8 research outputs found

    One-class classifiers based on entropic spanning graphs

    Get PDF
    One-class classifiers offer valuable tools to assess the presence of outliers in data. In this paper, we propose a design methodology for one-class classifiers based on entropic spanning graphs. Our approach takes into account the possibility to process also non-numeric data by means of an embedding procedure. The spanning graph is learned on the embedded input data and the outcoming partition of vertices defines the classifier. The final partition is derived by exploiting a criterion based on mutual information minimization. Here, we compute the mutual information by using a convenient formulation provided in terms of the α\alpha-Jensen difference. Once training is completed, in order to associate a confidence level with the classifier decision, a graph-based fuzzy model is constructed. The fuzzification process is based only on topological information of the vertices of the entropic spanning graph. As such, the proposed one-class classifier is suitable also for data characterized by complex geometric structures. We provide experiments on well-known benchmarks containing both feature vectors and labeled graphs. In addition, we apply the method to the protein solubility recognition problem by considering several representations for the input samples. Experimental results demonstrate the effectiveness and versatility of the proposed method with respect to other state-of-the-art approaches.Comment: Extended and revised version of the paper "One-Class Classification Through Mutual Information Minimization" presented at the 2016 IEEE IJCNN, Vancouver, Canad

    Optimal Kullback-Leibler Aggregation via Information Bottleneck

    Full text link
    In this paper, we present a method for reducing a regular, discrete-time Markov chain (DTMC) to another DTMC with a given, typically much smaller number of states. The cost of reduction is defined as the Kullback-Leibler divergence rate between a projection of the original process through a partition function and a DTMC on the correspondingly partitioned state space. Finding the reduced model with minimal cost is computationally expensive, as it requires an exhaustive search among all state space partitions, and an exact evaluation of the reduction cost for each candidate partition. Our approach deals with the latter problem by minimizing an upper bound on the reduction cost instead of minimizing the exact cost; The proposed upper bound is easy to compute and it is tight if the original chain is lumpable with respect to the partition. Then, we express the problem in the form of information bottleneck optimization, and propose using the agglomerative information bottleneck algorithm for searching a sub-optimal partition greedily, rather than exhaustively. The theory is illustrated with examples and one application scenario in the context of modeling bio-molecular interactions.Comment: 13 pages, 4 figure

    Balanced k-Means and Min-Cut Clustering

    Full text link
    Clustering is an effective technique in data mining to generate groups that are the matter of interest. Among various clustering approaches, the family of k-means algorithms and min-cut algorithms gain most popularity due to their simplicity and efficacy. The classical k-means algorithm partitions a number of data points into several subsets by iteratively updating the clustering centers and the associated data points. By contrast, a weighted undirected graph is constructed in min-cut algorithms which partition the vertices of the graph into two sets. However, existing clustering algorithms tend to cluster minority of data points into a subset, which shall be avoided when the target dataset is balanced. To achieve more accurate clustering for balanced dataset, we propose to leverage exclusive lasso on k-means and min-cut to regulate the balance degree of the clustering results. By optimizing our objective functions that build atop the exclusive lasso, we can make the clustering result as much balanced as possible. Extensive experiments on several large-scale datasets validate the advantage of the proposed algorithms compared to the state-of-the-art clustering algorithms

    Markov State Space Aggregation via the Information Bottleneck Method

    Get PDF
    Consider the problem of approximating a Markov chain by another Markov chain with a smaller state space that is obtained by partitioning the original state space. An information-theoretic cost function is proposed that is based on the relative entropy rate between the original Markov chain and a Markov chain defined by the partition. The state space aggregation problem can be sub-optimally solved by using the information bottleneck method

    An Information-Theoretic Derivation of Min-Cut-Based Clustering

    No full text
    corecore