73,677 research outputs found

    Another Short and Elementary Proof of Strong Subadditivity of Quantum Entropy

    Full text link
    A short and elementary proof of the joint convexity of relative entropy is presented, using nothing beyond linear algebra. The key ingredients are an easily verified integral representation and the strategy used to prove the Cauchy-Schwarz inequality in elementary courses. Several consequences are proved in a way which allow an elementary proof of strong subadditivity in a few more lines. Some expository material on Schwarz inequalities for operators and the Holevo bound for partial measurements is also included.Comment: The proof given here is short and more elementary that in either quant-ph/0404126 or quant-ph/0408130. The style is intended to be suitable to classroom presentation. For a Much More Complicated approach, see Section 6 of quant-ph/050619

    Relative entropy for compact Riemann surfaces

    Get PDF
    The relative entropy of the massive free bosonic field theory is studied on various compact Riemann surfaces as a universal quantity with physical significance, in particular, for gravitational phenomena. The exact expression for the sphere is obtained, as well as its asymptotic series for large mass and its Taylor series for small mass. One can also derive exact expressions for the torus but not for higher genus. However, the asymptotic behaviour for large mass can always be established-up to a constant-with heat-kernel methods. It consists of an asymptotic series determined only by the curvature, hence common for homogeneous surfaces of genus higher than one, and exponentially vanishing corrections whose form is determined by the concrete topology. The coefficient of the logarithmic term in this series gives the conformal anomaly.Comment: 20 pages, LaTeX 2e, 2 PS figures; to appear in Phys. Rev.

    Modular Hamiltonians of excited states, OPE blocks and emergent bulk fields

    Full text link
    We study the entanglement entropy and the modular Hamiltonian of slightly excited states reduced to a ball shaped region in generic conformal field theories. We set up a formal expansion in the one point functions of the state in which all orders are explicitly given in terms of integrals of multi-point functions along the vacuum modular flow, without a need for replica index analytic continuation. We show that the quadratic order contributions in this expansion can be calculated in a way expected from holography, namely via the bulk canonical energy for the entanglement entropy, and its variation for the modular Hamiltonian. The bulk fields contributing to the canonical energy are defined via the HKLL procedure. In terms of CFT variables, the contribution of each such bulk field to the modular Hamiltonian is given by the OPE block corresponding to the dual operator integrated along the vacuum modular flow. These results do not rely on assuming large NN or other special properties of the CFT and therefore they are purely kinematic.Comment: 40 pages, 2 figures. v3: some typos corrected, references added, extended discussion on convergence and holographic interpretatio
    • …
    corecore