1,408 research outputs found

    Improvement of Geometric Quality Inspection and Process Efficiency in Additive Manufacturing

    Get PDF
    Additive manufacturing (AM) has been known for its ability of producing complex geometries in flexible production environments. In recent decades, it has attracted increasing attention and interest of different industrial sectors. However, there are still some technical challenges hindering the wide application of AM. One major barrier is the limited dimensional accuracy of AM produced parts, especially for industrial sectors such as aerospace and biomedical engineering, where high geometric accuracy is required. Nevertheless, traditional quality inspection techniques might not perform well due to the complexity and flexibility of AM fabricated parts. Another issue, which is brought up from the growing demand for large-scale 3D printing in these industry sectors, is the limited fabrication speed of AM processes. However, how to improve the fabrication efficiency without sacrificing the geometric quality is still a challenging problem that has not been well addressed. In this work, new geometric inspection methods are proposed for both offline and online inspection paradigms, and a layer-by-layer toolpath optimization model is proposed to further improve the fabrication efficiency of AM processes without degrading the resolution. First, a novel Location-Orientation-Shape (LOS) distribution derived from 3D scanning output is proposed to improve the offline inspection in detecting and distinguishing positional and dimensional non-conformities of features. Second, the online geometric inspection is improved by a multi-resolution alignment and inspection framework based on wavelet decomposition and design of experiments (DOE). The new framework is able to improve the alignment accuracy and to distinguish different sources of error based on the shape deviation of each layer. In addition, a quickest change point detection method is used to identify the layer where the earliest change of systematic deviation distribution occurs during the printing process. Third, to further improve the printing efficiency without sacrificing the quality of each layer, a toolpath allocation and scheduling optimization model is proposed based on a concurrent AM process that allows multiple extruders to work collaboratively on the same layer. For each perspective of improvements, numerical studies are provided to emphasize the theoretical and practical meanings of proposed methodologies

    The Revisiting Problem in Simultaneous Localization and Mapping: A Survey on Visual Loop Closure Detection

    Full text link
    Where am I? This is one of the most critical questions that any intelligent system should answer to decide whether it navigates to a previously visited area. This problem has long been acknowledged for its challenging nature in simultaneous localization and mapping (SLAM), wherein the robot needs to correctly associate the incoming sensory data to the database allowing consistent map generation. The significant advances in computer vision achieved over the last 20 years, the increased computational power, and the growing demand for long-term exploration contributed to efficiently performing such a complex task with inexpensive perception sensors. In this article, visual loop closure detection, which formulates a solution based solely on appearance input data, is surveyed. We start by briefly introducing place recognition and SLAM concepts in robotics. Then, we describe a loop closure detection system's structure, covering an extensive collection of topics, including the feature extraction, the environment representation, the decision-making step, and the evaluation process. We conclude by discussing open and new research challenges, particularly concerning the robustness in dynamic environments, the computational complexity, and scalability in long-term operations. The article aims to serve as a tutorial and a position paper for newcomers to visual loop closure detection.Comment: 25 pages, 15 figure

    Multimedia

    Get PDF
    The nowadays ubiquitous and effortless digital data capture and processing capabilities offered by the majority of devices, lead to an unprecedented penetration of multimedia content in our everyday life. To make the most of this phenomenon, the rapidly increasing volume and usage of digitised content requires constant re-evaluation and adaptation of multimedia methodologies, in order to meet the relentless change of requirements from both the user and system perspectives. Advances in Multimedia provides readers with an overview of the ever-growing field of multimedia by bringing together various research studies and surveys from different subfields that point out such important aspects. Some of the main topics that this book deals with include: multimedia management in peer-to-peer structures & wireless networks, security characteristics in multimedia, semantic gap bridging for multimedia content and novel multimedia applications

    Robust Mobile Visual Recognition System: From Bag of Visual Words to Deep Learning

    Get PDF
    With billions of images captured by mobile users everyday, automatically recognizing contents in such images has become a particularly important feature for various mobile apps, including augmented reality, product search, visual-based authentication etc. Traditionally, a client-server architecture is adopted such that the mobile client sends captured images/video frames to a cloud server, which runs a set of task-specific computer vision algorithms and sends back the recognition results. However, such scheme may cause problems related to user privacy, network stability/availability and device energy.In this dissertation, we investigate the problem of building a robust mobile visual recognition system that achieves high accuracy, low latency, low energy cost and privacy protection. Generally, we study two broad types of recognition methods: the bag of visual words (BOVW) based retrieval methods, which search the nearest neighbor image to a query image, and the state-of-the-art deep learning based methods, which recognize a given image using a trained deep neural network. The challenges of deploying BOVW based retrieval methods include: size of indexed image database, query latency, feature extraction efficiency and re-ranking performance. To address such challenges, we first proposed EMOD which enables efficient on-device image retrieval on a downloaded context-dependent partial image database. The efficiency is achieved by analyzing the BOVW processing pipeline and optimizing each module with algorithmic improvement.Recent deep learning based recognition approaches have been shown to greatly exceed the performance of traditional approaches. We identify several challenges of applying deep learning based recognition methods on mobile scenarios, namely energy efficiency and privacy protection for real-time visual processing, and mobile visual domain biases. Thus, we proposed two techniques to address them, (i) efficiently splitting the workload across heterogeneous computing resources, i.e., mobile devices and the cloud using our Moca framework, and (ii) using mobile visual domain adaptation as proposed in our collaborative edge-mediated platform DeepCham. Our extensive experiments on large-scale benchmark datasets and off-the-shelf mobile devices show our solutions provide better results than the state-of-the-art solutions

    How to exploit the Social Internet of Things: Query Generation Model and Device Profiles’ Dataset

    Get PDF
    The future Internet of Things (IoT) will be characterized by an increasing number of object-to-object interactions for the implementation of distributed applications running in smart environments. The Social IoT (SIoT) is one of the possible paradigms that is proposed to make the objects’ interactions easier by facilitating the search of services and the management of objects’ trustworthiness. In this scenario, we address the issue of modeling the queries that are generated by the objects when fulfilling applications’ requests that could be provided by any of the peers in the SIoT. To this, the defined model takes into account the objects’ major features in terms of typology and associated functionalities, and the characteristics of the applications. We have then generated a dataset, by extracting objects’ information and positions from the city of Santander in Spain. We have classified all the available devices according to the FIWARE Data Models, so as to enable the portability of the dataset among different platforms. The dataset and the proposed query generation model are made available to the research community to study the navigability of the SIoT network, with an application also to other IoT networks. Experimental analyses have also been conducted, which give some key insights on the impact of the query model parameters on the average number of hops needed for each search

    λŒ€μš©λŸ‰ 데이터 탐색을 μœ„ν•œ 점진적 μ‹œκ°ν™” μ‹œμŠ€ν…œ 섀계

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :κ³΅κ³ΌλŒ€ν•™ 컴퓨터곡학뢀,2020. 2. μ„œμ§„μš±.Understanding data through interactive visualization, also known as visual analytics, is a common and necessary practice in modern data science. However, as data sizes have increased at unprecedented rates, the computation latency of visualization systems becomes a significant hurdle to visual analytics. The goal of this dissertation is to design a series of systems for progressive visual analytics (PVA)β€”a visual analytics paradigm that can provide intermediate results during computation and allow visual exploration of these resultsβ€”to address the scalability hurdle. To support the interactive exploration of data with billions of records, we first introduce SwiftTuna, an interactive visualization system with scalable visualization and computation components. Our performance benchmark demonstrates that it can handle data with four billion records, giving responsive feedback every few seconds without precomputation. Second, we present PANENE, a progressive algorithm for the Approximate k-Nearest Neighbor (AKNN) problem. PANENE brings useful machine learning methods into visual analytics, which has been challenging due to their long initial latency resulting from AKNN computation. In particular, we accelerate t-Distributed Stochastic Neighbor Embedding (t-SNE), a popular non-linear dimensionality reduction technique, which enables the responsive visualization of data with a few hundred columns. Each of these two contributions aims to address the scalability issues stemming from a large number of rows or columns in data, respectively. Third, from the users' perspective, we focus on improving the trustworthiness of intermediate knowledge gained from uncertain results in PVA. We propose a novel PVA concept, Progressive Visual Analytics with Safeguards, and introduce PVA-Guards, safeguards people can leave on uncertain intermediate knowledge that needs to be verified. We also present a proof-of-concept system, ProReveal, designed and developed to integrate seven safeguards into progressive data exploration. Our user study demonstrates that people not only successfully created PVA-Guards on ProReveal but also voluntarily used PVA-Guards to manage the uncertainty of their knowledge. Finally, summarizing the three studies, we discuss design challenges for progressive systems as well as future research agendas for PVA.ν˜„λŒ€ 데이터 μ‚¬μ΄μ–ΈμŠ€μ—μ„œ μΈν„°λž™ν‹°λΈŒν•œ μ‹œκ°ν™”λ₯Ό 톡해 데이터λ₯Ό μ΄ν•΄ν•˜λŠ” 것은 ν•„μˆ˜μ μΈ 뢄석 방법 쀑 ν•˜λ‚˜μ΄λ‹€. κ·ΈλŸ¬λ‚˜, 졜근 λ°μ΄ν„°μ˜ 크기가 폭발적으둜 μ¦κ°€ν•˜λ©΄μ„œ 데이터 크기둜 인해 λ°œμƒν•˜λŠ” 지연 μ‹œκ°„μ΄ μΈν„°λž™ν‹°λΈŒν•œ μ‹œκ°μ  뢄석에 큰 걸림돌이 λ˜μ—ˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ΄λŸ¬ν•œ ν™•μž₯μ„± 문제λ₯Ό ν•΄κ²°ν•˜κΈ° μœ„ν•΄ 점진적 μ‹œκ°μ  뢄석(Progressive Visual Analytics)을 μ§€μ›ν•˜λŠ” 일련의 μ‹œμŠ€ν…œμ„ λ””μžμΈν•˜κ³  κ°œλ°œν•œλ‹€. μ΄λŸ¬ν•œ 점진적 μ‹œκ°μ  뢄석 μ‹œμŠ€ν…œμ€ 데이터 μ²˜λ¦¬κ°€ μ™„μ „νžˆ λλ‚˜μ§€ μ•Šλ”λΌλ„ 쀑간 뢄석 κ²°κ³Όλ₯Ό μ‚¬μš©μžμ—κ²Œ μ œκ³΅ν•¨μœΌλ‘œμ¨ λ°μ΄ν„°μ˜ 크기둜 인해 λ°œμƒν•˜λŠ” 지연 μ‹œκ°„ 문제λ₯Ό μ™„ν™”ν•  수 μžˆλ‹€. 첫째둜, μˆ˜μ‹­μ–΅ 건의 행을 κ°€μ§€λŠ” 데이터λ₯Ό μ‹œκ°μ μœΌλ‘œ 탐색할 수 μžˆλŠ” SwiftTuna μ‹œμŠ€ν…œμ„ μ œμ•ˆν•œλ‹€. 데이터 처리 및 μ‹œκ°μ  ν‘œν˜„μ˜ ν™•μž₯성을 λͺ©ν‘œλ‘œ 개발된 이 μ‹œμŠ€ν…œμ€, μ•½ 40μ–΅ 건의 행을 가진 데이터에 λŒ€ν•œ μ‹œκ°ν™”λ₯Ό μ „μ²˜λ¦¬ 없이 수 μ΄ˆλ§ˆλ‹€ μ—…λ°μ΄νŠΈν•  수 μžˆλŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. λ‘˜μ§Έλ‘œ, 근사적 k-μ΅œκ·Όμ ‘μ (Approximate k-Nearest Neighbor) 문제λ₯Ό μ μ§„μ μœΌλ‘œ κ³„μ‚°ν•˜λŠ” PANENE μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ•ˆν•œλ‹€. 근사적 k-μ΅œκ·Όμ ‘μ  λ¬Έμ œλŠ” μ—¬λŸ¬ 기계 ν•™μŠ΅ κΈ°λ²•μ—μ„œ μ“°μž„μ—λ„ λΆˆκ΅¬ν•˜κ³  초기 계산 μ‹œκ°„μ΄ κΈΈμ–΄μ„œ μΈν„°λž™ν‹°λΈŒν•œ μ‹œμŠ€ν…œμ— μ μš©ν•˜κΈ° νž˜λ“  ν•œκ³„κ°€ μžˆμ—ˆλ‹€. PANENE μ•Œκ³ λ¦¬μ¦˜μ€ μ΄λŸ¬ν•œ κΈ΄ 초기 계산 μ‹œκ°„μ„ 획기적으둜 κ°œμ„ ν•˜μ—¬ λ‹€μ–‘ν•œ 기계 ν•™μŠ΅ 기법을 μ‹œκ°μ  뢄석에 ν™œμš©ν•  수 μžˆλ„λ‘ ν•œλ‹€. 특히, μœ μš©ν•œ λΉ„μ„ ν˜•μ  차원 κ°μ†Œ 기법인 t-뢄포 ν™•λ₯ μ  μž„λ² λ”©(t-Distributed Stochastic Neighbor Embedding)을 κ°€μ†ν•˜μ—¬ 수백 개의 차원을 κ°€μ§€λŠ” 데이터λ₯Ό λΉ λ₯Έ μ‹œκ°„ 내에 μ‚¬μ˜ν•  수 μžˆλ‹€. μœ„μ˜ 두 μ‹œμŠ€ν…œκ³Ό μ•Œκ³ λ¦¬μ¦˜μ΄ λ°μ΄ν„°μ˜ ν–‰ λ˜λŠ” μ—΄μ˜ 개수둜 μΈν•œ ν™•μž₯μ„± 문제λ₯Ό ν•΄κ²°ν•˜κ³ μž ν–ˆλ‹€λ©΄, μ„Έ 번째 μ‹œμŠ€ν…œμ—μ„œλŠ” 점진적 μ‹œκ°μ  λΆ„μ„μ˜ 신뒰도 문제λ₯Ό κ°œμ„ ν•˜κ³ μž ν•œλ‹€. 점진적 μ‹œκ°μ  λΆ„μ„μ—μ„œ μ‚¬μš©μžμ—κ²Œ μ£Όμ–΄μ§€λŠ” 쀑간 계산 κ²°κ³ΌλŠ” μ΅œμ’… 결과의 κ·Όμ‚¬μΉ˜μ΄λ―€λ‘œ λΆˆν™•μ‹€μ„±μ΄ μ‘΄μž¬ν•œλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ„Έμ΄ν”„κ°€λ“œλ₯Ό μ΄μš©ν•œ 점진적 μ‹œκ°μ  뢄석(Progressive Visual Analytics with Safeguards)μ΄λΌλŠ” μƒˆλ‘œμš΄ κ°œλ…μ„ μ œμ•ˆν•œλ‹€. 이 κ°œλ…μ€ μ‚¬μš©μžκ°€ 점진적 νƒμƒ‰μ—μ„œ λ§ˆμ£Όν•˜λŠ” λΆˆν™•μ‹€ν•œ 쀑간 지식에 μ„Έμ΄ν”„κ°€λ“œλ₯Ό 남길 수 μžˆλ„λ‘ ν•˜μ—¬ νƒμƒ‰μ—μ„œ 얻은 μ§€μ‹μ˜ 정확도λ₯Ό μΆ”ν›„ 검증할 수 μžˆλ„λ‘ ν•œλ‹€. λ˜ν•œ, μ΄λŸ¬ν•œ κ°œλ…μ„ μ‹€μ œλ‘œ κ΅¬ν˜„ν•˜μ—¬ νƒ‘μž¬ν•œ ProReveal μ‹œμŠ€ν…œμ„ μ†Œκ°œν•œλ‹€. ProRevealλ₯Ό μ΄μš©ν•œ μ‚¬μš©μž μ‹€ν—˜μ—μ„œ μ‚¬μš©μžλ“€μ€ μ„Έμ΄ν”„κ°€λ“œλ₯Ό μ„±κ³΅μ μœΌλ‘œ λ§Œλ“€ 수 μžˆμ—ˆμ„ 뿐만 μ•„λ‹ˆλΌ, 쀑간 μ§€μ‹μ˜ λΆˆν™•μ‹€μ„±μ„ 닀루기 μœ„ν•΄ μ„Έμ΄ν”„κ°€λ“œλ₯Ό 자발적으둜 μ΄μš©ν•œλ‹€λŠ” 것을 μ•Œ 수 μžˆμ—ˆλ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ, μœ„ μ„Έ 가지 μ—°κ΅¬μ˜ κ²°κ³Όλ₯Ό μ’…ν•©ν•˜μ—¬ 점진적 μ‹œκ°μ  뢄석 μ‹œμŠ€ν…œμ„ κ΅¬ν˜„ν•  λ•Œμ˜ λ””μžμΈμ  λ‚œμ œμ™€ ν–₯ν›„ 연ꡬ λ°©ν–₯을 λͺ¨μƒ‰ν•œλ‹€.CHAPTER1. Introduction 2 1.1 Background and Motivation 2 1.2 Thesis Statement and Research Questions 5 1.3 Thesis Contributions 5 1.3.1 Responsive and Incremental Visual Exploration of Large-scale Multidimensional Data 6 1.3.2 ProgressiveComputation of Approximate k-Nearest Neighbors and Responsive t-SNE 7 1.3.3 Progressive Visual Analytics with Safeguards 8 1.4 Structure of Dissertation 9 CHAPTER2. Related Work 11 2.1 Progressive Visual Analytics 11 2.1.1 Definitions 11 2.1.2 System Latency and Human Factors 13 2.1.3 Users, Tasks, and Models 15 2.1.4 Techniques, Algorithms, and Systems. 17 2.1.5 Uncertainty Visualization 19 2.2 Approaches for Scalable Visualization Systems 20 2.3 The k-Nearest Neighbor (KNN) Problem 22 2.4 t-Distributed Stochastic Neighbor Embedding 26 CHAPTER3. SwiTuna: Responsive and Incremental Visual Exploration of Large-scale Multidimensional Data 28 3.1 The SwiTuna Design 31 3.1.1 Design Considerations 32 3.1.2 System Overview 33 3.1.3 Scalable Visualization Components 36 3.1.4 Visualization Cards 40 3.1.5 User Interface and Interaction 42 3.2 Responsive Querying 44 3.2.1 Querying Pipeline 44 3.2.2 Prompt Responses 47 3.2.3 Incremental Processing 47 3.3 Evaluation: Performance Benchmark 49 3.3.1 Study Design 49 3.3.2 Results and Discussion 52 3.4 Implementation 56 3.5 Summary 56 CHAPTER4. PANENE:AProgressive Algorithm for IndexingandQuerying Approximate k-Nearest Neighbors 58 4.1 Approximate k-Nearest Neighbor 61 4.1.1 A Sequential Algorithm 62 4.1.2 An Online Algorithm 63 4.1.3 A Progressive Algorithm 66 4.1.4 Filtered AKNN Search 71 4.2 k-Nearest Neighbor Lookup Table 72 4.3 Benchmark. 78 4.3.1 Online and Progressive k-d Trees 78 4.3.2 k-Nearest Neighbor Lookup Tables 83 4.4 Applications 85 4.4.1 Progressive Regression and Density Estimation 85 4.4.2 Responsive t-SNE 87 4.5 Implementation 92 4.6 Discussion 92 4.7 Summary 93 CHAPTER5. ProReveal: Progressive Visual Analytics with Safeguards 95 5.1 Progressive Visual Analytics with Safeguards 98 5.1.1 Definition 98 5.1.2 Examples 101 5.1.3 Design Considerations 103 5.2 ProReveal 105 5.3 Evaluation 121 5.4 Discussion 127 5.5 Summary 130 CHAPTER6. Discussion 132 6.1 Lessons Learned 132 6.2 Limitations 135 CHAPTER7. Conclusion 137 7.1 Thesis Contributions Revisited 137 7.2 Future Research Agenda 139 7.3 Final Remarks 141 Abstract (Korean) 155 Acknowledgments (Korean) 157Docto
    • …
    corecore