684 research outputs found

    DPBalance: Efficient and Fair Privacy Budget Scheduling for Federated Learning as a Service

    Full text link
    Federated learning (FL) has emerged as a prevalent distributed machine learning scheme that enables collaborative model training without aggregating raw data. Cloud service providers further embrace Federated Learning as a Service (FLaaS), allowing data analysts to execute their FL training pipelines over differentially-protected data. Due to the intrinsic properties of differential privacy, the enforced privacy level on data blocks can be viewed as a privacy budget that requires careful scheduling to cater to diverse training pipelines. Existing privacy budget scheduling studies prioritize either efficiency or fairness individually. In this paper, we propose DPBalance, a novel privacy budget scheduling mechanism that jointly optimizes both efficiency and fairness. We first develop a comprehensive utility function incorporating data analyst-level dominant shares and FL-specific performance metrics. A sequential allocation mechanism is then designed using the Lagrange multiplier method and effective greedy heuristics. We theoretically prove that DPBalance satisfies Pareto Efficiency, Sharing Incentive, Envy-Freeness, and Weak Strategy Proofness. We also theoretically prove the existence of a fairness-efficiency tradeoff in privacy budgeting. Extensive experiments demonstrate that DPBalance outperforms state-of-the-art solutions, achieving an average efficiency improvement of 1.44×∼3.49×1.44\times \sim 3.49 \times, and an average fairness improvement of 1.37×∼24.32×1.37\times \sim 24.32 \times.Comment: Accepted by IEEE International Conference on Computer Communications (INFOCOM '24

    Fair Scheduling in Cellular Systems in the Presence of Noncooperative Mobiles

    Full text link

    Game Theory Relaunched

    Get PDF
    The game is on. Do you know how to play? Game theory sets out to explore what can be said about making decisions which go beyond accepting the rules of a game. Since 1942, a well elaborated mathematical apparatus has been developed to do so; but there is more. During the last three decades game theoretic reasoning has popped up in many other fields as well - from engineering to biology and psychology. New simulation tools and network analysis have made game theory omnipresent these days. This book collects recent research papers in game theory, which come from diverse scientific communities all across the world; they combine many different fields like economics, politics, history, engineering, mathematics, physics, and psychology. All of them have as a common denominator some method of game theory. Enjoy

    Fair scheduling in cellular systems in the presence of noncooperative mobiles

    Get PDF
    We consider the problem of 'fair' scheduling the resources to one of the many mobile stations by a centrally controlled base station (BS). The BS is the only entity taking decisions in this framework based on truthful information from the mobiles on their radio channel. We study the well-known family of parametric -fair scheduling problems from a gametheoretic perspective in which some of the mobiles may be noncooperative. We first show that if the BS is unaware of the noncooperative behavior from the mobiles, the noncooperative mobiles become successful in snatching the resources from the other cooperative mobiles, resulting in unfair allocations. If the BS is aware of the noncooperative mobiles, a new game arises with BS as an additional player. It can then do better by neglecting the signals from the noncooperative mobiles. The BS, however, becomes successful in eliciting the truthful signals from the mobiles only when it uses additional information (signal statistics). This new policy along with the truthful signals from mobiles forms a Nash Equilibrium (NE) which we call a Truth Revealing Equilibrium. Finally, we propose new iterative algorithms to implement fair scheduling policies that robustify the otherwise non-robust (in presence of noncooperation) fair scheduling algorithms
    • …
    corecore