific necessities of each student. This paper presents a general and effective approach to extract metadata information from the e-learning contents, a form of reusable learning objects, to generate a planning domain in a simple, automated way. Such a domain is used by an intelligent planner that provides an integrated recommendation system, which adapts, stores and reuses the best learning routes according to the students' profiles and course objectives. If any inconsistency happens during the route execution, e.g. the student fails to pass an assessment test which prevents him/her from continuing the natural course of the route, the systeGarrido, A.; Morales, L. (2014). E-Learning and Intelligent Planning: Improving Content Personalization. IEEE Revista Iberoamericana de TecnologĂ­as del Aprendizaje. 9(1):1-7. doi:10.1109/RITA.2014.2301886S179

    Community Recommendation in Social Networks with Sparse Data

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Recommender systems are widely used in many domains. In this work, the importance of a recommender system in an online learning platform is discussed. After explaining the concept of adding an intelligent agent to online education systems, some features of the Course Networking (CN) website are demonstrated. Finally, the relation between CN, the intelligent agent (Rumi), and the recommender system is presented. Along with the argument of three different approaches for building a community recommendation system. The result shows that the Neighboring Collaborative Filtering (NCF) outperforms both the transfer learning method and the Continuous bag-of-words approach. The NCF algorithm has a general format with two various implementations that can be used for other recommendations, such as course, skill, major, and book recommendations

    Implementation of an Intelligent Course Advisory Expert System

    Get PDF
    Academic advising of students is an expert task that requires a lot of time, and intellectual investments from the human agent saddled with such a responsibility. In addition, good quality academic advising is subject to availability of experienced and committed personnel to undertake the task. However, there are instances when there is paucity of capable human adviser, or where qualified persons are not readily available because of other pressing commitments, which will make system-based decision support desirable, and useful. In this work, we present the design, implementation, of an intelligent Course Advisory Expert System (CAES) that uses a combination of rule based reasoning (RBR), and case based reasoning (CBR) to recommend courses that a student should register in a specific semester by making recommendation based on the student’s academic history. The evaluation CAES yielded satisfactory performance in terms of credibility of its recommendations, and usability

    On Recommendation of Learning Objects using Felder-Silverman Learning Style Model

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The e-learning recommender system in learning institutions is increasingly becoming the preferred mode of delivery, as it enables learning anytime, anywhere. However, delivering personalised course learning objects based on learner preferences is still a challenge. Current mainstream recommendation algorithms, such as the Collaborative Filtering (CF) and Content-Based Filtering (CBF), deal with only two types of entities, namely users and items with their ratings. However, these methods do not pay attention to student preferences, such as learning styles, which are especially important for the accuracy of course learning objects prediction or recommendation. Moreover, several recommendation techniques experience cold-start and rating sparsity problems. To address the challenge of improving the quality of recommender systems, in this paper a novel recommender algorithm for machine learning is proposed, which combines students actual rating with their learning styles to recommend Top-N course learning objects (LOs). Various recommendation techniques are considered in an experimental study investigating the best technique to use in predicting student ratings for e-learning recommender systems. We use the Felder-Silverman Learning Styles Model (FSLSM) to represent both the student learning styles and the learning object profiles. The predicted rating has been compared with the actual student rating. This approach has been experimented on 80 students for an online course created in the MOODLE Learning Management System, while the evaluation of the experiments has been performed with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The results of the experiment verify that the proposed approach provides a higher prediction rating and significantly increases the accuracy of the recommendation

    A Personalized System for Conversational Recommendations

    Full text link
    Searching for and making decisions about information is becoming increasingly difficult as the amount of information and number of choices increases. Recommendation systems help users find items of interest of a particular type, such as movies or restaurants, but are still somewhat awkward to use. Our solution is to take advantage of the complementary strengths of personalized recommendation systems and dialogue systems, creating personalized aides. We present a system -- the Adaptive Place Advisor -- that treats item selection as an interactive, conversational process, with the program inquiring about item attributes and the user responding. Individual, long-term user preferences are unobtrusively obtained in the course of normal recommendation dialogues and used to direct future conversations with the same user. We present a novel user model that influences both item search and the questions asked during a conversation. We demonstrate the effectiveness of our system in significantly reducing the time and number of interactions required to find a satisfactory item, as compared to a control group of users interacting with a non-adaptive version of the system
    • …
    corecore