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Abstract. Consider the problem of approximating a Markov chain by another

Markov chain with a smaller state space that is obtained by partitioning the

original state space. An information-theoretic cost function is proposed that

is based on the relative entropy rate between the original Markov chain and

a Markov chain defined by the partition. The state space aggregation problem

can be sub-optimally solved by using the information bottleneck method.
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1. Introduction

Markov models appear in many scientific disciplines such as systems biology, natu-
ral language processing, information theory, and automated control. These models
are popular because the Markov property greatly simplifies analysis and simulation.
However, sometimes the state space of a Markov model is too large to admit simula-
tion or inference of model parameters from real-world data sets. For example, dealing
with the state space explosion is a major challenge in n-gram word models [13].

One way to reduce the state space of a Markov chain is aggregation: A non-
injective function induces a partition of the original state space, effectively grouping
or aggregating states of the original chain together. The aggregated process, is
a Markov chain whose state space consists of the groups of states rather than of
the individual states. State space aggregation has attracted much attention during
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the last years, e.g., in chemical reaction networks [14], control theory [24], or in [21],
which used total variational distance for aggregation. Most relevant to our work
are information-theoretic cost functions [2,7,11,23] and information-theoretic graph
clustering [4, 16,20].

Partitioning the state space does not suffice for aggregation. To obtain a Markov
chain on the smaller state space, one has to choose transition probabilities. This
paper draws heavily on our work [5] and chooses the transition probabilities by
minimizing an information-theoretic cost function. We show that the same cost
function can be relaxed in order to employ a standard method from the machine
learning literature – the information bottleneck method [19] – to find the optimal
partition of the original state space. Finally, we show that our proposed cost function
is related to the concept of lumpability, i.e., a function of a Markov chain has the
Markov property.

This paper accompanies an invited lecture at the Theoretical Foundations of
Machine Learning Conference. The paper is written in tutorial-style and tries to
give an overview of our state space aggregation method. For the mathematical
details and rigorous proofs the reader is referred to [5].

2. Notation, Random Variables, and Markov Chains

In this work, upper case letters denote random variables (RVs), calligraphic letters
their state space, and lower case letters their realizations; for example, the RV X may
assume the value x, which is an element of the state space X . Since we are dealing
with discrete RVs on finite alphabets only, the distribution of X is determined by
its probability mass function (PMF) pX , where

∀x ∈ X : pX(x) := Pr(X = x). (1)

The joint PMF of several RVs and the conditional PMF of a set of RVs given another
set of RVs are defined similarly.

We denote discrete-time stochastic processes by bold-faced letters, e.g., X; their
samples are RVs indexed by natural numbers, i.e., X1, X2, . . . . Each RV Xn takes
values from the same, finite, state space X . The random processes considered in
this work are stationary. In particular, the PMF of Xn is equal for all n and shall
be denoted as pX .

This work deals with Markov chains, i.e., stochastic processes that satisfy the
Markov property so that the distribution of future samples depends exclusively on
the present sample, but not on past samples. In other words, if X is a Markov chain
with finite state space X = {1, 2, . . . , N}, then

Pr(Xn+1 = j|Xn = i, Xn−1 = h, . . . ) = Pr(Xn+1 = j|Xn = i) (2)

for all n and all realizations j, i, h, · · · ∈ X [12, Def. 2.1.1]. We consider irreducible,
aperiodic, time-homogeneous (i.e., the probability on the r.h.s. of (2) does not
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depend on n), and stationary Markov chains; see [12] for terminology and basic
results. Under these assumptions the behavior of X is uniquely determined by its
transition probability matrix P = {Pi,j}, where Pi,j := Pr(Xn = j|Xn−1 = i). Its
unique invariant distribution vector µ with its i-th component given by

µi := pX(i) > 0 (3)

satisfies µT = µT P [12, Thm. 4.1.6]. To guarantee that X is stationary, its initial
distribution must coincide with the invariant distribution. For such a Markov chain
we use the shorthand notation X ∼ Mar(X ,P, µ).

Suppose we partition the state space X of the Markov chain X by a non-injective
function g: X → Y, where Y = {1, . . . ,M} for M < N . In other words, g induces a
partition of X by the preimages of the elements of Y: For l ∈ Y, g−1(l) := {i ∈ X |
g(i) = l} is an element of the partition of X . The sequence of samples Yn := g(Xn)
obtained by projecting the Markov chain through the function g defines another
stationary stochastic process, which we will henceforth call the projection of X.
From µ, P, and g the joint PMF of two consecutive samples of X and/or Y can be
computed as follows:

pX1,X2(i, j) = µiPi,j (4)

pX1,Y2
(i, l) = µi

∑

j∈g−1(l)

Pi,j (5)

pY1,Y2(k, l) =
∑

i∈g−1(k)

∑

j∈g−1(l)

µiPi,j (6)

The conditional PMFs can be computed similarly.
It is well known that the projection Y in general loses the Markov property.

The phenomenon where Y is an irreducible, aperiodic, and time-homogeneous
Markov chain is called lumpability and has been treated in [12, §6.3], as well as
in [9] and the references therein.

3. Relative Entropy

Our goal is to find a “good” aggregation of a Markov chain, and we need a measure
for the dissimilarity between the distributions of two RVs or two stochastic processes.
Possible measures are the total variational distance or Pearson’s χ2-divergence. Since
we will be dealing with information-theoretic methods, relative entropy is the most
immediate choice:

Definition 1 (Relative Entropy [1, Ch. 2.3]) The relative entropy between two PMFs
pX1 and pX2 with the same support X (corresponding to two RVs X1 and X2 with
the same state space) is

D(pX1 ||pX2) :=
∑

i: pX1 (i)>0

pX1(i) log
pX1(i)

pX2(i)
. (7)
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Clearly, D(pX1
||pX2

) is finite only if pX2
(i) = 0 implies pX1

(i) = 0 for all i ∈ X ,
or in short, if pX1 ≪ pX2 . Moreover, D(pX1 ||pX2) = 0 if and only if the two PMFs
are equal, i.e., pX1(i) = pX2(i) for all i ∈ X .

With this definition we can state a sufficient1 condition for the Markov chain X
and the function g such that the projection Y is a Markov chain:

Lemma 1 (Lumpability, adopted from [6, Thm. 9]) For X being an irreducible,
aperiodic, and stationary Markov chain and for a given function g, the projection Y
is an irreducible, aperiodic, and stationary Markov chain if

E
(
D(pY2|X1

(·|X1)||pY2|Y1
(·|g(X1)))

)
= 0 (8)

where the expectation is taken w.r.t. the distribution µ of X1.

Relative entropy, as a measure of dissimilarity between the distribution of RVs,
can be extended to stochastic processes:

Definition 2 (Relative Entropy Rate [8, Ch. 10]) The relative entropy rate between
two stationary stochastic processes X1 and X2 with the same state space X is

D̄(X1||X2) := lim
n→∞

1

n
D(pX1,1,X1,2,...,X1,n ||pX2,1,X2,2,...,X2,n) (9)

whenever the limit exists.

For this quantity to be finite, pX1,1,X1,2,...,X1,n ≪ pX2,1,X2,2,...,X2,n has to hold for
all n. The limit exists, e.g., between a stationary stochastic process and a time-
homogeneous Markov chain [8, Ch. 10] as well as between Markov chains (not
necessarily stationary or irreducible) [15]. For example, for two Markov chains
X1 ∼ Mar(X ,P, µ) and X2 ∼ Mar(X ,P′, µ′), the relative entropy rate reads [15]

D̄(X1||X2) =
∑

i,j: Pi,j>0

µiPi,j log
Pi,j

P ′
i,j

(10)

if P ′
i,j = 0 ⇒ Pi,j = 0 (in short: P ≪ P′).
In general, (10) can not be used to compute the relative entropy rate between

a projection Y1 of a Markov chain X1 and Markov chain Y2 with state space Y,
because Y1 might not be Markov. However, in some cases this relative entropy rate
can be bounded from above by (10), provided X1 and X2 are chosen appropriately.

Lemma 2 (Bound on the Relative Entropy Rate [5, Lem. 2]) Let X1 and X2 be
irreducible, aperiodic, and stationary Markov chains with the same state space X
having transition probability matrices P and P′ such that P ≪ P′. Let g: X → Y,
and let Y1 and Y2 be the projections of X1 and X2, respecively. Let additionally
X2 be lumpable w.r.t. g, i.e., let Y2 be Markov. Then we have

D̄(Y1||Y2) ≤ D̄(X1||X2). (11)

1In fact, the condition in [6, Thm. 9] is sufficient and necessary for strong lumpability in the
sense of [12, § 6.3]. We omit the distinction between strong and weak lumpability in this paper.
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4. Clustering and The Information Bottleneck Method

Relative entropy not only measures the dissimilarity between PMFs, it also allows us
to measure the information two RVs X1 and X2 share: if two RVs are independent
and hence do not share any information, their joint PMF equals the product of their
marginal PMFs. Hence, two RVs share the more information the more their joint
PMF differs from the product of their marginals:

Definition 3 (Mutual Information [1, Ch. 2.3]) The mutual information of two RVs
X and Y with state spaces X and Y is the relative entropy between their joint PMF
and the product of their marginal PMFs:

I(X; Y ) := D(pX,Y ||pXpY ) =
∑

i,k: pX,Y (i,k)>0

pX,Y (i, k) log
pX,Y (i, k)

pX(i)pY (k)
(12)

One is often interested in a compressed description Y of an observation X. Rate-
distortion theory (e.g., [8, Ch. 9] or [1, Ch. 10]) deals with this problem from an
information-theoretic point-of-view, and achieves compression by minimizing the
mutual information between X and its compressed representation Y . At the same
time, however, Y should be capable of delivering sufficient information about the
observation X, which is achieved by simultaneously minimization a distortion cri-
terion d (e.g., the mean-squared reconstruction error). This can be formulated as
a variational problem

arg min
pY |X

I(X; Y ) + βd(X, Y ) (13)

where β is a Lagrange multiplier, and where stochastic compressions pY |X(x, y) =
Pr(Y = y|X = x) are admitted.

Compressing observations becomes particularly interesting when the distortion
is not measured w.r.t. the observation X itself, but w.r.t. some related RV C. For
example, if X are observed features (e.g, directions of pencil strokes) and C is a class
variable (e.g., the numbers from 0 to 9), then the compression Y should reveal as
much information as possible about the class C, rather than about the observation
X. The information bottleneck (IB) method [19] formulates exactly this problem by
using relative entropy as distortion criterion, resulting in the following variational
problem:

arg min
pY |X

I(X;Y ) − βI(C; Y ) (14)

In other words, Y should be a highly compressed version of X, but it should contain
as much information about C as possible; β trades between these two objectives.

For β → ∞ and with the restriction to deterministic compressions pY |X deter-
mined by functions g: X → Y, in [18] an iterative procedure, called agglomerative
IB was introduced. It successively merges two elements of a partition of X until the
desired cardinality M is reached. The method is greedy, i.e., it minimizes the infor-
mation lost in each merging step, but does not guarantee that the global optimum
is achieved.
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Sometimes the class variable C is not available or known, as it often happens with
unlabelled data sets. In these cases, the cluster structure should reveal itself from
the data. For the scenario in which the data is given only via a matrix of pairwise
distances or dissimilarities, Friedman and Goldberger [4] suggested to convert the
pairwise distance matrix to the transition probability matrix of a stationary Markov
chain X. Then, they looked for the function g maximizing the mutual information
between consecutive samples of the projection, i.e., they maximized I(Y1; Y2); in that
sense, their work is strongly related to Dhillon’s approach to information-theoretic
co-clustering [3]. For the same setting of data given only via pairwise distances, also
Tishby and Slonim [20] used the Markov chain approach. They, however, first let
the Markov chain relax to some quasi-stable time point n, which is characterized by
a slowly changing I(X1; Xk) for k close to n. Assuming that this Xn reveals a lot
about the cluster structure of the data, they applied the agglomerative IB method
to maximize I(Xn; Y1): In other words, they were looking for a function g, such
that the projection Y1 of the initial state X1 reveals as much information about the
relaxed state Xn as possible.

5. From Information-Theoretic Clustering to Markov State Space
Aggregation

We now consider the problem of state space aggregation for Markov chains, namely
the problem of defining a Markov chain on a smaller state space. In other words,
given a Markov chain X with state space X , we are interested in finding a Markov
chain YM with a smaller state space Y which is similar to X in a well-defined sense.

While Tishby and Slonim [20] employed a Markov chain approach for clustering
of data given by pairwise distances, they did not recognize that their IB approach
can be also employed for state space aggregation. Contrary to that, Friedman and
Goldberger applied their method for pairwise clustering [4] also to state space aggre-
gation of a Markovian movement model [7]. In addition to that, their cost function
I(Y1; Y2) is identical to the one employed by Deng, Mehta, and Meyn [2, Lem. 3],
who focused their work solely on the state space aggregation of (nearly completely
decomposable) Markov chains and introduced a connection between information-
theoretic and spectral clustering. In the author’s opinion, the coincidence of the
cost functions of [4] and [2] is accidental: Deng, Mehta, and Meyn did not intend
to maximize I(Y1; Y2) as such, but proposed to minimize the relative entropy rate
between the original Markov chain X and a Markov approximation of its projec-
tion Y to find the most suitable function g. Since these two Markov chains have
state spaces of different cardinalities, they had to lift the Markov approximation of
Y to the state space X . In doing so, they employed the same lifting method as
Vidyasagar [23] and arrived at the same cost function as [4].

Our approach to Markov state space aggregation introduced in [5] draws from
these references: Employing relative entropy rate as a cost function, we have to
resort to lifting; however, our lifting differs from the one proposed in [2, 23]. Then,
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by relaxing the optimization problem, we show that the IB method can be used to
obtain a state space aggregation; the relevance variable we use, however, is different
from the one of [20]. This way, we try to solve the following problem:

Definition 4 (M -partition problem) Given a Markov chain X ∼ Mar(X ,P,µ) with
X = {1, . . . , N} and a state space Y = {1, . . . ,M}, M < N , the M -partition prob-
lem searches for the function g: X → Y such that the relative entropy rate between the
projection Y of X and its best Markov approximation is minimal,
i.e., it solves

arg min
g∈[X→Y]

min
YM

{D̄(Y||YM) | YM is Markov}. (15)

The rationale for stating the problem this way is as follows: When looking for
a Markov state space aggregation, it is desirable to choose the transition probabili-
ties for YM such that the resulting chain closely resembles the projection Y of the
original chain, as this allows to train the Markov model YM based on a realiza-
tion of the projection. Choosing the function g in order to minimize D̄(Y||YM)
consequently minimizes the training error.

The M -partition problem can be greatly simplified by noting that the best
Markov approximation YM (in the sense of relative entropy rate) to a given sta-
tionary stochastic process Y is given by the joint PMF of two consecutive samples.
Mathematically, if for all k, l ∈ Y

νk = pY1(k) (16)

Qk,l = pY2|Y1
(l, k) =

pY1,Y2(k, l)

pY1(k)
(17)

then YM ∼ Mar(Y,Q, ν) minimizes D̄(Y||YM) [8, Cor. 10.4]. As a consequence,
the double minimization problem in (15) reduces to a single minimization of
D̄(Y||YM) over all functions g ∈ [X → Y].

Since for this relative entropy rate between a stationary stochastic process and
a Markov chain no closed-form expression exists (except in the case of Y
being a Markov chain), we lift YM to a Markov chain on the original state space X :

Definition 5 (P-lifting [5, Def. 7]) Given a Markov chain X ∼ Mar(X ,P, µ),
a function g, and the best Markov approximation YM ∼ Mar(Y,Q, ν) of the projec-
tion Y in the sense of relative entropy rate, the P-lifting of YM is a Markov chain
X̂ ∼ Mar(X , P̂, µ̂), where

P̂i,j := Pi,j

pY2|Y1
(g(j), g(i))

pY2|X1
(g(j), i)

(a)
=

Pi,j∑
h∈g−1(g(j)) Pi,h

Qg(i),g(j) (18)

and where µ̂ is the unique invariant distribution vector of X̂.

In (18), equality in (a) follows from (5) and (17), where for simplicity, in Defini-
tion 5 we assumed that

∑
h∈g−1(g(j)) Pih > 0 for all i, j ∈ X . This restriction is not

present in [5].
The following theorem summarizes the main properties of our lifting method.
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Theorem 1 (Properties of P -lifting [5, Thm. 1]) Given a Markov chain X ∼
Mar(X ,P, µ), a function g, the best Markov approximation YM of the projection Y

in the sense of relative entropy rate, and the P-lifting X̂ of YM, we have

1. P ≪ P̂
2. X̂ = arg min

Markov X̃:YM is g-projection of X̃

D̄(X||X̃)

3. D̄(Y||YM) ≤ D̄(X||X̂) =
∑

i,j: Pi,j>0

µiPi,j log
Pi,j

P̂i,j

.

Property 2 implies that X̂ is lumpable w.r.t. g and that YM is the projection of
X̂ w.r.t. g. Property 3 is a consequence of Properties 1 and 2 and Lemma 2.

If we thus relax the M -partition problem of Definition 4 by using D̄(X||X̂) as
a cost function, we obtain a closed-form expression for minimization. Interestingly,
if we substitute P̂ from Definition 5 into Property 3, we get

D̄(X||X̂) =
∑

i,j: Pi,j>0

µiPi,j log
pY2|X1

(g(j), i)

pY2|Y1
(g(j), g(i))

(19)

= E
(
D(pY2|X1

(·|X1)||pY2|Y1
(·|g(X1)))

)
(20)

i.e., the relative entropy involved in the condition for lumpability in Lemma 1.
In other words, relaxing the problem by applying Theorem 1 converts our original
M -partition problem to the problem of finding the M -partition w.r.t. which
the original chain X is “most lumpable”.

We can also expand D̄(X||X̂) in the following way:

D̄(X||X̂) =
∑

i,j: Pi,j>0

µiPi,j log

(
pY2,X1(g(j), i)

pY2,Y1(g(j), g(i))

pY1(g(i))

pX1(i)

pY2(g(j))

pY2(g(j))

)

=
∑

i,l: pY2,X1 (l,i)>0

pY2,X1(l, i)

(
log

pY2,X1(l, i)

pX1(i)pY2(l)
− log

pY2,Y1(l, g(i))

pY1(g(i))pY2(l)

)

= I(X1; Y2) − I(Y1; Y2)

which is the formulation of the IB method in (14) for β = 1, a relevance RV Y2, and
with the goal of compressing X1 to Y1. Unfortunately, the IB method cannot be
applied directly, because the relevance RV Y2 depends on the function g, which is
the object of the optimization. Hence, we apply the chain rule of mutual informa-
tion [1, Thm. 2.5.2] in (a) and the data processing inequality [1, p. 35] in (b) to
further relax the problem:

D̄(X||X̂) = I(X1; Y2) − I(Y1; Y2) (21)

(c)
= I(X1, Y1; Y2) − I(Y1; Y2) (22)

(a)
= I(X1; Y2|Y1) (23)

(b)

≤ I(X1; X2|Y1) (24)

(a)
= I(X1, Y1; X2) − I(Y1; X2) (25)

(c)
= I(X1; X2) − I(Y1; X2) (26)
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where (c) is because Y1 is a function of X1. Since the first term does not depend
on g, the relaxed problem essentially tries to maximize I(Y1; X2), the information
the current sample Y1 of the projection contains about the future sample X2 of the
original Markov chain. As a side note, by applying the data processing inequality
again in the last line, the problem is further relaxed to minimizing I(X1;X2) −
I(Y1; Y2), which is considered in [2, 4, 7].

Since the first term in (26) does not depend on the function g, we want to solve

arg max
g∈[X→Y]

I(Y1; X2). (27)

Comparing this with the cost function Tishby and Slonim were applying in [20] (cf.
also Section 4.), one can see that this can be accomplished by the agglomerative IB
method. While we had to relax the original M -partition problem from Definition 4,
we are now at a point where it is tractable by employing a standard method from
the machine learning literature.

6. Examples

We illustrate our results by using a nearly completely decomposable Markov chain
and a toy example from natural language processing. In both examples, the VLFeat
Matlab implementation [22] of the agglomerative IB method was used.

6.1. A Nearly Completely Decomposable Markov Chain

In this first example we generated a Markov chain with 50 states, of which each 15,
25, and 10 are strongly interacting. In order to obtain an appropriate transition
probability matrix P, we generated a weighting matrix

W =




0.9 · 115×15 0.1 · 115×25 0.1 · 115×10

0.1 · 125×15 0.9 · 125×25 0.1 · 125×10

0.1 · 110×15 0.1 · 110×25 0.9 · 110×10


 (28)

where 1n×m is a matrix full of ones with n rows and m columns. We multiplied
this matrix element-wise with a matrix with random entries uniformly distributed
on [0, 1] and normalized the row sums of the resulting matrix to unity. Figure 1
shows both the original transition probability matrix and the obtained aggregations
for M = 2 and M = 3. As it can be seen, the groups of strongly interacting states
are identified correctly by our method.
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Fig. 1. The nearly completely decomposable transition probability matrix (a) and
the partitions obtained by using the agglomerative IB method. Blocks of the same
color indicate that the corresponding states are mapped to the same output. Hot
colors indicate high transition probabilities. For M = 2 in (b) it can be seen that
the first and the third group of states (corresponding to states 1 to 15 and 41 to 50)
are grouped together, while for M = 3 in (c) all three strongly interacting groups of
states are identified correctly.

6.2. A Toy Example from Natural Language Processing

In this example we trained a letter bigram model2 of an English translation of “Quo
Vadis” by Henryk Sienkiewicz3, i.e., we trained a Markov model of the co-occurrence
of letters by determining the relative frequency of transitions between the letters of
the text. We simplified the text beforehand by converting upper case to lower case
letters, removing punctuation, and replacing all non-Latin characters by appropriate
Latin ones (e.g., we replaced ‘ç’ by ‘c’ in “façade”). The state space of the Markov
model thus consists of only the 26 letters of the Latin alphabet and the blank space.

We applied our state space aggregation method based on the agglomerative IB
method for various cardinalities M of Y. Most notably, for a bi-partition of the
state space (i.e., for M = 2), all consonants are lumped together, leaving the five
vowels and the blank space for the second group of states. For M = 3, the three
groups are vowels, consonants, and the blank space, illustrating that the proposed
method identifies clusters in accordance with human intuition based on the knowl-
edge of English language. For aggregations to larger state spaces, individual letters
crystallize as clusters on their own, e.g., the letters ‘e’ and ‘t’. Analyzing the
meaning of these aggregations in the light of language models is interesting, but has
to be deferred to future work. Aggregations for various choices of M can be seen in
Table 1.

2In one of his first introductions to Markov chains, Markov used letter bigram models: He
trained – by hand – a model based on the first 20.000 letters of Pushkin’s Eugen Onegin, see [10].
Roughly 35 years later, Shannon used bigram models of the English language in “A Mathematical
Theory of Communication” [17].

3A copy of the text can be obtained from Project Gutenberg: http://www.gutenberg.org
/ebooks/2853.
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Tab. 1. Partitions of the letter state space obtained by agglomerative IB, shown
for various values of M . Letters within brackets belong to the same element of the
partition.

M Partition

2 [ ,a,e,i,o,u],[b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,y,z]
3 [ ],[a,e,i,o,u],[b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,y,z]
4 [ ],[a,e,i,o,u],[b,c,h,j,k,l,m,n,p,q,r,v,w,z],[d,f,g,s,t,x,y]
7 [ ],[a,i,o,u],[e],[b,c,h,j,p,q,v,w,z],[d,f,g,s,x,y],[k,l,m,n,r],[t]
12 [ ],[a],[e],[i,u],[o],[b,j,p,q],[c,w],[d,f,g,s,x,y],[h,v,z],[k,l,m,r],[n],[t]
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