4 research outputs found

    An integrated framework for representing design history

    Get PDF
    Design is a difficult and complex process requiring; creativity, experience, domain knowledge, and problem solving skills. Much of the information that is used and generated during the design process is rarely explicitly recorded. This includes the reasons why design decisions were made. This information is commonly referred to as design rationale (DR). As a result many of the tasks that are performed during the design process are still poorly understood and modifications to designs can have unforeseen and possibly dangerous consequences. [Continues.

    Design: the quintessential business transaction

    Get PDF
    The fundamental structures that underpin business activities must evolve and change in order to equip companies to thrive in a market whose characteristics are increasing competition and instability. The incremental advances in applied computing technology and business methodologies which focus on improving one aspect of company operations ignore the need for an underlying structure and model through which to engage any and all functions in a consistent and integrated fashion. Indeed, many exacerbate the problem through closed architectures, isolationist views of entity data storage and rigid methodologies imposed on the company that employs them. The Product Model proposed fulfils that role. It is a model of the processes and entities that a company uses to conduct its business, at all levels and across all departments. Two other concepts are exposed: product model data and the design history record. Product model data are the values of instances of product model entities and relations, created to represent a particular design, artefact or object. The design history record captures the data and functions used in a transaction and the order and context in which they are used. To exercise these concepts, a software suite was written, the Glasgow Utility for Integrated Design, Guide. It supports the definition of a proud model and its subsequent use in the creation of product model data. Each interaction with the system is recorded, thus capturing the design history record, which can subsequently be processes to various advantageous ends. The major such uses are for re-use of part information in other designs and the extraction of design best practice with which to augment the company's design methodology. It is a comprehensive record, since all business processes are supported by, and can be transacted through Guide. Guide has been used to validate the adequacy of the product model and has established many benefits through its use. Applications in many spheres are possible; engineering has been the primary focus for exemplars and case studies. The development was carried out under the scrutiny of constant validation and testing in live situations with several industrial partners. Guide is built on industry standard tools and uses relational database technology to store frame-based representations of entities, methods and relationships. The design of project plans is carried out on the same platform used to support the project itself; the design data are not dissociated from the project controlling mechanism. Resources, including staff, are engaged according to requirements and audit mechanisms allow for constant re-evaluation of the project development. Control and communication mechanisms support applications in an extended enterprise environment and the distribution of resources that this entails

    Integrated collaborative building design using Internet technology

    Get PDF
    Communication between the parties in a project of an integrated collaborative engineering system has been the subject of active research for many years. The construction industry has a long tradition of collaborative working between the members of the construction team. At the design stage, this has traditionally been based on physical meetings between representatives of the principal design team members. To aid these meetings, the information and communication technologies that are currently available have been used. These Information Technology (IT) tools have produced some success but are held back by the problems posed by the use of diverse software tools and the lack of effective collaboration tools. The collaboration tools are necessary to reduce the time and distance constraints, in the increasingly global design teamwork. IT-supported collaborative construction design refers to actors in product design processing, working together on the same project with IT networks used for mediation to overcome time and geographical constraints. Fragmentation of the project management of a building construction between different specialists may be necessary, but good communication and coordination among the participants is essential to accomplish the overall goals of the project. New information technologies can be helpful in this process, especially the Internet and specialised extranets. A collaborative Architecture, Engineering and Construction (AEC) design environment has been proposed by this research to integrate the work of distributed project participants. Based on identified functional requirements, the conventional building product models have been extended to incorporate high-level concepts such as activity and organisation, which are essential for coordination and collaboration. A generic human-project-human interaction model has been developed, which could not only make the building domain models interaction-aware, but also serve as a base model for developing general interaction utilities. A collaborative design environment prototype has been described, covering the common project workspace, general interaction utilities and multi-user interfaces. This study characterises collaboration as a function of time, space and shared working environment with enabled real-time design tools over the World Wide Web (WWW). To realise the proposal of this research the inter-mediated design communication, visual presentation, integration and organisation frameworks, groupware technology, and interactive multimedia tools are used. This study presents the CODE (COllaborative Design Environment) system. This Architecture, Engineering and Construction (AEC) virtual working space is argued to support collaboration and teamwork in real time. The evaluation of the system showed its feasibility and reliability through a workshop. The results showed that the CODE system can assist the collaborative AEC design process

    Integrated collaborative building design using Internet technology

    Get PDF
    Communication between the parties in a project of an integrated collaborative engineering system has been the subject of active research for many years. The construction industry has a long tradition of collaborative working between the members of the construction team. At the design stage, this has traditionally been based on physical meetings between representatives of the principal design team members. To aid these meetings, the information and communication technologies that are currently available have been used. These Information Technology (IT) tools have produced some success but are held back by the problems posed by the use of diverse software tools and the lack of effective collaboration tools. The collaboration tools are necessary to reduce the time and distance constraints, in the increasingly global design teamwork. IT-supported collaborative construction design refers to actors in product design processing, working together on the same project with IT networks used for mediation to overcome time and geographical constraints. Fragmentation of the project management of a building construction between different specialists may be necessary, but good communication and coordination among the participants is essential to accomplish the overall goals of the project. New information technologies can be helpful in this process, especially the Internet and specialised extranets. A collaborative Architecture, Engineering and Construction (AEC) design environment has been proposed by this research to integrate the work of distributed project participants. Based on identified functional requirements, the conventional building product models have been extended to incorporate high-level concepts such as activity and organisation, which are essential for coordination and collaboration. A generic human-project-human interaction model has been developed, which could not only make the building domain models interaction-aware, but also serve as a base model for developing general interaction utilities. A collaborative design environment prototype has been described, covering the common project workspace, general interaction utilities and multi-user interfaces. This study characterises collaboration as a function of time, space and shared working environment with enabled real-time design tools over the World Wide Web (WWW). To realise the proposal of this research the inter-mediated design communication, visual presentation, integration and organisation frameworks, groupware technology, and interactive multimedia tools are used. This study presents the CODE (COllaborative Design Environment) system. This Architecture, Engineering and Construction (AEC) virtual working space is argued to support collaboration and teamwork in real time. The evaluation of the system showed its feasibility and reliability through a workshop. The results showed that the CODE system can assist the collaborative AEC design process
    corecore